高考数学抽象函数解题方法归纳

高考数学抽象函数解题方法归纳
高考数学抽象函数解题方法归纳

抽象函数解题方法

函数是高中数学的核心内容,它对于学生掌握双基和发展能力具有十分重要的意义。通常所说的函数,一般都具有解析式、图表等某种具体的表现形式,但是有一类函数只给出了函数所满足的一部分性质或运算法则,而没有明确的表现形式,这类函数我们通常称之为抽象函数。抽象函数作为初等数学和近代数学的衔接点,既能体现数学的本质特征、近现代数学发展的威力,又能体现新课标对知识和技能考核的要求和高考的能力命意,必将受到人们的重视。以下介绍几种解决抽象函数问题的方法,力求使抽象函数问题的解法有“章”可循。

一、赋值法

赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。

例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有

f(xy)=f(x)+f(y)恒成立。若已知f(2)=1,

试求:(1)f(1/2)的值;

(2)f(2 - n)的值,其中n为正整数。

思路:合理赋值,化抽象为具体,发现递推规律。

解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0

再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1

(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,

f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,

依此类推就有f(2 - n)= -n,其中n为正整数。

二、利用函数单调性

解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.

例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),

都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.

思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.

解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2则f(x+6)-f(1/x)>2f(4)则有f(x 2+6x)-f(4)>f(4)故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0x+6>0(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).

三、利用函数的对称性

例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有

6个不同的实根,这6个根的和为()

A.18

B.12

C.9

D.0

解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。

四、利用函数的周期性

关于函数的周期性,首先要弄清楚三种符号形式:

(1)若f(x+a)=f(x+b)恒成立,则函数为周期函数,周期为T=| b-a |,

(2)若f(a+x)=f(b-x)恒成立,则函数的图象关于直线x=(a+b)/2对称。

(3)若定义在R上的函数y=f(x)的图象关于两直线x=a和x=b(a>b)对称,则函数y=f(x)以2(a-b)为周期.特别的,若定义在R上的偶函数的图象关于直线x=a(a≠0)对称,则y=f(x)以2|a|为周期。

(4)若定义在R上的函数y=f(x),值域是函数g(x)的定义域的子集,且满足

f(x+a)=g[f(x)],g(x)=g-1(x),则f(x)以2a为周期。

以上这四个结论可以快速认识函数具有周期性还是轴对称性,并且对这两者之间的转换要能够熟练运用。

例4 设f(x)是定义在R的偶函数,其图象关于直线x=1对称,证明f(x)是周期函数。

分析:此题解决的关键是将函数的对称语言转换轴对称方程,进一步和函数的周期性联系上。由题设条件f(x)开始,依据周期函数的定义,只需推出f(x)=f(x+T)即可。

证明:因为y=f(x)图象关于直线x=1对称,所以f(-x)=f[2-(-x)]=f(2+x)

因为是偶函数,所以f(x)=f(-x)=f(2+x)故是周期函数,并且周期T=2。

五、寻找抽象函数的原型法

在抽象函数问题中.我们可以通过一些具体的模型.以具体函数代替抽象函数通过具体函数模型的有关性质和研究方法去推测抽象函数的性质或解题思路就能实现思维上的突破,尤其是高中阶段,对一些问题适当的形式化,抽象化,可以迅速的解决问题。

以下是几类常用的抽象函数的模型要熟悉并能运用。

1、 f( x)+f(y)= f(xy)模型是对数函数

2、f(x+y)=f(x) f(y),模型是指数函数

3、 f(x) f(y)= f(xy),模型是幂函数

4、f(x+y)=f(x) +f(y),模型是y=kx

5、f(x) +f(y)=f(x+y)+b,模型是y=kx+b

6、f(x+y)=[f(x) f(y)]/[f(x) +f(y)],模型是y=c/x

7、f(x+y)=[f(x) +f(y)]/[1-f(x) f(y)],模型是y=tanx

8、f(x+y)+f(x-y)=2f(x) f(y),模型是y=cosx等等。

例6 若对任意实数x和常数a,都有f(x+a)=[1+ f( x)]/[1-f( x)]成立,判断

f( x)是不是周期函数,为什么?

