运筹学第章单纯形法

合集下载

运筹学单纯形法

运筹学单纯形法

只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。

运筹学课件 单纯形法的计算步骤

运筹学课件 单纯形法的计算步骤
第二阶段:以第一阶段的最优解(不含人工变量)为初 始解,以原目标函数为目标函数。
例8 试用两阶段法求解线性规划问题
min z =-3x1+x2+x3
x1 2 x2 x3 11
s.t.

4 x1 2 x1

x2

2x3 3 x3 1
x1 , x2 , x3 0
0 0 -1 0 0
x2

3 5 11/5
Z0=0
Z1=15
x1
如果将x1换入基底,得 另一解,由可行域凸性 易知,有两个最优解必 有无穷多组最优解 当非基底变量的检验数 中有取零值,或检验数 中零的个数大于基变量 个数时,有无穷多解。
四、无(有)界解
max z=x1+x2 -2x1+x2 4 x1- x2 2 -3x1+x23 x1 ,x2 0
反之,若加了人工变量的问题解后最优解中仍含人工变量为 基变量,便说明原问题无可行解。例3的单纯形表格为:
Cj
3
-1
-1
0
0
-M
CB XB b
x1
x2
x3
x4
x5
x6
0 x4 1
1
-2
1
1
0
0
-M x6 13 -4
1
2
0
-1
1
-M x7 1 -2
0
[1] 0
0
0
j
3-6M M-1 3M-1 0
-M
x1 2 x2 x3 x4
11

4 2
x1 x1

x2

2
x3 x3

运筹学课件1-4单纯形法计算步骤

运筹学课件1-4单纯形法计算步骤

b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题

运筹学-第一章-单纯形法基本原理

运筹学-第一章-单纯形法基本原理
初始基本可行解:
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,

物流运筹学单纯形法

物流运筹学单纯形法

如何确定出基变量(可以按照下述方法来理解) 当x2定为入基变量后,必须从x3 、 x4 、 x5中换出来一个,并保 证其余的变量在新可行解中还都是非负,即: x3≥0 、 x4 ≥0 、 x5 ≥0
因为x1 仍为基变量, 所以将x1=0,带入约 束条件,得到:
4 x2 x3 360 5 x2 x4 200 s.t . 10x2 x5 300 x , x , x , x , x 0 1 2 3 4 5
需要解决的问题: (1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优?判断标准是什么?
1.5.1单纯形法原理
单纯形法步骤
确定初始基本可行解
检验其 是否为最优


主要工作: 最优性检验
否 寻找更好的 基本可行解
主要工作: 1、基变换(将原来的基换成新的基) 2、修正单纯形表,得到新的基本可行解
基变量的 价值系数 基变量
基本 可行解
CB
0 0 0
XB
X3 X4 X5 机会成本行 σj
7 B b 360 200 300
-1
12 X2 4 5 10 0 12
0 X3 1 0 0 0 0
0 X4 0 1 0 0 0
0 X5 0 0 1 0 0
X1 9 4 3 0 7
θ
90 40 30
因为基变量的检验数σ1和σ2都大于0,所以当前解不是最优。需要变换可行 基,寻找新的解。即原来的非基变量x1 、x2,要有一个被换为基变量,基变 量中也要有一个被换为非基变量,以确定新的基、新的解。
0
0
0
主元列 (确定入基变量)
主元行 (确定 出基变 量)
主元素

