绳端速度分解模型问题的分析
人教版高一物理必修第二册专题:5.2小船过河和关联速度
2.绳末端速度分解的分析: 如右图所示,取船与绳的连 结点 A 为研究对象(此点既 是船上的点,又是绳子上的 点).因为船上 A 点的速度即船的实际运动速度 v, 绳子 A 点既有沿绳方向的收缩(或伸长)速度 v1(沿 绳方向的直线运动),又有沿垂直绳方向的转动速 度 v2(以绳轮间支点为中心的圆周运动),所以 v 是 v1 和 v2 的合速度.
提示:将船的 运动分解成沿 绳方向的运动 和垂直绳方向 的运动。
V1
V V2
V=V1/cos600=8m/s
8
※6、一人骑自行车向西行驶,当车速为4m/s
时,他感觉到风从正南方向吹来,当车速增加到
7m/s时,他感觉到风从东南(东偏南45°)方
向吹来,则风对地的速度大小为( )
A、4m/s
B、5m/s
C、6m/s
D、7m/s
v合
v合 v2
v2
v1
v1
45
v1 3m / s
9
二、绳拉船模型分析 1.模型展示:船在靠岸的过程中,通过一条跨过定滑轮的绳拉 船.研究拉船的绳端速度与船速的关系.在绳跟滑轮间的支撑点 看绳拉船头部位,该部位的实际运动是受水面约束的直线运动, 这也是合运动.它实际上是同时参与了两个分运动:一是沿绳方 向的直线运动,二是具有沿垂直绳方向线速度的圆周运动.此类 问题在建筑工地的塔吊工作中也很常见.
7.两个典型模型的分析 一、小船渡河模型分析
1.模型展示:小船在渡河时,同时参与了两个运
动:一是随水沿水流方向的运动,二是船本身相
对水的运动.小船实际发生的运动是合运动,而
这两个运动是分运动.模型主要讨论船渡河时间
最短和位移最短这两个问题.设一条河宽 d,船
绳端速度分解模型问题的分析
绳(杆)端速度分解模型一、基础知识 1、 模型特点沿绳(或杆)方向的速度分量大小相等. 2、 思路与方法合运动T 绳拉物体的实际运动速度v分运动T其一:沿绳(或杆)的速度V 1其二:与绳(或杆)垂直的分速度V 2 方法:V 1与V 2的合成遵循平行四边形定则.3、解决此类问题时应把握以下两点:(1)确定合速度,它应是小船的实际速度;(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动•应根据实际效果进行运动的分解. 二、练习1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为V 0,当绳与水平方向夹角为 0时,物体的速度 v 为 _____________ .若此时绳上的拉力大小为 F ,物体的 质量为m 忽略地面的摩擦力,那么,此时物体的加速度为 _______________ .解析物体的运动(即绳的末端的运动)可看做两个分运动的合成:(1)沿绳的方向被牵引,绳长缩短,缩短的速度等于 v o ; (2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长•即速度v 分解为沿绳V o方向和垂直绳方向的分速度,如图所示, v cos 0 = V o , v = .cos 0拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F eos 0,加速度aF eos 0=_^.2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO段与水平面的夹角为 0 , 0B 段与水平面的夹角为 a .不计摩擦和轮的质量,则此时小船 的速度多大?解析 小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果, 所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知答案V ocos 0 F eos 0mV A =cos 9答案cosr 3、如图所示,在水平地面上做匀速直线运动的小车, 通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一 时刻的速度分别为 V i 和V 2,绳子对物体的拉力为 F T ,物体所受重力为G 则下列说法正确的是答案 C解析 把V i 分解如图所示,V 2 = V i cos a , a 变小,V 2变大,物体做加速 运动,超重,F T >G 选项C 正确. 4、人用绳子通过定滑轮拉物体A , A 穿在光滑的竖直杆上,当以速度匀速地拉绳使物体 A 到达如图所示位置时,绳与竖直杆的夹角为9,则物体A 实际运动的速度是A. V o sin 9 C. v o cos 9 答案 D沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动. 而物体A 实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运项正确.5、如图,人沿平直的河岸以速度 V 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行•当绳 与河岸的夹角为 a 时,船的速率为 A. V sin a C. V cos a 答案 C解析 如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识 有V 船=V COS a ,所以C 正确,A 、B 、D 错误.A.物体做匀速运动,且 V l = V 2B.物体做加速运动,且 V 2>V 1C.物体做加速运动,且 F T >GD.物体做匀速运动,且F T = GV o解析由运动的合成与分解可知,物体A 参与两个分运动:一个是动就是物体 A 的合运动,它们之间的关系如图所示.由几何关系可得V oV= cos 9,所以D速运动,当绳被拉成与水平面夹角分别为 为( 绳始终有拉力 )A. V i sin a /sin 卩C. V i sin a /cos 卩 答案 D解析 A 、B 两物体的速度分解如图.由图可知: V 绳A = V i COs aV 绳 B = V B COS 卩由于 V 绳 A = V 绳 B所以 V B = V i COS a /COS 卩,故 D 对.6、A B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,a 、卩时,如图所示.物体 B 的运动速度 V B( )B. V i COs a /sin 3 D. V i COs a /COs 3现物体A 以V i 的速度向右匀。
“关联”速度问题模型归类例析
关联”速度问题模型归类例析绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。
关联速度”问题特点:沿杆或绳方向的速度分量大小相等。
绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。
②在绳或杆连体中,物体实际运动方向就是合速度的方向。
③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。
关联速度”问题常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。
、绳相关联问题1.一绳一物模型1)所拉的物体做匀速运动例 1 如图 1 所示,人在岸上拉船,已知船的质量为m,水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时小结人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。
即按图 3 所示进行分解,则水错选 B 选项.平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会2)匀速拉动物体例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少?解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。
做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同对称地系住个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。
尝试使用分解法解决绳牵连模型中加速度问题
尝试使用分解法解决绳牵连模型中加速度问题尝试使用分解法解决绳牵连模型中加速度问题引言:绳牵连模型是物理力学中常见的问题,它通过一根绳子将两个物体连接起来,其中一个物体受到外力作用,我们需要求解另一个物体的运动情况。
在这个模型中,加速度的计算是一个重要的问题。
本文将介绍如何使用分解法来解决绳牵连模型中的加速度问题,通过分解问题,我们能够更好地理解并解决这类问题。
第一部分:绳牵连模型的基本原理及问题描述在绳牵连模型中,我们通常有两个物体,一个作为主体,受到外力作用,另一个受到牵引力的作用。
我们需要求解受牵引物体的运动情况。
具体问题描述如下:一个质量为m1的物体通过一根不可伸长、质量可忽略不计的绳子与另一个质量为m2的物体相连接。
我们知道主体物体受到外力F的作用,求解受牵引物体的加速度a2。
第二部分:分解法的基本原理分解法是解决绳牵连模型中解决加速度问题的常用方法之一。
其基本思想是将绳子的拉力和牵引力分解为两个方向上的力,然后应用牛顿第二定律进行计算。
在这个过程中,我们需要按照一定的规则进行力的分解,然后根据物体之间的约束关系,建立方程并求解。
第三部分:应用分解法求解加速度问题的步骤1. 初步分析:仔细读题,理解问题中给出的所有信息,注意所给物体的质量、牵引力和外力的方向。
2. 绘制力的示意图:根据题目描述,绘制力的示意图,标注所给的各个力的方向和大小。
3. 力的分解:根据问题的要求,将绳子的拉力和牵引力进行分解,得到垂直方向和水平方向上的力。
4. 建立坐标系:根据问题的具体情况,建立合适的坐标系,确定正方向。
5. 求解:根据分解后的力和牛顿第二定律,建立方程并求解受牵引物体的加速度a2。
第四部分:具体示例分析假设主体物体受到的外力F向右,绳子与水平方向的夹角为θ。
将牵引力T和绳子的拉力T0分解为垂直方向和水平方向上的力T1和T2。
根据牛顿第二定律可得以下方程:在x轴上:m1a1 = T2 - F + T0cosθ在y轴上:T1 - T0sinθ - m1g = 0结合以上两个方程,我们可以求解出受牵引物体的加速度a2。
“绳端模型”中两物体加速度的关系剖析
轻 绳 两 端 各 连 接 一 个 物 体 ,当 一 个 物 体 运 动 时 , 会 引 起 另 一 个 物 体 运 动 ,通 常 把 这 类 模 型 称 作 “绳端 模 型 ”。判 断 该 模 型 中 两 物 体 的 速 度 关 系 和 加 速 度 关 系 是 高 中 物 理 的 常 考 问 题 ,研 究 两 物 体 的 速 度 关 系 时 ,只 需 要 将 绳 端 两 物 体 的 速 度 均 沿 绳 和 垂 直 绳 进 行 正 交 分 解 (速 度 方 向 与 绳 共 线 的 不 用 分 解 ),抓住绳两 端物体沿绳方向的速度大小相等这一隐含条件列出 方 程 即 可 解 决 ,大 多 数 学 生 都 能 熟 练 掌 握 。但 是 ,在 讨 论 绳 两 端 物 体 加 速 度 的 关 系 时 ,学 生 普 遍 感 到 困 难 ,下 面 从 动 力 学 的 角 度 ,深 刻 剖 析 该 问 题 ,旨在探索
Vol.5() No.6
Jun.2021
+ £ ’糾 ?教 学 参 考
习题研究
“绳 端 模 型 ”中 两 物 体 加 速 度 的 关 系 剖 析
易俊平 ( 湖 北 省 襄 阳 市 第 一 中 学 湖 北 襄 阳 441000)
文 章 编 号 :l〇〇2-218X (2021)06-0055-02
中 图 分 类 号 :G 632. 479
w2 ( s i n ~h
d2 )3
,方 向 指 向 圆 心 ,由 于 小 车 在 沿 绳 方 向 上
的 分 加 速 度 为 零 ,根 据 同 一 直 线 上 矢 量 合 成 的 规 律 可 以 得 出 ,小 车 在 沿 绳 方 向 一 定 有 一 个 远 离 圆 心 的 加 速
度 ,其 大 小 〜 等 于 ^ 。因 为 细 绳 不 能 伸 长 ,故 物 体 P 的加速度^2;> 的 方 向 沿 斜 面 向 上 ,其 大 小 为 a P = a 2 =
高三复习考点强化:小船渡河模型及绳(杆)端速度分解模型 课件
其二:与绳(杆)垂直的速度v⊥
方法:v∥与v⊥的合成遵循平行四边形定则。 3.解题原则: 根据沿绳(杆)方向的分速度大小相等求解。 常见实例如下:
课堂互动 【例 3】 (2019·宝鸡模拟)如图所示,水平光滑长杆上套有一物块 Q,跨过悬挂于 O
点的轻小光滑圆环的轻绳一端连接 Q,另一端悬挂一物块 P。设轻绳的左边部分与水平方向 的夹角为 θ,初始时 θ 很小。现将 P、Q 由静止同时释放,关于 P、 Q 以后的运动下列说法正确的是( )
多维训练
1.(多选)一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边。小船相 对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图12所示。船相对于水的 初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变。由此可 以确定( )
