中考数学复习实数的相关概念2[人教版]
中考数学知识点归纳人教版
中考数学知识点归纳人教版
中考数学是中学阶段数学知识的重要总结,涵盖了代数、几何、统计与概率等多个领域。
以下是人教版中考数学知识点的归纳:
一、数与代数
1. 实数:包括有理数和无理数,理解实数的性质和运算规则。
2. 代数式:包括整式和分式,掌握代数式的运算法则和化简技巧。
3. 方程与不等式:一元一次方程、一元二次方程、分式方程的解法,以及不等式的解集。
4. 函数:一次函数、反比例函数、二次函数的性质和图像,理解函数的基本概念和应用。
二、几何
1. 平面图形:包括线段、角、三角形、四边形、圆等,掌握其性质和计算方法。
2. 立体图形:包括立体图形的表面积和体积计算。
3. 图形的变换:包括平移、旋转、反射等,理解图形变换的基本概念和性质。
4. 相似与全等:理解相似图形和全等图形的性质,掌握证明方法。
三、统计与概率
1. 数据的收集与处理:包括数据的收集、整理和描述,掌握统计图表的绘制。
2. 概率:理解概率的基本概念,掌握概率的计算方法。
四、综合应用
1. 数学建模:将数学知识应用于解决实际问题,培养解决实际问题的能力。
2. 数学思维:包括逻辑推理、抽象思维等,提高学生的数学思维能力。
结束语
通过以上对中考数学知识点的归纳,我们可以看出,中考数学不仅要
求学生掌握基础的数学知识,更注重培养学生的数学思维和解决实际
问题的能力。
希望同学们能够系统地复习这些知识点,为中考做好充
分的准备。
中考数学复习实数的相关概念2[人教版]
强势围观,一款实现了标记精读法的PDF阅读器!标记精读法是指在读书时将心中的感悟与思考及时在相应位置运用不同的标记代表不同重要程度记录下来的一种高效率的阅读方法,在电子阅读还未盛行时便已经是非常重要的读书方法了。 随着电子阅读的盛行,市场上涌现出了一大批阅读器,但这些阅读器中有很大一部分都是“名副其实”的阅读器,除了阅读啥也干不了。 现在不仅是学术论文,就连在工作办公中PDF格式都是主流形式,而一般的PDF阅读器却无法在PDF文件中进行标记精读,只能进行简单的注释,这不能说没用,只能说是差强人意吧。 经过小编的不懈努力,小编终于发现了一款完美的将标记精读法电子化的PDF阅读器 ——PDF阅读器PDF阅读器拥有强大的文字标注功能和各式各样的标注工具,重点段落还可进行高亮标注,还拥有小结注释功能,可将所有标注进行汇总, 此等完美实现了电子化标记精读法的PDF阅读器有没有让您产生喷然心动的感觉,有没有想立即体验一把的冲动。 不仅如此,在PDF阅读器中还有许多惊奇的功能在等待的您来挖掘哦! 这招优雅的PDF加水印操作,让你防止文档被盗用现实生活中,如何保障自己的PDF文件不被他人盗用,还能让其他人一看就知道你就是这文档的原创者呢?最简单的办法就是一键进行PDF加水印,那么具体如何进行PDF加水印呢?听小编给 在线PDF转换成Word PDF在线压缩 如何免费完成pdf到图像的转换?在许多情况下,检查数据时我们需要使用大量数据和图片.但是,当在不同的计算机或设备上读取这些数据时,可能需要文件格式,否则甚至无法打开文件进行读取,因此非常有必要以某种方式完成将pdf转换为图 让你工作效率翻倍的2个工具,非常实用!在日常的学习办公中,我们时常需要跟PDF文档打交道,无论是PDF编辑、PDF转换等操作,都是比较常见的操作。 今天,小编总结一下各种工具,希望对你有用处哦。 一、PDF文档转换对于PDF文档转换,常见的有PDF转Word、PDF转Excel、pdf转图片等,可以在线转换即可,支持多种格式转换。 不仅支持在线转换,而且还可以下载客户端进行转换哦。 而且,这款在线转换还有一个十分实用且专业的功能,如果是转换乱码、图片型PDF文档、或者是扫描件的PDF文档,可以在在线转换的人工PDF文档处理平台解决哦。 人工文档处理平台,除了PDF文档人工转换外、还支持PDF文档定制修改、PDF文档去除密码、PPT美化等,高品质的服务。 二、PDF文档编辑对于PDF的编辑操作,可以下载PDF编辑器进行编辑。 可支持对文字、图片、页面等编辑,编辑功能十分强大。 如果软件编辑觉得复杂,也可以下单到上面的人工文档处理平台,直接让专业人员帮您修改即可。
中考数学复习实数的相关概念2[人教版]
到了报名处,我拿好了表格开始填写。不经意间,他正好抬头看到了我。还真有些巧,我们对视微微一笑,感觉有点春风拂面的气息袭来。原来一抬头,他也在这里。世界这么大,我们又遇见了。 难怪张爱玲说:“于千万人之中遇见你所遇见的人,于千万年之中时间的无涯的荒野里,没有早一步,也没有晚一步,正巧赶上了。”
篮球论坛 我慢慢平缓了一下心情,不搭理那个狼孩子。抬眉间,对面的他正用那温和的目光默默地看着我,估计他已把刚才的情形尽收眼底了。我从那眼神中竟读到了一丝莫名的安慰,天啦!这下我更是在
车中凌乱了,车厢里的空气更热了。我低眉看着脚尖,恨不得马上到站下车。希望不是自己自作多情地看了他一眼!