运筹学---单纯形法

运筹学---单纯形法

运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。

在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。

单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。

单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。

在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。

具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。

新的基变量将替换原来的非基变量,并且目标函数的值将被更新。

关键是如何选择入基变量和出基变量。

为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。

单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。

通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。

一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。

但是,在实际应用中,单纯形法往往比其他算法更快和更有效。

此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。

单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。

它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。

在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。

这些方法可以提供更好的性能和结果。

但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。

在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

运筹学-单纯形法1课件

运筹学-单纯形法1课件

例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表

运筹学第1章线性规划及单纯形法复习题

运筹学第1章线性规划及单纯形法复习题

max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

运筹学单纯形法讲解

运筹学单纯形法讲解

运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。

设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。

单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。

由单纯形求出的最优解就叫做单纯形的最优解。

在实际应用中,一般用来求最优解的都是单纯形。

二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。

但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。

非线性规划只能得到对象最优解。

三、单纯形法具体步骤和算法介绍1、明确问题的目标。

2、计算出所有解,按确定的先后顺序排列。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

四、单纯形法的误差和精度1、明确问题的目标。

一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。

但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。

2、计算出所有解,按确定的先后顺序排列。

首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。

这种方法称为“穷举法”。

穷举法通常用于没有更好的方法时,常用于工程实际中。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。

5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。

单纯形法的精度可达0.01或0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4x3 4x3

x4 x5

8000 3000
x j 0, j 1,2,3,4,5
初始单纯形表:
cj
C’ B
XB
b
4
1
5
0
x1
x2
x3
x4
0
X4
8000
3
1
4
1
0
X5
3000
2
1
4
0
Zj
0
0
0
0
Cj–Zj
4
1
5
0
LP
0 x5 0 1 0 0
初始解为X=(0,0,0,8000,3000) Z=0
42
x1
x5
1 4
x2

1 4
x5
X (1) (0,0,750,5000 ,0)T Z 3750
基本可行解
OR课件
LP
观察目标函数:
Z

3750
3 2
x1

1 4
x2

5 4
x5
§2 经 济 解 释
选x1入基,x2, x5仍为非基变量,且为0,代入上方程组:
x4 5000 x1 0
OR课件
§2 经 济 解 释
LP
模型的标准型为: MaxZ 4x1 x2 5x3 0 x4 0 x5
s.t 32xx11

x2 x2

4x3 4x3

x4 x5

8000 3000

x
j

0,
j 1,2,3,4,5
系数矩阵和基: 3 1 4 1 0
OR课件
§3 计 算 步 骤
cj
4
C’ B
XB
b
x1
0
X4
8000
3
0
X5
3000
2
Zj
0
Cj–Zj
4
cj
4
C’ B X B
b
x1
0
x4 5000 1
5
x3 750 11/22
Zj
5/2
Cj–Zj
3/2
K
LP
1
5
0
0
x2
x3
x4
x5
1
4
1
0 2000
1
4
0
1
L 750
0
0
0
0
1
5
0
0
K
主元素
MinS 10x1 8x2 7x3
2x1x1x2x2x36 4 x1, x2 , x3 0
MaxZ 10x1 8x2 7x3 0x4 0x5 Mx6
2x1 x2 x4 x6 6

x1

x2

x3

x5

4
x1, x2 , x3 , x4 , x5 , x6 0
要 内
§ 5 LP问题解的讨论。

OR课件
-----
重点

单纯形法的经济含义、优化原理和计算
学 步骤、以及有关概念。
重 难点


单纯形法的迭代原理和迭代方法,以及
难 点
迭代过程中所反映的经济含义。
OR课件
§1 几 何 意 义
LP
X X (1) K, (2) K
X(1) (1 )X (2) K (0 1), 则称K为凸集。
初始基本可行解
OR课件
LP
观察目标函数: Z 0 4x1 x2 5x3
§2 经 济 解 释
选x3入基,x1, x2仍为非基变量,且为0,代入上方程组:
xx54