A.沿AD轨迹运动时,船相对于水做匀减速直线运动 B.沿三条不同路径渡河的时间相同 C.沿AC轨迹渡河所用的时间最短 D.沿AC轨迹到达对岸的速度最小
A.小船渡河的轨迹为直线 B.小船在河水中的最大速度是 5 m/s C.小船在距南岸 200 m 处的速度小于在距北岸 200 m 处的速度 D.小船渡河的时间是 160 s
转到解析
备选训练
3. 如图所示,AB杆以恒定角速度绕A点转动,并带动套在光滑水平杆OC上的质量 为M的小环运动,运动开始时,AB杆在竖直位置,则小环M的速度将( )
多维训练
2.如图所示,不计所有接触面之间的摩擦,斜面固定,物块和滑块质量分别为 m1 和 m2,且 m1<m2。若将滑块从位置 A 由静止释放,当沿杆落到位置 B 时,滑块的速度 为 v2,且与滑块牵连的绳子与竖直方向的夹角为 θ,则此时物块的速度大小 v1 等于( )
绳船模型中的速度和加速度关系深度分析
绳船模型中的速度和加速度关系深度分析摘要:速度合成和分解中,绳子两端绳上的点的速度沿绳子方向的分量才相等,而不是绳子两端的物体的速度沿绳子方向的分量相等。
同时,绳子两端的点的加速度沿绳子方向的分量也不是单纯意义上的相等,本文通过绳船模型定量给出速度及加速度的关系。
关键词:速度加速度分解相等绳杆端速度分解模型中,在绳子不松弛的情况下,在同一时刻必须具有相同的沿杆绳方向的分速度[1]。
这里的速度分量指,绳子两端点的速度沿绳子方向分量,而不是绳子两端物体的速度分量。
绳子两端点的速度与绳子两端物体的速度有很大的区别,如图1所示,数值方向的动滑轮模型,绳子端点C的速度是绳子两端物体(滑轮)速度的两倍。
本文将通过绳船模型详细说明速度关系。
图1在教学过程中,学生从速度关系直接类比加速度关系,绳子两端的点的加速度沿绳方向分量相等,这样的理解显然是不对的。
如图2所示,物体绕圆心o作匀速圆周运动,半径为r,速率为v,分析绳子两端的点的加速度沿绳方向分量的关系?绳子一端物体的加速度,这个加速度为物体的合加速度,此加速度沿半径方向的分量为,绳子一端圆心的加速度0,此加速度沿半径方向的分量为0,显然绳子两端的点的加速度沿绳方向的分量不相等。
本文将通过绳船模型详细说明加速度关系。
1、单绳船模型中速度关系如图3所示,人用轻质细绳通过定滑轮牵引小船靠岸,如果收绳的速度为,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大[2]?分析:船在水面在直线运动,实际发生的运动就是合运动,这个合运动有两个运动效果,一是使小船沿绳拉力方向以速度运动,二是使小船随绳的一端绕滑轮做顺时针方向的圆周运动。
靠近船头绳上的速度和船的速度一样,由于绳子不松软,所以沿绳方向速度分量相等:①由①式变形得船的速度:②2、单绳船模型中加速度关系如图3所示,如果人拉绳子以恒定的加速度向前奔跑,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大?错误的理解,由于绳子不松软,所以沿绳方向加速度分量相等。
二级结论”及常见模型
高考物理“二级结论”及常见模型三轮冲刺抢分必备,掌握得越多,答题越快。
一般情况下,二级结论都是在一定的前提下才成立的,因此建议你先确立前提,再研究结论。
一、静力学:1.物体受几个力平衡,则其中任意一个力都是与其它几个力的合力平衡的力,或者说“其中任意一个力总与其它力的合力等大反向”。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为120°。
3.力的合成和分解是一种等效代换,分力或合力都不是真实的力,对物体进行受力分析时只分析实际“受”到的力。
4.①物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段必组成闭合矢量三角形;且有312123sin sin sin F F F ααα==(拉密定理)。
②物体在三个非平行力作用下而平衡,则表示这三个力的矢量线段或线段延长线必相交于一点。
5.物体沿斜面不受其它力而自由匀速下滑,则tan μα=。
6.两个原来一起运动的物体“刚好脱离”瞬间:力学条件:貌合神离,相互作用的弹力为零。
运动学条件:此时两物体的速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧发生形变需要时间,因此弹簧的弹力不能发生突变。
9.轻杆能承受拉、压、挑、扭等作用力。
力可以发生突变,“没有记忆力”。
10.两个物体的接触面间的相互作用力可以是:()⎧⎪⎨⎪⎩无一个,一定是弹力二个最多,弹力和摩擦力11.在平面上运动的物体,无论其它受力情况如何,所受平面支持力和滑动摩擦力的合力方向总与平面成N f 1tantan F ==F αμ。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便,思路是:位移→时间→平均速度,且1212222t/s s T++===v v v v 3.匀变速直线运动:时间等分时, 21n n s s aT --= ,这是唯一能判断所有匀变速直线运动的方法;位移中点的即时速度2s/=v , 且无论是加速还是减速运动,总有22s/t/>v v 纸带点痕求速度、加速度:1222t/s s T +=v ,212s sa T -=,()121n s s a n T-=- 4.匀变速直线运动,0v = 0时:时间等分点:各时刻速度之比:1:2:3:4:5各时刻总位移之比:1:4:9:16:25 各段时间内位移之比:1:3:5:7:9位移等分点:各时刻速度之比:1∶…… 到达各分点时间之比1…… 通过各段时间之比1∶)1……5.自由落体(取210m/s g=):n 秒末速度(m/s ): 10,20,30,40,50 =gt n 秒末下落高度(m):5、20、45、80、125 212=gt 第n 秒内下落高度(m):5、15、25、35、452211122n n-=at -at6.上抛运动:对称性:t t 下上=,=v v 下上, 2m 2h g=v7.相对运动:①共同的分运动不产生相对位移。
绳(杆)端速度分解模型
专题4 绳(杆)端速度分解模型一、单选题1.人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当人以速度v 0竖直向下匀速拉绳使质量为m 物体A 到达如图所示位置时,此时绳与竖直杆的夹角为θ,则物体A 的动能为( )A.2022cos mv θ B.2022tan mv θC.2012mv D.2201sin 2mv θ⋅ 【答案】A【解析】将A 的速度分解为沿绳子方向和垂直于绳子方向,如上图所示。
拉绳子的速度等于A 沿绳子方向的分速度,根据平行四边形定则得,实际速度0cos v v θ=根据2k 12E mv =代入计算得到2k 22cos mv E θ=故A 正确,BCD 错误。