很多事冥冥之中自有注定,并不是什么机缘巧合。
到站了,我夹紧背包匆匆下了车,急忙找了一个路人打听考试的报名处往哪走。那时往前走左拐再右拐直走就可以看到教育局。”
有一个温润的、淡淡的声音在我身旁响起,如同大提琴的琴声缓缓流出。我道谢后报以微微一笑,默默地记住他所说的。我定睛一看,是他!挺身玉立地逆着光而来,心里不禁萌生了些许好感。
2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第1课时 实数(共35张PPT)
第1课时┃ 实数
例2 填空题: 0 (1)相反数等于它本身的数是________ ; ±1 ; (2)倒数等于它本身的数是________ 0和1 ; (3)平方等于它本身的数是________ 0 (4)平方根等于它本身的数是________ ; 非负数 . (5)绝对值等于它本身的数是________
考点聚焦 归类探究 回归教材
第1课时┃ 实数
方法点析
对无理数的判断,不能只被表面形式迷惑,而应先化 简再判断.如 27, 16就是有理数. 3
考点聚焦
归类探究
回归教材
第1课时┃ 实数
探究二
实数的有关概念
命题角度: 1.数轴、相反数、倒数、绝对值的概念; 2.绝对值的相关计算.
考点聚焦
归类探究
回归教材
考点聚焦 归类探究 回归教材
第1课时┃ 实数
2.按大小分类: 零 正有理数 正整数 正实数 正无理数 实数 正分数 负整数 负有理数 负实数 负分数 负无理数 22 3 [注意] (1)任何分数都是有理数,如 ,- 等; 7 11 (2)0 既不是正数,也不是负数,但 0 是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数
考点3
非负数
1.非负数的概念:正数和零叫做非负数.常见的非负数
a,a2, a(a≥0). 有
2.非负数的性质:若几个非负数的和等于,则这几个 数都为零.考点聚焦
归类探究
回归教材
第1课时┃ 实数
考点4
实数的运算
1.运算法则:在实数范围内,加、减、乘、除(除数不为 零)、乘方运算都可以进行,但开方运算不一定能进行,正实数 和零总能进行开方运算,而负实数只能开奇次方,不能开偶次 方. 2.运算性质:有理数的一切运算性质和运算律都适用于 实数运算. 3.运算顺序:先算乘方、开方,再算乘除,最后算加减, 有括号的要先算括号内的,若没有括号,在同一级运算中,要 从左至右依次进行运算.