思路:观察联想,寻找原型,猜想论证。

解:观察抽象函数关系式,立即联想到tan(x+π/4)=(1+tanx)/(1-tanx)

的形式极为相似,因此可以把tanx看作 f( x)的原型。我们知道tanx的周期是π,而a=π/4,猜想4a是f( x)的一个周期。于是 f( x+4a)=-1/ f( x+2a)= f( x),故 f( x)是周期函数,且4a是f( x)的一个周期。

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题 1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ 换元法(3)13)2(2++=-x x x f D P C P A P B

待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

【智博教育原创专题】抽象函数常见题型解法

冷世平之高考复习专题资料 第 1 页 共 7 页 抽象函数解题策略 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性 【题型1】定义域问题 --------多为简单函数与复合函数的定义域互求。 【例1】⑴若函数(21)f x -的定义域为{}|13x x ≤<,则函数()f x 的定义域为 ⑵若函数()f x 的定义域为{}|13x x ≤<,则函数(21)f x -的定义域为 【题型2】求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验。紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。 【例2】已知()f x 的定义域为R +,且()()()f x y f x f y +=+对一切正实数,x y 都成立,若(8)4f =,则(2)_____f = 【分析】在条件()()()f x y f x f y +=+中,令4x y ==,得(8)(4)(4)2(4)4f f f f =+==,(4)2f ∴=,又令2x y ==,得(4)(2)(2)2,(2)1f f f f =+=∴=。 1.()f x 的定义域为(0,)+∞,对任意正实数,x y 都有()()()f xy f x f y =+且(4)2f =,则 _____ f =12 2.若()()()f x y f x f y +=且(1)2f =,则 (2)(4)(6)(2000) ______(1)(3)(5)(1999) f f f f f f f f ++++= 20002222(1)(2)(2)(4)(3)(6)(4)(8) ______(1)(3)(5)(7) f f f f f f f f f f f f +++++++=16【提示】()2n f n =

抽象函数解题方法与技巧

抽象函数的解题技巧 1.换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x) 解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤u ≤2) 2.方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。 例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x 1)x (f 2)x 1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥?-≥?得由 例3.f(x).1),x 0(x ,x 1)x 1x ( f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且 ,x 1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x -11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x 1x 2)x (f )x -11f( ,x 111)x 111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。 例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0) 代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1. 4.赋值法

高中数学 对抽象函数问题的具体解法教案

抽象函数问题的具体解法 所谓抽象函数,就是指没有明确给出具体的函数解析表达式,只是给出一些特殊条件的函数,它在高中数学教材中没有具体涉及到,但在高考及各类模拟试题中经常见到, 该类问题比较抽象,考察学生能力,学生普遍感到束手无策,下面就抽象函数问题类型及解题策略作总结: 1、 定义域问题 ]1[02 113]1[2 10122 121111111010]10[1k k k k k k k k k k k k k k k k k k k x k k x k k x k x k x f k x f x F x f y +-≤≤-+≤-≤-≤≤-≤≤->-<->+>-???+≤≤-≤≤-???≤-≤≤+≤--+==,时,定义域为即)当(,时,定义域为即)当(时,函数定义域为或即或)当(得分析:由定义域。 )的()()(,求函数,)的定义域为(、若函数例φ 2、函数值和最值问题 处取得。和数。最大最小值在数满足条件,且为减函学过的函数中正比例函,在 指、对函数不满足条件分析:二次函数、幂、上的最大值与最小值 ,)在区间(求, )(且)(时,)当(), ()()(,有,)对任意(,且同时满足条件:)的定义域为(、已知函数例)(所以)()()()(分析:) (,求)() ()()(,若)的定义域为(、函数例33 ]33[21002134 3 23 24424482382---=<>+=+∈= ===+==+=++x f f x f x y f x f y x f R y x R x f f f f f f f f y f x f y x f R x f

10 0432 222<<--<->>+>+∞+∞-a a a R x f a f a f a f a f x f a a f a f R x f 所以上递减,则)在(而) ()(所以)()()是奇函数,(分析:因为的取值范围。 的实数)()(求满足)上是减函数, ,(上的奇函数,且在区间)是(、例、单调性问题 )为偶函数 (,即)(,所以)(因为)()(所以) ()()。(,则分析:令)的奇偶性 (,试判断)(且), ()()(,函数都满足,、若对于一切实数例、奇偶性问题 x f x f f x f f f x f x f y x f f y f x f y x f y x 1000 ]1[000000.54=≠=-==≠= 为周期。上的周期函数,且以)是(这表明),()(代换,得 以将上式中),()(),所以()()是偶函数知(又由),()(对称,所以)关于直线(分析;依题设)是周期函数 (证明:)(),且()()(都有,,对于任意对称, 于直线上的偶函数,其图象关)是定义在(、设例、周期性问题 2222101]2 10[165212121R x f R x x f x f x x R x x f x f x f x f x f R x x f x f x x f y x f a f x f x f x x f x x x R x f ∈+=-∈-=-=-∈-===>==+∈= 22120098 482tan tan 1tan 14tan 11220092211]1[27+===? ==-+=+-+=+= +=+=-+)()(从而)的周期是(,由此猜想并证明,而的周期为而)(,联想到)()()(分析:由)(,则)(又)()()(的函数,且)是定义域为(、设函数例f f x f y x y x x x x f x f x f f f x f x f x f R x f πππ