故选A 。
2.如图所示,沿竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,当细绳与竖直杆间的夹角为θ时,物体B 的速度为( )A.v/cosθB.vcosθC.vD.vsinθ 【答案】B【解析】物体A 以速度v 匀速下滑,把物体A 的速度沿着绳子方向和垂直绳子方向进行分解后可得绳子的速度,B 对;3.如图所示,沿光滑竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,细绳与竖直杆间的夹角为θ,则以下说法正确的是( )A.物体B 向右匀速运动B.物体B 向右加速运动C.细绳对A 的拉力逐渐变大D.细绳对B 的拉力不变【答案】B【解析】物体A 以速度v 沿竖直杆匀速下滑,绳子的速率等于物体B 的速率,将A 物体的速度分解为沿绳子方向和垂直于绳子方向,沿绳子方向的分速度等于绳速,由几何知识求解B 的速率,再讨论B 的运动情况以及绳子的拉力变化.将A 物体的速度按图示两个方向分解,如图所示,由绳子速率cos v v 绳θ=,而绳子速率等于物体B 的速率,则有物体B 的速率cos B v v v θ==绳.因θ减小,则B 物体向右做变加速运动,对公式求导,得出B 的加速度sin a v θ=,随着θ的加速度,B 的加速度在减小,故绳子对B 的拉力减小,同一条绳子上的拉力相等,所以绳子对A 的拉力减小,B 正确.4.如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α,船的速率为( )A.sin v αB.sin vα C.cos v α D.cos v α【答案】C 【解析】将人的运动速度v 沿着绳子方向和垂直绳子方向正交分解,如图,由于绳子始终处于绷紧状态,因而小船的速度等于人沿着绳子方向的分速度根据此图得:v 船=vcosα;故选C.点睛:本题关键找到人的合运动和分运动,然后根据正交分解法将人的速度分解即可;本题容易把v 船分解而错选D ,要分清楚谁是合速度,谁是分速度.5.一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m 的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H.车由静止开始向左做匀加速运动,经过时间t 绳子与水平方向的夹角为θ,如图所示,则( )A.车向左运动的加速度的大小为22tan Ha t θ= B.车向左运动的加速度的大小为22tan Ha t θ=C. 重物m 在t 时刻速度的大小为2cos Hv tθ= D.重物m 在t 时刻速度的大小为2sin Hv tθ= 【答案】A【解析】汽车在时间t 内向左走的位移:tan Hx θ= 又汽车匀加速运动21x at 2=,所以2222a tan x Ht t θ==,A 正确,B 错误;由运动的分解知识可知,汽车速度v 汽沿绳的分速度与重物m 的速度相等,即v v cos θ物汽=得v 物=,CD 错误;故选A6.水平面上两物体A 、B 通过一根跨过定滑轮的轻绳相连,现物体A 以v 1的速度向右匀速运动,当绳被拉成与水平面夹角分别是、时(如图所示),物体B 的运动速度为(绳始终有拉力)( )A. B. C. D.【答案】D【解析】当绳被拉成与水平面夹角分别是α、β时,将物体A 、B 的速度如下图分解,因绳不可伸长,则1cos cos B v v αβ=,可得1cos cos B v v αβ=.故选D7.一个半径为R 的半圆柱体沿水平方向向右以速度v 0匀速运动,在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图所示。
关联速度问题
关联速度问题关联速度分解问题指物体拉绳(杆)或绳(杆)拉物体的问题:(1)物体的实际速度一定是合速度.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量大小相等. (3)常见的速度分解模型 情景图示(注:A 沿斜面下滑) 分解图示定量结论 v B =v A cos θ v A cos θ=v 0 v A cos α=v B cos β v B sin α=v A cos α 基本思路 确定合速度(物体实际运动)→分析运动规律→确定分速度方向→平行四边形定则求解阻力恒为F f ,当轻绳与水面的夹角为θ时,船的速度为v ,人的拉力大小为F ,则此时( )A.人拉绳行走的速度大小为v cos θB.人拉绳行走的速度大小为v cos θC.船的加速度大小为F cos θ-F f mD.船的加速度大小为F -F f m【题型2】如图所示, 一根长直轻杆AB 在墙角沿竖直墙和水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面滑动的速度大小为v 2,则v 1、v 2的关系是( )A.v 1=v 2B.v 1=v 2cos θC.v 1=v 2tan θD.v 1=v 2sin θ【题型3】人用绳子通过光滑轻质定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速度大小是( )A.v 0sin θB.v 0 sin θC.v 0cos θD.v 0 cos θ【题型4】如图所示,一根长为L 的轻杆OA ,O 端用铰链固定,轻杆靠在一个高为h 的物块上,某时杆与水平方向的夹角为θ,物块向右运动的速度为v ,则此时A 点速度为( )A.Lv sin θhB.Lv cos θhC.Lv sin 2θhD.Lv cos 2θh【题型5】如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αLB.v L sin αC.v cos αLD.v L cos α针对训练1.如图所示,有人在河面上方20 m 的岸上用跨过定滑轮的长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v =3 m/s 拉绳,使小船靠岸,那么( )A.5 s 时绳与水面的夹角为60°B.5 s 时小船前进了15 mC.5 s 时小船的速率为5 m/sD.5 s 时小船到岸边距离为10 m2.一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点),将其放在一个光滑球形容器中从位置1开始下滑,如图所示,当轻杆到达位置2时,球A 与球形容器球心等高,其速度大小为v 1,已知此时轻杆与水平方向成θ=30°角,球B 的速度大小为v 2,则( )A .v 2=12v 1 B .v 2=2v 1 C .v 2=v 1 D .v 2=3v 13.