8000 3000
4x3 4x3

0 0
则:x3

min80400
,
3000
4


750
7/4
0
1
0 -1/4 -1/8 3/8
Zj
0
0
0 -5/4 3/8 9/8
Cj–Zj
0
0
0
5/4 -3/8 -9/8
无限界解
OR课件
§5 解 的 讨 论
LP
退化解:LP问题的基本可行解中非零变量 的个数少于约束条件数,也就是有基变量的 取值为0。
求解方法有: 方法一:大M法 方法二: 两阶段法
OR课件
LP
§4 进 一 步 讨 论
大M法
方法要点:目标函数按下式处理(M是 一个充分大的正数),约束条件不变,填 入单纯形表进行求解。
MaxZ Mx人工 MinS Mx人工
OR课件
§4 进 一 步 讨 论
LP
例2.2
非凸集
非凸集
OR课件
LP
§1 几 何 意 义
LP问题的可行域是凸集 可行解是基本可行解的充要条件
(-----是X的非零分量所对应的系数列向量线性无关)
基本可行解对应可行域的顶点 有可行解必有基本可行解,即凸集有顶点 最优解在可行域的顶点上达到
OR课件
§2 经 济 解 释
LP
例2.1 设有一家具厂用木材和钢材生产A,B,C三种家具,生 产一件家具所需的材料、每件家具可获得的利润以及每月 可供的木材自河钢材数量如下表,问此家具厂应如何安排 各种家具的生产量才能使企业获得最大的利润?
产品
木材 钢材
单位产品获利 (元)
A
3
2
4
B
1
1
1
C
4
4
5
材料可供量 8000
3000
解:设A,B,C三件家具的产量(件数)分别为x1,x2,x3,有:
MaxZ 4x1 x2 5x3
s.t 32xx11

x2 x2

4x3 4x3

8000 3000
x j 0, j 1,2,3
A 2 1 4 0 1
取B

1 0
0 1
则:基变量为x4, x5; 非基变量为x1, x2, x3 ,变换标准型的约
束条件:
x4 8000 3x1 x2 4x3 x5 3000 2x1 x2 4x3
X (0) (0,0,0,8000 ,3000 )T Z 0
-----
OR课件
导 学
回 顾
LP
局限性:仅能求解两个变量的LP问题
重要启示: (1)LP问题的最优解一定在可行域的顶 点上达到; (2)可行域中顶点的转移实现了数学迭 代,顶点的转移使得目标函数值上升或 下降。
--单纯形法的基本原理和基本思想
OR课件
等值线


可行域
-----
问 题 可行域顶点的个数是否有限?
MinS 10x1 8x2 7x3 0x4 0x5 Mx6

2x1 x2 x4 x6 6 x1 x2 x3 x5 4
x1, x2 , x3 , x4 , x5 , x6 0
OR课件
§4 进 一 步 讨 论
LP
两阶段法
方法要点 (1)第一阶段目标函数的设置:
b
x1
x2
x3
x4
x5
x6
x7
0
x1
3/2
1 39/80 0 3/16 -1/80 0
0
0
x3
3/2
0 9/16 1 1/16 1/16 0
0
-1 x7 1/2 0 -43/80 0 -7/16 -3/80 -1
1
Zj
0 43/80 0 7/16 3/80 1
-1
Cj–Zj
0 -43/80 0 -7/16 -3/80 -1
当x3=750时,x5=0即为非基变量,x4=5000 则:基变量为x4, x3; 非基变量为x1, x2 x5 ,变换标准型的约束条件:
44xx33

x4 8000 3x1 3000 2x1 x2

x2 x5

x4 x3

5000 x1 3000 1
x c MaxZ 人工 ,即 人工 1 x c 或 MinS 人工,即 人工 1
(2)转入第二阶段的条件及处理方法:
条件:第一阶段满足最优性检验,且该阶段的目标值 等于0,转入第二阶段;否则该问题无解,计算终止。 处理:替换目标函数,在第一阶段最优表上继续。
OR课件
§5 解 的 讨 论
0
人工变量
无可行解
OR课件
LP
§5 解 的 讨 论
无限界解:
c z a MaxZ : 有 0 且
0, i 1,2,, m
k
k
ik
c z a 或 MinS : 有 0 且
0, i 1,2,, m
k
k
ik
OR课件
§5 解 的 讨 论
LP
例2.4 如有线性规划 MaxZ 2x1 x2 2x3
x1 3x2 x3 6 2x1 x3 2 2x2 x3 0 x1, x2 , x3 0
cj
2
-1
2
0
0
0
C’ B X B
b
x1
x2
x3
x4
x5
x6
2
x1
3/4
1
0
0 -1/4 -3/8 1/8
相关文档
最新文档