实数的相关概念中考考点梳理
实数的相关概念中考考点梳理全文共四篇示例,供读者参考第一篇示例:实数是数学中最基础的概念之一,它包括有理数和无理数两类。
在数学的学习中,实数的相关概念是非常重要的。
在中考中,实数相关的考点也是比较多的。
下面我们来看看实数相关概念中中考的考点梳理。
1. 实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
无理数是不能表示为有理数的数,如π和根号2等。
在中考中,同学们需要了解实数的分类,并能够判断一个数是有理数还是无理数。
2. 实数的运算实数的运算是中考数学的重要内容之一。
同学们需要掌握实数的加减乘除运算规则,包括有理数和无理数的运算。
在中考中,常见的考点有实数的加法、减法、乘法、除法运算,以及混合运算等。
3. 实数的大小比较在实数的概念中,同学们也需要学会对实数进行大小比较。
无论是有理数还是无理数,都可以通过大小比较符号进行比较,如大于等于、小于等于、大于、小于等等。
在中考中,通常会出现实数的大小比较题目,同学们需要根据实数的性质进行判断。
4. 实数的分数表示实数可以表示为分数的形式,分数是有理数的一种形式。
在中考中,同学们需要能够将实数表示为分数的形式,并且能够进行化简和计算。
分数的化简和运算是中考数学的常见考点之一,同学们需要多进行练习,掌握分数的性质和运算规则。
5. 实数的应用问题实数的概念在中考中不仅仅是为了考察同学们的概念掌握程度,还可以通过应用题目考察同学们对实数的应用能力。
实数在现实生活中有着广泛的应用,比如长度、重量、体积等问题都可以通过实数进行表示和计算。
在中考中,同学们可能会遇到一些实际问题,需要用实数进行求解,这就需要同学们将实数的概念运用到实际问题中去。
实数的相关概念在中考数学中占据着重要的地位,同学们需要充分理解实数的分类、运算、大小比较、分数表示以及应用问题等知识点。
通过不断的练习和巩固,可以帮助同学们提高实数相关概念的理解和运用能力,从而在中考中取得更好的成绩。
中考数学总复习1.实数的概念
3 ⎩ ⎩1.实数的概念一、知识要点1. 实数的分类(两种分类方式——①按定义分类;②按性质分类):⎧ ⎧ ⎧正整数 ⎫ ⎧ ⎧ ⎧正整数⎪ ⎪ ⎨零⎪ ⎪⎪ ⎪正有理数⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪正实数⎨ ⎩正分数 负整数 小数或 小数; 正无理数 ⎪ ⎨ ⎩ ⎬⎪ ⎩ (1) )实数⎨ ⎪⎪ ⎨ ⎪ ⎪ ⎪ 实数⎨零 ⎪ ⎧⎪ ⎪ ⎩ ⎩ ⎪⎭ ⎪负实数⎪负有理数⎨ ⎪ 小数. ⎪⎩ ⎨ ⎬ ⎩⎪ ⎩ ⎭ ⎪⎩⎪负无理数 ()2 数轴上的点与 一一对应;在平面直角坐标系中,平面上的点与 一一对应. (3) 常见无理数的 4 种形式:①字母型:如π和 ;②构造型:如 0.101001…和 ;③根式型:如 和 ;④三角函数型:如sin150和 等.2. 数轴:数轴的三要素是、 和 ......... 在数轴上右边的数总是 左边的数;3. 相反数:实数 a 的相反数为. 若a ,b 互为相反数,则a + b = ............ 在数轴上表示互为相反数的两个点(原点除外)分别在两侧,且与原点的 .................................4. 倒数:非零实数 a 的倒数为 . 若a ,b 互为倒数,则ab = ................ 5. 绝对值: ⑴性质:正数的绝对值是 ,负数的绝对值是 ,0 的绝对值是 .... 即a = ⎧⎪ ⎨ (a > 0)(a = 0)⑵几何意义:一个数的绝对值就是数轴上表示这个数的点 ................................... ⑶任何数的绝对值都是,即 a0 ;若a ,b 互为相反数,则 a b ;⎪ (a < 0) ⎧3 a 3 ① ( ) 若 a = b ,则a b 或 a + b = .6. 科学计数法:把一个数表示成 的形式,其中1≤ a <10 的数,n 是整数. 其方法是:①确定 a , a 是只有一位整数的数;②确定 n ,当原数的绝对值≥10 时,n 为正整数,n 等于原数中整数部分的数位减去;当原数的绝对值<1 时,n 为负整数,如 0.00305=,-0.000236=.7. 若 x 2=a ,则x 叫作 a 的 ,记作,a 叫作 x 的 ........... 任何正数 a 都有个平方根,它们互为,其中正的平方根 叫,没有平方根,0 的算术平方根为 ........8.若 x 3=a ,则 x 叫作 a 的 ,记作 ;a 叫作 x 的.任何实数a 都有立方根,记为 .............9. 非负数: a 0;a 20; a 0 ;性质是:若几个非负数的和等于 0,则这几个非负数同时为 ...........10.绝对值是它本身的数是;相反数是它本身的数是 ;倒数是它本身的数是 ; 平方是它本身的数是 ;立方是它本身的数是 ;平方根是它本身的数是;算术平方根是它本身的数是;立方根是它本身的数是 .............................二、例题分析【例 1】在 2 , ②3.14, ③π, ④( 2- 3)0 , ⑤ 1 -2 , ⑥0.010⋅⋅⋅, ⑦0.10110111⋅⋅⋅, ⑧tan 450,2 21⑨ 中 , 是 无 理 数 的 是 ( 只 写 序 号 ).π【例 2】(1)在数轴上表示-2 的点,离原点的距离等于 ....................(2)实数 a ,b 在数轴上的对应点如图所示,则下列不等式中错.