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A 的速度v 1为( )A.v 1=v 0sin αcos θB.v 1=v 0sin αsin θC.v 1=v 0cos αcos θD.v 1=v 0cos αcos θ4.一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.θωcos h C. θω2cos h D .Hωtan θ5.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A .另一竖直杆B 以速度v 水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为vtanθC .沿A 杆向上,大小为v/cosθD .沿A 杆向上,大小为vcosθ6.如图所示,细绳一端固定在天花板上的O 点,另一端穿过一张CD 光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD 光盘按在桌面上,并沿桌面边缘以速度v 匀速移动,移动过程中,CD 光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为( )A .v sin θB .v cos θC .v cos θD .v sin θ关联速度问题参考答案【题型1】【答案】 AC【解析】 船的运动产生了两个效果:一是使滑轮与船间的绳缩短,二是使滑轮与船间的绳偏转,因此将船的速度按如图所示(沿绳方向与垂直于绳方向)方式进行分解,人拉绳行走的速度大小v 人=v ∥=v cos θ,选项A 正确,B 错误;绳对船的拉力大小等于人拉绳的力的大小,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,解得a =F cos θ-F f m,选项C 正确,D 错误.【题型2】【答案】C【解析】将A 端的速度沿杆方向和垂直于杆的方向分解,沿杆方向的分速度为v 1∥=v 1cos θ,将B 端的速度沿杆方向和垂直于杆方向分解,沿杆方向的分速度v 2∥=v 2sin θ.由于v 1∥=v 2∥.所以v 1=v 2tan θ,故C 正确,A 、B 、D 错误.【题型3】【答案】D【解析】由运动的合成与分解可知,物体A 参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A 的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A 的合运动,它们之间的关系如图所示.由几何关系可得v =v 0 cos θ,所以D 正确.【题型4】【答案】 C【解析】 根据运动的效果可知物块向右运动的速度,如图所示.沿杆和垂直于杆的方向分解成1v 和2v ,根据平行四边形定则可得θθcos cos 1v v v B ==,θθsin sin 2v v v B ==,根据几何关系可得θsin h OB =,由于B 点的线速度为ωθ⋅==OB v v sin 2,所以h v OB v θθω2sin sin ==,所以A 点的线速度hLv L v A θω2sin ==,故C 正确。
高中物理】16种常见题型的解题方法和思维模板
高中物理】16种常见题型的解题方法和思维模板2019-10-24 08:42高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?今天小编为同学们整理了高中物理16种常见题型的解题方法和思维模板!快快收藏!题型1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
题型2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。
题型3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。
(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
高中【物化生】必考经典题型+解题技巧
高中【物化生】必考经典题型+解题技巧理综是高考中分数最多的一科,同时也是最拉分的一科,所以,得理综者得天下,这句话并不是说说而已。
今天,颜老师给大家分享一下整理好的高考物化生热点题型,帮助大家提分~高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?就是要掌握这16种常见题型的解题方法和思维模板!题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。
题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。
(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
物理的答题模板
物理的答题模板物理的答题模板第一篇题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要留意物体的实际速度肯定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;假如有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.物理的答题模板第二篇题型概述:此题型主要涉及四种综合问题(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生改变的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.(3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.思维模板:解决这四种问题的基本思路如下(1)动力学问题:依据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,依据楞次定律或右手定则推断感应电流的方向,进而求出安培力的大小和方向,再分析讨论导体的受力状况,最终依据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.(2)电路问题:明确电磁感应中的等效电路,依据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最终运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时留意斜率的物理意义.