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

求抽象函数解析式的几种方法及适用范围

求抽象函数解析式的几种方法及适用范围 Last revised by LE LE in 2021

求函数的解析式的几种方法 一: 方法名称:配凑法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有 g(x)的形式 2再把g(x)用h(x)代替 例: 的解析式。 已知求的解析式。 已知f(x+1)=x-3,求f(x)的解析式。 已知,求的解析式。 二: 方法名称:换元法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围) 2在用一个只含有t的式子把x表示出来 3然后把这个式子在解析式的右端的x中,使右边只含有t 4再把t用h(x)代替。 例题: 已知求的解析式。 已知f()=x2+5x,则f(x)的解析式。 三 方法名称:待定系数法 适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)

方法步骤:1先设出函数解析式(如f(x)=ax+b) 2把解析式的左端用这个函数模型表示出来 4求出函数模型的系数 例: 四 方法名称:方程组法 适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。等号右边也含有变量x。 方法步骤:将左边的两个抽象函数看成两个变量。变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式 例: 设f(x)满足关系式,求函数的解析式. 五: 方法名称:赋值法 适用范围:一般包含一句话“对任意实数满足” 方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。 例:

抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills; 1.提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x () ()()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0

时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->, 由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

抽象函数问题的解题策略

抽象函数问题的解题策略Last revision on 21 December 2020

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x >5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

抽象函数的几类常见问题及解题方法

抽象函数的几类常见问题及解题方法 抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等,尽可能使抽象函数变得不再抽象。这类问题既能全面地考查学生对函数概念和性质的理解以及代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力. 对于发展学生的思维能力.尤其是抽象思维能力,渗透数学思想方法,起着非常重要的作用,所以备受各地模考、高考的青睐.因此有必要对抽象函数的解题方法和技巧进行归纳总结。以下是我归纳的常见的三类问题及其解法。 1.有关定义域问题 函数的定义域指自变量的取值范围。所以对抽象函数,而言,其定义域均指的是的取值范围。对于和,其中和的地位是等价的,故取值范围是一样的。 例 1. 函数y= 的定义域为(一∞,1] ,则函数y=f [ 1 og 】的定义域是————。 解析:因为1 og相当于 f (x )中的X,所以1 og≤ 1,得

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21 (+=x f y 而言,有1124x -≤ +<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与 21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的图象;由函数)(x f y =的图象关于y 轴对称得到函数)(x f y -=的图象,再向右平移1个单位,得到)1()]1([x f x f y -=--=的图象。如图所示,选D 。 解法三(特值代入法):由已知可得点))1(,0(-f P 在函数)1(-=x f y 的图象上,点))1(,2(-f Q 在函数)1(x f y -=的图象上,又点P 、Q 关于直线1=x 对称,选D 。

抽象函数是指函数的三种表示法(经典)

抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。因此,这类问题在高中数学的各类考试中经常出现。下面谈谈这类问题常见的几种解法: 一、赋值法 先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。这类问题经常出现,要认真理解其解题的要领和方法。 例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。 分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。 解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1, ∴ f(1) = 1 f(2)= f(1) +2 f(3) = f(2) +3 … f(n) = f(n-1) +n 各式相加得:f(n) = 1+2+3+…+n = ∴ f(x) = 例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R, y∈R,且f(0)≠0,求证:f(x)是偶函数。 分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。 证明:令x = y = 0 ∴ f(0) +f(0) = 2f 2 (0) ∵ f(0) ≠ 0, ∴ f(0) = 1 令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y) ∴ f(-y) = f(y), ∵ y∈R, ∴ f(x)是偶函数 例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0 恒有f(xy) = f(x) + f(y) 求证:当x > 0时, f( ) = -f(x) 分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·)可求得。 证明:令x = y = 1,则f(1) = f(1) + f(1),∴ f(1) = 0 又令y = ,x > 0,则 f(1) = f(x) + f( ) ∴ f(x) + f( ) = 0 即f( ) = -f(x) 二定义法 在熟练掌握函数的定义、性质的基础上,对题中抽象函数给出的条件进行分析研究,运用定义、性质进行化简、变形,寻找解决问题的方法。 例4函数f(2x)的定义域是[-1,1],则f(x)定义域为 x)定义域为___________ f(log 2

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

相关文档
最新文档