误.的是( ).A. ab > 0B. a + b < 0C. a < 1bD.a -b < 0 ab(3) 在数轴上的点 A 、B 位置如图所示,则线段 AB 的长度为 ................. AB-5 0 2(4)实数 x 、y 在数轴上的位置如图所示,则 x ,y ,0 的大小是 ...............................x y()5 如图所示,数轴上 A ,B 两点表示的数分别为-1和 ,点 B 关于点 A 的对称点为 C ,则点 C 所表示的数为 ................C A 0 B【例 3】(1)如果规定向东走 80m 记为 80m ,那么向西走 60m 记为.(2) -2 的相反数是 .............(3)对于式子“ -(-8) ”,有下列理解:①可表示-8 的相反数;②可表示-1与-8 的乘积;③可表示-8 的绝对值;④运算结果等于 8.其中理解正确的是 (只写序号). 【例 4】(1) - 1 的倒数为 ;2的倒数为;(2)若 x = (-2) ⨯ 3 ,则x 的倒数是 .................【例 5】(1)-5 的绝对值是 ;- 的绝对值是; 3 -27 的绝对值是 .....................(2)式子“ | 6 - 3 |”在数轴上的几何意义是:“数轴上表示 6 的点与表示 3 的点之间的距离”.类似地,3 2b +1 9 9 b -3 式 子 “| a + 5 |” 在 数 轴 上 的 几 何 意 义 是 “ ”. (3)①如果 a 与 1 互为相反数,则| a + 2 | =. ②若 a = 3 ,则a 的值是 .................(4) 若 m - n = n - m , 且 m = 4 , n = 3 , 则 (m + n )2 = . (5)若 a = 5,b = -2,且ab > 0,则a + b = .(6)如果实数 a 在数轴上的位置如图所示,那么|1- a | + a 2 =----------------- 1 0 a 1【例 6】(1)16 的平方根是 ,16 的算术平方根是 , 16 的平方根是 ;16 的算术平方根 ;-8 的立方根是 .....................(2) 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是 .........................(3)下列运算正确的是( ). A.= ±3 B. - 3 = -3 C. - = -3 D. - 32 = 9(4)在实数﹣2,0,2,3 中,最小的实数是( ).A.-2B.0C.2D.3 (5)若 ab ≠ 0 ,则a +b 的取值不可能是().bA.0B.1C.2D.-2【例 7】(1)目前,我国人口总数大约是 13.7 亿,用科学记数法表示为 人.(2) 港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示是 元,精确到万位是 .................(3) “鸟巢”的建筑面积达 25.8 万平方米,用科学记数法表示约为 平方米.(4) 太阳内部高温核聚变反应释放的“辐射能”功率为3.8⨯1023千瓦,而到达地球的仅占 20 亿分之一,到达地球的“辐射能”功率为 千瓦(用科学计数法表示) (5)已知空气的单位体积质量为1.24⨯10-3g /cm 3,1.24 ⨯10-3用小数表示为 g /cm 3.(6) “黄金分割比”是= 0.61803398…,将“黄金分割比”精确到 0.001 的近似数是.2(7) 下列说法正确的是( )A.近似数 3.9×10 3 精确到十分位B.按科学计数法表示的数 8.04×10 5 其原数是 80400C.把数 50430 精确到千位是 5.0×10 4D.用四舍五入得到的近似数 8.1780 精确到 0.001 【例 8】(1)若 a - 2 + + (c - 4)2= 0 则 a - b + c = .(2) 等腰三角形一边长为 a ,一边长b ,且(2a -b )2+ 9 - a 2 = 0 ,则它的周长为 .....................(3) 已知 a + 3 += 0 ,则实数a + b 的相反数 .........................5 -1 aa +b(- 2)2873 3 3 3(4) a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则2m2 +1+ 4m - 3cd = ......................(5) = 0,则a +b = ......................三、课后作业1.在22,π,0,,sin60°,(cos60°)-1,2-, 2.313131…,0.010010001…,3- 64 中,无7 2理数有个 .2.下列说法不正确的是( ).A.没有最大的有理数B.没有最小的有理数C.有最大的负数D.有绝对值最小的有理数8⨯1+( 2)0 的结果为( ).3.计算2A.B.C.3 D.54.下列各组数中是互为相反数的一组是( ).A.- 2与B. - 2与3- 8C. - 2与-1D. - 2 与225.如图A,B,C 三点所表示的数分别为a,b,c ,根据图中各点位置,下列各式正确的是( ).A. (a -1)(b -1) > 0B. (b -1)(c -1) >0C. (a +1)(b +1) < 0D. (b +1)(c +1) < 0C O A B-1 0 a 16.