(4)能量问题:应抓住能量守恒这一基本规律,分析清晰有哪些力做功,明确有哪些形式的能量参与了互相转化,然后借助于动能定理、能量守恒定律等规律求解.物理的答题模板第三篇题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种状况.(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在始终线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.(3)带电粒子在改变电场或磁场中的运动:改变的电场或磁场往往具有周期性,同时受力也有其特别性,经常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.思维模板:分析带电粒子在复合场中的运动,应认真分析物体的运动过程、受力状况,留意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永久不做功),然后运用规律求解,主要有两条思路.(1)力和运动的关系:依据带电粒子的受力状况,运用牛顿第二定律并结合运动学规律求解.(2)功能关系:依据场力及其他外力对带电粒子做功的能量改变或全过程中的功能关系解决问题.物理的答题模板第四篇题型概述:该题型是高考的重点和热点,高考对此题型的考查主要表达在闭合电路欧姆定律、部分电路欧姆定律、电学试验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.思维模板:(1)电路的动态分析是依据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻改变而引起整个电路中各部分电流、电压和功率的改变状况,即有R分→R总→I总→U端→I 分、U分.(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常依据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.(3)导体的伏安特性曲线反映的是导体的电压U与电流I的改变规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生改变,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的肯定值表示电源的内阻.物理的答题模板第五篇题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简洁,只要选定物体和过程,直接列出方程即可,动能定理适用于全部过程;(2)能量守恒定律同样适用于全部过程,分析时只要分析出哪些能量削减,哪些能量增加,依据削减的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特别形式,但在力学中也特别重要.许多题目都可以用两种甚至三种方法求解,可依据题目状况敏捷选取.物理的答题模板第六篇题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,讨论方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:依据电场力及其他作用力对带电粒子做功引起的能量改变或依据全过程的功能关系,确定粒子的运动状况(使用中优先选择).(2)处理带电粒子在电场中的运动问题应留意是否考虑粒子的重力①质子、α粒子、电子、离子等微观粒子一般不计重力;②液滴、尘埃、小球等宏观带电粒子一般考虑重力;③特别状况要视具体状况,依据题中的隐含条件推断.(3)处理带电粒子在电场中的运动问题应留意画好粒子运动轨迹示意图,在画图的基础上运用几何学问查找关系往往是解题的突破. 物理的答题模板第七篇题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简洁的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分学问在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间〞的分析方法.(1)圆心确实定:因为洛伦兹力f指向圆心,依据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如下图).(2)半径确实定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并留意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如下图),即?φ=α=2θ.(3)运动时间确实定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度物理的答题模板第8篇题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以依据力来分析运动状况,也可以依据运动状况来分析力.对于多过程问题一般应依据物体的受力一步一步分析物体的运动状况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。
专题03 关联速度模型-【模型与方法】2023-2024学年高一物理同步模型易点通(人教版2019必
专题03 关联速度模型1.“关联”速度关联体一般是两个或两个以上由轻绳或轻杆联系在一起,或直接挤压在一起的物体,它们的运动简称为关联运动。
一般情况下,在运动过程中,相互关联的两个物体不是都沿绳或杆运动的,即二者的速度通常不同,但却有某种联系,我们称二者的速度为“关联”速度。
2.“关联”速度分解的步骤(ⅰ)确定合运动的方向:物体实际运动的方向就是合运动的方向,即合速度的方向。
(ⅰ)确定合运动的两个效果。
用轻绳或可自由转动的轻杆连接的物体的问题―→⎩⎪⎨⎪⎧效果1:沿绳或杆方向的运动效果2:垂直绳或杆方向的运动相互接触的物体的问题―→⎩⎪⎨⎪⎧效果1:垂直接触面的运动效果2:沿接触面的运动(ⅰ)画出合运动与分运动的平行四边形,确定它们的大小关系。
3.常见的速度分解模型 (1)绳牵联模型单个物体的绳子末端速度分解:如图甲所示,v ⅰ一定要正交分解在垂直于绳子方向,这样v ⅰ的大小就是拉绳的速率,注意切勿将绳子速度分解。
甲 乙两个物体的绳子末端速度分解:如图乙所示两个物体的速度都需要正交分解,其中两个物体的速度沿着绳子方向的分速度是相等的,即v A ⅰ=v B ⅰ。
如图丙所示,将圆环的速度分解成沿绳方向和垂直于绳方向的分速度,B 的速度与A 沿绳方向的分速度相等,即v A ⅰ=v B ⅰ。
丙 丁 (2)杆牵联模型如图丁所示,将杆连接的两个物体的速度沿杆和垂直于杆的方向正交分解,则两个物体沿杆方向的分速度大小相等,即v A ⅰ=v B ⅰ。
【模型演练1】(2024上·甘肃兰州·高一兰州一中校考期末)如图在水平力F 作用下,物体B 沿水平面向左运动,物体A 恰好匀速下降。
以下说法正确的是( )【答案】C【详解】AB .由于绳不可伸长,故B 沿绳方向的分速度等于A 的速度,即B A cos v v α=A 匀速下降过程,α在增大,故B v 增大,即物体B 正向左做加速运动,由三角函数关系可知,并不是匀加速运动,故AB 错误;C .A 匀速下降,绳上拉力T 不变,B 在竖直方向平衡,满足B sin N m g T α=-可知N 减小,由f N μ=可知,地面对B 的摩擦力减小,故C 正确; D .斜绳与水平方向成30°角时,代入关系式B A cos v v α=得示位置时,两绳子与水平面的夹角分别为30β=、60α=则( )A .当β由30增大到45过程中,A 的平均速度小于vB .当β由45增大到60过程中,A 的平均速度大于vC .当β由30增大到45过程中,绳中拉力先减小后增大D .当β由45增大到60过程中,绳中拉力先减小后增大 330tan 45hh h -=-2230sin 60h h h +=+221)0.8445tan 60hh h x --≈>的位移大,故A 的平均速度大于v ,故45增大到60过程中,有30增大到45过程中,.物体B以速度v向右匀速运动,根据平衡条件与53)3730增大到45过程中,绳中拉力先减小后增大,当45增60过程中,绳中拉力一直增大,故正确,D错误。
绳拉船模型的速度分解及其应用
绳拉船模型的速度分解及其应用作者:项其杰来源:《新高考·高一物理》2012年第01期■ 一、问题的由来大家经常会遇到这样的关于速度分解的题目:如图1所示,某人站在岸上通过绕过定滑轮的绳子向岸边拉船,他拉绳子的速率v保持不变,当拉船的绳子与水平面成θ角时,船前进速度u为多大?初次接触这道题目,学生最易出现的速度矢量分解图有两个,见图2、图3,两个图所得到的结论均为u=vcosθ.■ 二、问题的分析图2错误的原因是没有分清哪个是研究对象,哪个速度是合速度. 而是把绳收缩的速度作为合速度,把它按水平和竖直方向正交分解,因小船是沿水平方向运动,所以这样的分解中竖直向上的分速度是没有物理意义的,结论自然也是错误的.图3分解的虽是实际速度,即合速度,但没有正交分解,错误原因是其中的一个分运动并不是竖直向下的,而应是绳以定滑轮O为轴沿顺时针方向的转动,这个分运动的方向应垂直于绳.另外,由刚才两图得到的结论都表明u<v.倘若小船经过一个极短时间Δt从位置A运动到位置B,如图4所示,则AB线段表示小船在这段时间内的位移大小,而OA与OB之差则表示这段时间内绳子收缩的距离,也即人的位移大小,很显然OA与OB之差小于AB,同除以时间Δt应得到u>v,这也与刚才的结论不符合.■ 三、问题的解决其实,当认为绳子不可伸长时,对于用绳联结的两个物体,若速度沿绳方向,则两物体速度必相同,否则绳子就处于松弛状态或者被拉断了;若两物体速度不沿绳子方向,则两物体速度在沿绳方向的分量必定相同. 本题中,人的速度全在沿绳方向上,因此,只要将小船速度沿绳方向和垂直绳子方向进行分解(垂直绳子方向的分量表示小船绕O点的转动),再令两物体沿绳方向的速度相等即可求出. 作出速度矢量的平行四边形. 由图5可知船的速度大小为:u=■.■ 四、模型的应用■ 例1 如图6所示,物块A通过光滑的定滑轮用细绳与圆环B相连,A位于光滑的水平桌面上,B套在光滑的竖直杆上. 当细绳与水平方向的夹角为θ时,A的速度为v,此时B的速度u为多少?■ 解析 B的速度u为“实际速度”,即合速度. 将B的速度分别沿绳的方向和垂直于绳的方向进行分解,如图7所示. 由图可得:u=■.■ 例2 如图8所示,在水平面上小车A通过光滑的定滑轮用细绳拉一物块B,小车A的速度为v1=5 m/s.当细绳与水平方向的夹角分别为30°和60°时,物块B的速度v2为多少?■ 解析将A、B的速度v1、v2都分别沿绳的方向和垂直于绳的方向进行分解,在沿绳的方向上A、B的速度相等,即:v1cos30°=v2cos60°所以v2=5■ m/s.■ 例3 如图9所示,杆OA长为R,可绕过O点的水平轴在竖直平面内转动,其端点A系着一跨过定滑轮B、C的不可伸长的轻绳,绳的另一端系一物块M. 滑轮的半径可忽略,B在O的正上方,OB之间的距离为H. 某一时刻,当绳的BA段与OB之间的夹角为α时,杆的角速度为ω,求此时物块M的速率vM.■ 解析杆的端点A点绕O点做圆周运动,其速度vA的方向与杆OA垂直,在所考察时其速度大小为:vA=ωR.对于速度vA作如图10所示的正交分解,即沿绳BA方向和垂直于BA方向进行分解,沿绳BA方向的分量就是物块M的速率vM,因为物块只有沿绳方向的速度,所以vM=vAcosβ.由正弦定理知,■=■.由以上各式得vM=ωHsinα.■ 五、模型的延伸上面的分解方法对于求解面接触物体的速度问题也是可以的.■ 例4 一个半径为R的半圆柱体沿水平方向向右以速度v0匀速运动. 在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图11所示. 当杆与半圆柱体接触点P与柱心的连线与竖直方向的夹角为θ,求竖直杆运动的速度.■ 解析将两物体的速度分别沿弹力的方向和垂直于弹力的方向进行分解,令两物体沿弹力方向的速度相等即可求出.设竖直杆运动的速度为v1,方向竖直向上,由于弹力方向沿OP方向,所以v0、v1在OP方向的投影相等,即有v0sinθ=v1cosθ,解得v1=v0tanθ.对于连接体中物体之间的速度关系分析思路是:把两物体的速度沿着某一共同的方向进行分解,如例2中的绳子方向,例4中的弹力方向,利用在该方向上的速度分量相等建立关系式进行求解.。
考向07 曲线运动 平抛运动-备战2023年高考物理一轮复习考点微专题(全国通用)(解析版)
考向07曲线运动平抛运动【重点知识点目录】1.物体做曲线运动的条件与轨迹分析2.小船渡河模型3.绳(杆)端速度分解模型4.平抛运动的基本规律5.多体平抛运动6.落点有约束条件的平抛运动1.(2022•广东)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。
当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t。
不计空气阻力。
下列关于子弹的说法正确的是()A.将击中P点,t大于B.将击中P点,t等于C.将击中P点上方,t大于D.将击中P点下方,t等于【答案】B。