数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是这种说明问题的方式体现的数学思想方法叫做( ).A.代人法 B.换元法 C.数形结合D.分类讨论7.如果将三个数“ - 3,7,”表示在数轴上,其中被如图所示的墨迹覆盖的数是.8.如右图所示的数轴上,点B 与点C 关于点A 对称,A、B 两点 B A C对应的实数是3 和-1,则点C 所对应的实数是( ).-1 0 3A. 1+B. 2+C. 2 -1D. 2 +19.一个正方形的面积是15,估计它的边长大小在( ).A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A.精确到十分位B.精确到个位C.精确到百位D.精确到千位11.某市 2014 年实现生产总值(GDP)1545.35 亿元,用科学记数法表示是元.112 ”,(a - 3b)2 +a2 - 4a + 212.近似数 13.7 万是精确到位.3 + 1 b - c 2 12 3 3 64 x 2 a -1 13. -5 的倒数是 , -3 的绝对值是,绝对值大于 1 小于 4 的整数的和是 .................14. 已知一个正数的平方根是3x - 2 和5x + 6 ,则这个数是 ,若 a > 0 且a x = 2 ,a y = 3 ,则a x - y的值为 ................. 的 立 方 根 是 ;若 = 5, 则 x = ; 若 3 15. 已知一个正数的平方根是3x - 2 和 x + 6 ,则这个数是 ..................... 16. 已知, + a + b +1 = 0 ,则 a b = . 17. 把 7 的平方根和立方根按从小到大的顺序排列为.1 -1= 5,则x = ...........18.计算: ( ) 3- (3 - 3)0 - 4 sin 60︒+ 12 =.19.已知 a = 3 ,且(4 tan 45︒ - b )2+ = 0 ,以a ,b ,c 为边组成的三角形面积等于 .................20.计算: 2-1﹣3tan30° +(2 + 2)0 + .参考答案:三、例题分析 【例 1】①③⑦⑨;【例 2;(1) 2; (2)C ; (3)7; (4)0<x <y ; (5) -2- ; 【例 3】 (1)-60m ; (2) -2; (3)①②③④;x 3336【例 5】(1) 5, - 2 ,3;;(2)数轴上表示 a 的点与数轴上表示-5 的点之间的距离; (3) ①1; ② ±3 ; (4) 1 或 49; (5)-7; (6)1;【例 6】(1) ±4,4,±2,2,-2; (2)a 2+1; (3)C ;(4) A ;(5) B ;【例 7】(1) 1.37×109;(2) 7.26×1010,7260000 万元;(3) 2.581.37×105;B ;(4) 1.9×1014;(5) 0.00124; (6) 0.618; (7) C ;【例 8】(1) 3; (2)15; (3)4; (4) 5 或-11; 8(5) ;3四、课后作业 1.5;2. C ;3. C ;【例 4】(1)-2, 3 ,(2) - 1;7 3 7 7. 7 ;4. A ;5. D ;6. C ;8. D ; 9. B ; 10. C ;11.1.54535×1011; 12.千; 13.- 1,3,0;5 49214., , 3 4 , ±5 ,5;4 315.25; 16.1;17. - < < 7 ; 18.2;19.6;20.3 + 2 3 ;2。
中考数学复习之实数,与实数有关的概念与练习题
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
中考数学复习实数的相关概念2[人教版]
中考数学复习《实数的有关概念》
(C)
类型4
规律探究题
例6 (2018•益阳)小李用围棋排成下列一组有规律
的图案,其中第1个图案有1枚棋子,第2个图案有3 枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋 子……那么第9个图案的棋子数是 13 枚.
…
( 1) ( 2) ( 3) ( 4) ( 5)
…
( 1) ( 2)
( 3) ( 4) ( 5)
且到原点的距离 相等 .
3.乘积为 1 的两个数互为倒数. 倒数是它本身, 0 没有倒数.
1和-1 的
4.在数轴上,表示数a的点与 原点的距离 ,
称为数a的绝对值,记作 |a| , |a| ≥ 0.
当a≥0时,|a|= a ;当a≤0时,|a|= -a 5. 有理数 和 无理数 统称为实数. 其中, 整数 和 分数 是有理数, 无限不循环小数 是无理数. .
解 设第n个图形有an个棋子,观察得出:
a1=1,a2=3×1,a3=4=3×1+1,a4=6=3×2,
a5=7=3×2+1,… 发现 当n为奇数时,an=3k+1(其中n=2k+1)
当n为偶数时,an=3(k+1)(其中n=2k+2) ∴当n=9时,9=2k+1,解得k=4,
∴a9=3×4+1=13.
考点2
近似数与科学记数法
1.科学记数法:
把一个绝对值大于1的数写成 a×10n ,n比原来的
数的整数部分少 1 ;把一个绝对值小于1的数写 -n a × 10 成 ,n等于原来的数从左边数起第一个非
零数字前面的零的个数.其中,1≤|a|<10.