【解析】解:当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹和小积木在竖直方向上都做自由落体,在竖直方向上保持相对静止,因此子弹将击中P点,子弹在水平方向上做匀速直线运动,故击中的时间为t=,故B正确,ACD错误;(多选)2.(2019•新课标Ⅱ)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v﹣t图象如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。
则()A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大【答案】BD。
【解析】解:A、根据图象与时间轴所围图形的面积表示竖直方向上位移的大小可知,第二次滑翔过程中的位移比第一次的位移大,故A错误;B、由图象知,第二次的运动时间大于第一次运动的时间,由于第二次竖直方向下落距离大,合位移方向不变,所以第二次滑翔过程中在水平方向上的位移比第一次的大,故B正确;C、由图象知,第二次滑翔时的竖直方向末速度小,运动时间长,据加速度的定义式可知其平均加速度小,故C错误;D、当竖直方向速度大小为v1时,第一次滑翔时图象的斜率大于第二次滑翔时图象的斜率,而图象的斜率表示加速度的大小,故第一次滑翔时速度达到v1时加速度大于第二次时的加速度,据mg﹣f=ma可得阻力大的加速度小,故第二次滑翔时的加速度小,故其所受阻力大,故D正确。
分解法解决绳牵连模型中加速度问题的尝试
分解法解决绳牵连模型中加速度问题的尝试在绳牵连模型中,常常会涉及到加速度的计算问题,特别是当绳的质量不能忽略不计时,直接应用牛顿第二定律求解加速度会变得困难。
为了解决这个问题,我们尝试采用分解法。
具体来说,我们将绳子分解为若干个小段,每段长度足够短,可以认为其质量可以忽略不计。
然后考虑每段绳子上的拉力和重力对其进行加速度的影响。
由于每段绳子的质量很小,可以认为其加速度近似相同,并且与整个绳子的加速度相等(即绳子在运动过程中没有拉伸或收缩)。
通过对每段绳子上的拉力和重力分别进行分解,可以得到每段绳子上的水平和竖直方向的受力。
然后根据牛顿第二定律,在水平和竖直方向上分别列出受力平衡方程,解得每段绳子上的加速度。
最后,将每段绳子上的加速度加权平均,即可得到整个绳子的加速度。
分解法的优点是能够处理复杂的绳牵连问题,特别是当绳的质量不可以忽略不计时。
同时,该方法也可以应用到其他类似的问题中,例如弹簧振动模型等。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳(杆)端速度分解模型
一、基础知识 1、模型特点
沿绳(或杆)方向的速度分量大小相等. 2、思路与方法
合运动→绳拉物体的实际运动速度v
分运动→⎩
⎪⎨
⎪⎧
其一:沿绳(或杆)的速度v 1
其二:与绳(或杆)垂直的分速度v 2
方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度;
(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习
1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________. 答案
v 0
cos θ
F cos θ
m
解析 物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v 0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v 分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v 0,v =v 0
cos θ
.
拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度a =
F cos θ
m
. 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大?
解析 小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果, 所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知
v A=v
cos θ
.
答案
v cos θ
3、如图所示,在水平地面上做匀速直线运动的小车,
通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一
时刻的速度分别为v1和v2,绳子对物体的拉力为F T,物体所
受重力为G,则下列说法正确的是( ) A.物体做匀速运动,且v1=v2
B.物体做加速运动,且v2>v1
C.物体做加速运动,且F T>G
D.物体做匀速运动,且F T=G
答案C
解析把v1分解如图所示,v2=v1cos α,α变小,v2变大,物体做加速运动,超重,F T>G,选项C正确.
4、人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0
匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为
θ,则物体A实际运动的速度是( )
A.v0sin θθ)
C.v0cos θθ)
答案D
解析由运动的合成与分解可知,物体A参与两个分运动:一个是
沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运
动就是物体A的合运动,它们之间的关系如图所示.由几何关系可得v=v0
cos θ
,所以D 项正确.
5、如图,人沿平直的河岸以速度v行走,且通过不可伸长的绳
拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳
与河岸的夹角为α时,船的速率为( )
A.v sin αα)
C.v cos αα)
答案C
解析如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识
有v船=v cos α,所以C正确,A、B、D错误.
6、A、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以v1的速度向右匀
速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示.物体B的运动速度v B 为(绳始终有拉力) ( )
A.v1sin α/sin βB.v1cos α/sin β
C.v1sin α/cos βD.v1cos α/cos β
答案D
解析A、B两物体的速度分解如图.
由图可知:v绳A=v1cos α
v绳B=v B cos β
由于v绳A=v绳B
所以v B=v1cos α/cos β,故D对.。