2.近似数:
一个数四舍五入到哪一位,就称这个数精确
中考数学知识点:实数的性质
中考数学知识点:实数的性质数学实数知识点篇一1、平方根如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为,读作“根号a”,a叫做被开方数。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
求一个数a的平方根的运算,叫做开平方。
2、立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
求一个数的立方根的运算,叫做开立方。
3、实数无限不循环小数又叫做无理数。
有理数和无理数统称实数。
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
数学实数知识点篇二无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
2024年江西省中考数学总复习(第1课时)实数的相关概念讲练课件 27张PPT
第1课时 实数的相关概念
考点梳理
考点一
实数的分类
1.按定义分
实数
整数 有理数 分数:① 有有限限 小数或无限② 循循环环 小数
正无理数 无理数 负无理数 无限③
不不循循环环
小数
2.按大小分
正实数 实数 0
负实数
3.正负数的意义 对于具有相反意义的量把其中一种意义的量规定为正的,这个 量的前面放上“+”;把与它意义相反的量规定为负的,这个量 的前面放上“-”.若规定向东为“+”,则向西为“-”;若规定 零上为“+”,则零下为“-”.
不等式中成立的是( C )
A.ab>0
B.a+b<0
C.-a>-b
D.1 >1 ab
1 科学记数法
例 3.截至 2 月 9 日晚 21 时 17 分,2022 年全国院线电影总票房
(含预售)正式突破 100 亿元大关,用时 40 天,刷新中国影史年
度票房最快破百亿记录,其中某电影票房已超 29.84 亿,成为
+1|+|x2-4|+|x2-2|可看作数轴上到表示-2,0,-1,4,2 的点的
距离之和,∴x2=0 时,|x2+2|+|x2|+|x2+1|+|x2-4|+|x2-2|取最小
值,最小值为 2+0+1+4+2=9,此时 x1=2,x3=1,x4=-4,
x5=-2,∴A 给 B2 张,B 给 C0 张,C 给 D1 张,E 给 D4 张,A 给
例 2.实数 a 在数轴上对应点的位置如图所示.若实数 b 满足 a
<b<-a,则 b 的值可以是( A ) A.-1 B.2 C.3 D.-3
巩固训练 3.若 m,n 互为相反数,p,q 互为倒数,则-2 024m+p3q -
人教版初中数学中考复习专题复习 数与式(37张PPT)
知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.
中考数学知识点总结 实数 (6大知识点+例题) 新人教版
中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
2024年中考数学总复习专题01实数命题1实数的有关概念
中考·数学
答案:C 解析:由数轴可知,点 C 离原点最近,所以 在|a|,|b|,|c|,|d|中,值最小的是|c|.故选 C.
第6页
返回目录
C
中考命题1 实数的有关概念
中考·数学
答案:C 解析:x≤2 在数轴上表示为:
第7页
返回目录
中考命题1 实数的有关概念
中考·数学
B 6.[2023 聊城,1,3 分](-2__023)0 的值为( )
又∵|x-4|=2,∴x1=6,x2=2,
第18页
返回目录
中考命题1 实数的有关概念
中考·数学
∵a 为方程|x-4|=2 的解且 a,b,c 为△ABC 的三边 长, ∴a=2, ∴△ABC 是等腰三角形.
第19页
返回目录
第11页
返回目录
中考命题1 实数的有关概念
B 将 140 000 000 用科学记数法表示应为( )
A.14×107
B.1.4×108
C.0.14×109
D.1.4×109
中考·数学
答案:B 解析:140 000 000=1.4×108.故选 B.
第12页
返回目录
中考命题1 实数的有关概念
中考·数学
答案:-5 解析:∵“正”和“负”相对,∴进货 10 件 记作+10,那么出货 5 件应记作-5.故答案为-5.
第15页
返回目录
பைடு நூலகம்
中考命题1 实数的有关概念
中考·数学
11.[2021 江西,2,3 分]国务院第七次全国人口普查领 导小组办公室 5 月 11 日公布人口普查结果,其中江西人 口数约为 45 100 000 人,将 45 100 000 用科学记数法表 示为__4._5_1_×___1.07
【中考备战策略】2014中考数学总复习 第2讲 实数的运算及大小比较课件 新人教版
18.若实数 a,b 满足|3a-1|+b2=0,则 ab= 1 . 1 a=3, 3a-1=0, 解析:由题意,得 ∴ b=0, b=0, 10 ∴a =( ) =1. 3
b
19.(2013· 苏州)按照下图所示的操作步骤,若输入 x 的值为 2,则输出的值为 20 .
考点一 实数的大小比较 例 1 (2013· 湛江)下列各数中,最小的数是( ) 1 A.1 B. 2 C.0 D.-1 1 【点拨】∵-1<0< <1,∴最小的数是-1. 2 故选 D. 【答案】 D
考点二 实数非负性的应用 例2 (2013· 永州)已知(x-y+3)2+ 2x+y=0, ) C.1 D.5
1 -1 6. 设 a= 2 ,b=(-3) , c= - 9, d= ( ) ,则 2
0 2
3
a,b, c, d 按由小到大的顺序排列正确的是( A. c< a< d< b C. a< c< d< b
0
A )
B. b<d<a< c D. b< c<a<d
2
解析:∵ a= 2 = 1, b= (- 3) = 9, c= - 9< 0, 1 -1 d= ( ) = 2, ∴ c< a< d< b.故选 A. 2
实数的混合运算
0 2 013
例 3 (2013· 重庆)计算:( 2-3) - 9-(-1) 1 -2 |-2|+(- ) . 3
-
【点拨】本题考查实数的运算、零次幂、负整数指 数幂等. 解:原式=1-3+1-2+9=6.
方法总结 实数的混合运算顺序:先乘方、开方,再乘除,最
后算加减;同级运算,从左到右依次进行;如有括号, 先做括号内的运算 .
0
B.
3
-9=-3
2015届中考数学精品复习课件【第1讲】实数
(4)绝对值:在数轴上,一个数对应的点离原点的__距离__, 叫做这个数的绝对值. a ,(a>0)
|a|=
0 ,(a=0)
-a ,(a<0) |a|是一个非负数,即|a|__≥0__. (5)科学记数法,近似数: 科学记数法就是把一个数表示成__± a×10n__(1≤a<10,n 是整数) 的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到 哪一位.
与实数相关的概念
【点评】 (1)互为相反数的两个数和为0;(2)正数的 绝对值是它本身,负数的绝对值是它的相反数,0的绝 对值是 0;(3)两个非负数的和为 0 ,则这两个数分别等 于0.
与实数相关的概念
4.(1)(2012· 凉山)若 x 是 2 的相反数,|y|=3,则 x-y 的值是( D ) A.-5 B.1 C.-1 或 5 D.1 或-5 1 1 1 1 (2)计算:-(- )=__ __;|- |=__ __; 2 2 2 2 1 1- (- )0=__1__;(- ) 1=__-2__. 2 2 |a| |b| |ab| (3)若 ab>0,则 + - 的值等于__1 或-3__. a b ab
数形结合思想 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的 一种思想策略.“数无形,少直观;形无数,难入微.”数形结合思想可以使 问题化难为易、化繁为简.
分类讨论思想
分类讨论思想是“化整为零,各个击破,再积零为整”的数学策略,分类注 意按一定的标准进行;分类既不能遗漏,也不能交叉重复.
自然数
无理数
分数
正分数 有限小数或无 负分数
限循环小数
正实数 根据需要,我们也可以按符号进行分类,如:实数零 负实数
实数的有关概念和计算-2020年中考数学复习备考备考资料
第1讲 实数的相关概念和计算☞【基础知识归纳】☜☞归纳1. 有理数的意义⑴ 数轴的三要素为 、 和数轴上的点与 构成一一对应.⑵ 实数a 的相反数为 . 若a ,b 互为相反数,则a b += ⑶ 非零实数a 的倒数为 . 若a ,b 互为倒数,则ab =⑷ 绝对值____________________________(0)(0)(0)a a a a ⎧>⎪⎪==⎨⎪<⎪⎩正数的绝对值是0的绝对值是负数的绝对值是⑸ 科学记数法: 把一个数表示成 的形式,其中1≤a <10, n 是整数☞归纳2. 数的开方⑴ 任何正数a 都有 个平方根,它们互为其中正的平方根a 叫 没有平方根,0的算术平方根为 ⑵ 任何一个实数a 都有立方根,记为 ⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a☞归纳3. 实数的分类 和 统称实数☞归纳4. 数的乘方n a 表示 ,其中a 叫做 ,n 叫做 =0a (其中a 0) =-p a (其中a 0)☞归纳5. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大 ⑵ 正数 0,负数 0,正数 负数 两个负数比较大小,绝对值大的 绝对值小的☞归纳6. 实数混合运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.☞【常考题型展示】☜☺ 题型一 相反数、绝对值【例1】(2019广东)2-的绝对值是( )A. 2B. 2-C.12D.2± 【举一反三】1.(2017广东)5的相反数是( )A.15 B. 5 C. 15- D. 5- 2.(2019深圳)15-的绝对值是( )A. 5-B.15 C. 5 D. 15-☺ 题型二 科学记数法【例2】(2019广东) 某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( ) A. 62.2110⨯B. 52.2110⨯C. 322110⨯D. 60.22110⨯【举一反三】3. (2018广东) 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A. 71.44210⨯B. 70.144210⨯C. 81.44210⨯D. 80.144210⨯4. (2017广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000 美元,将4000000000用科学记数法表示为( )A. 90.410⨯B. 100.410⨯C. 9410⨯ D. 10410⨯☺ 题型三 比较实数大小【例3】(2018广东)四个实数0、13、 3.14-、2中,最小的数是( ) A. 0 B.13C. 3.14-D. 2 【举一反三】5.(2017广东)已知实数a ,b 在数轴上的对应点的位置如图所示,则a ÷b 0(填“>”,“<”或“=”)6.(2019广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A. a b >B. a b <C. 0a b +>D.0ab< 7.(2016广东)如图1所示,a 和b 的大小关系是( )A. a <bB. a >bC. a=bD. b=2a8.(2015广东)在0,2,0(3)-,5-这四个数中,最大的数是( )A. 0B. 2C. 0(3)-D. 5-☺ 题型四 数的平方根及立方根【例4】(201924 )A. 4-B. 4C. 4±D. 2【举一反三】9.(2018广东)一个正数的平方根分别是1x +和5x -,则x =10.(2016广东)9的算术平方根为11. 一个正数的两个平方根分别为3a +和23a +,则a =☺ 题型五 实数的运算【例5】(2019广东)计算:10120193-⎛⎫+= ⎪⎝⎭【举一反三】12.(2018广东)计算:101220182-⎛⎫--+ ⎪⎝⎭13. (2017广东) 计算:()11713π-⎛⎫---+ ⎪⎝⎭14. (2016广东) 计算:()10132016sin302-⎛⎫--+-- ⎪⎝⎭15. (2014广东) ()119412-⎛⎫-+-- ⎪⎝⎭☞【巩固提升自我】☜1.(2019广州)6-=( )A. 6-B. 6C. 16-D. 162.(2019安顺)2019的相反数是( )A. 2019-B. 2019C.12019-D. 120193. (2019深圳) 预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为( ) A. 4.6×109B. 46×107C. 4.6×108D. 0.46×1094. (2019重庆) 下列各数中,比﹣1小的数是( )A. 2B. 1C. 0D. ﹣25. (2018苏州) 在下列四个实数中,最大的数是( )A. 3-B. 0C.32 D. 346. (2018铜仁) 9的平方根是( )A. 3B. ﹣3C. 3和﹣3D. 817. 一个正数的两个平方根分别是21m -和43m -,则这个正数是________8. (2019云南) 计算:()()012351π----9. (2019广安) 计算:()100120192sin 302π-⎛⎫--+ ⎪⎝⎭10. (2019丽水) 计算:1132tan 603-⎛⎫-- ⎪⎝⎭11. (2019深圳) ()10012cos60 3.148π-⎛⎫++- ⎪⎝⎭12. (2019庆阳) 计算:()()20222cos 453π--+-13. (2019贺州) 计算:()()201901 3.142sin30π-+-第1讲 实数的相关概念和计算☞【基础知识归纳】☜☞归纳1. 有理数的意义⑴ 数轴的三要素为 原点 、 正方向 和 单位长度数轴上的点与 实数 构成一一对应.⑵ 实数a 的相反数为a - . 若a ,b 互为相反数,则b a += 0 ⑶ 非零实数a 的倒数为1a. 若a ,b 互为倒数,则ab = 1 ⑷ 绝对值 (0)(0)(000)a a a a a a ⎧>⎪⎪==⎨⎪<⎪⎩-正数的绝对值是0的绝对值是负数的绝对正数它的相反值是数⑸ 科学记数法:把一个数表示成 10n a ⨯ 的形式,其中1≤a <10, n 是整数☞归纳2. 数的开方⑴ 任何正数a 都有 两 个平方根,它们互为 相反数其中正的平方根a 叫 算术平方根 负数 没有平方根,0的算术平方根为 0 ⑵ 任何一个实数a 都有立方根,记为⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a☞归纳3. 实数的分类 有理数 和 无理数 统称实数 ☞归纳4. 数的乘方n a 表示n a 个相乘,其中a 叫做 底数 ,n 叫做 指数=0a 1 (其中a ≠0 )=-p a 1p a(其中a ≠0) ☞归纳5. 实数大小的比较⑴ 数轴上两个点表示的数, 右边 的点表示的数总比 左边 的点表示的数大 ⑵ 正数 > 0,负数 < 0,正数 > 负数 两个负数比较大小,绝对值大的 < 绝对值小的☞归纳6. 实数混合运算 先算 乘方 ,再算 乘除 ,最后算 加减 ;如果有括号,先算 括号 里面的,同一级运算按照从 左 到 右 的顺序依次进行.。
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。