2020年安徽省中考数学模拟试卷(一)

合集下载

2020年安徽省中考数学模拟试卷(一)(含答案解析)

2020年安徽省中考数学模拟试卷(一)(含答案解析)

2020年安徽省中考数学模拟试卷(一)一、选择题(本大题共10小题,共40.0分)1.银川市某天的气温是7℃~−3℃.则计算这天温差的算式()A. (7−3)℃B. (7+3)℃C. (−3−7)℃D. [7−(−3)]℃2.计算a3⋅a2=()A. a6B. a5C. 2a2D. 2a33.如图所示的几何体的俯视图是()A.B.C.D.4.太阳直径大约是1392000千米,这个数据用科学记数法可表示为()A. 1.392×106B. 13.92×105C. 13.92×106D. 0.1394×1075.如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A. 20°B. 35°C. 55°D. 70°6.不等式组{5x−1>3(x+1)12x−1≤7−32x的解集是()A. x>2B. x≤4C. x<2或x≥4D. 2<x≤47.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A. 样本容量是200B. D等所在扇形的圆心角为15°C. 样本中C等所占百分比是10%D. 估计全校学生成绩为A等大约有900人8.某商品原售价250元,经过连续两次降价后售价为200元.设平均每次降价的百分率为x,则下面所列方程中正确的是()A. 200(1+x)2=250B. 250(1−x)2=200C. 250(1+x)2=200D. 200(1−x)2=250.9.已知二次函数y=(x−m)2+n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=2,若两动点P,Q分别在AB,BC边上,则PC+PQ的最小值为()B. 2C. √5D. 3A. 85二、填空题(本大题共4小题,共20.0分)11.要使式子√2x+1有意义,则x的取值范围是_____________.x−112.分解因式4ab2−9a3=______.13.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则AD⏜的长为______.14.已知点P(5,25)在抛物线y=ax2上,则当x=1时,y的值为_______.三、解答题(本大题共9小题,共90.0分)15.计算:(12)−1−(π−1)0+|1−√3|.16.先化简,再求值:x2−2x+12x2−2÷(x−1x+1−x+1),其中x=−34.17.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).18.观察下列关于自然数的等式:1×7=42−32①;2×8=52−32②;3×9=62−32③;…根据上述规律解决下列问题:(1)完成第四个等式:4×______=______;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度是多少?20.如图,AB是⊙O的直径,点P是BA延长线上一点,直线PE切⊙O于点Q,连接BQ.(1)∠QBP=25°,求∠P的度数;(2)若PA=2,PQ=4,求⊙O的半径。

安徽省2020年中考数学第一次模拟考试试题含答案解析

安徽省2020年中考数学第一次模拟考试试题含答案解析

2020年中考数学第一次模拟考试【安徽卷】
数学
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
1.|﹣9|的值是
A.9 B.﹣9
C.
1
9D .﹣
1
9
2.计算:(﹣a3)2÷a2=
A.﹣a3B.a3
C.a4D.a7
3.如图,是一个水平放置的几何体,它的俯视图是
A.B.
1。

最新沪科版2020年安徽中考数学一模模拟试卷(卷一)含答案解析

最新沪科版2020年安徽中考数学一模模拟试卷(卷一)含答案解析

最新沪科版2020年安徽中考数学一模模拟试卷(卷一)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣20201的相反数是( )A .20201B .﹣20201C .2020D .﹣20202.计算a 3(﹣ab 2)2的结果是( ) A .a 5b 4 B .a 4b 4 C .﹣a 5b 4D .﹣a 4b 43.如图,直线a ∥b ,若∠1=50°,∠3=95°,则∠2的度数为( ) A .35° B .40° C .45 °D .55°4.今年安徽省省级一般公共预算支出预算数为673亿元,比2017年预算数增长10.9%,其中673亿用科学记数法表示为( ) A .0.673×1011 B .0.673×1010C .6.73×1010D .6.73×10115.方程=的解是( )A .﹣B .C .﹣D .6.安徽省作为首批国家电子商务进农村示范省之一,先后携手阿里巴巴、苏宁云商等电商巨头,推动线上线下融合发展,激发农村消费潜力,实现“安徽特产卖全国”.根据某淘宝农村超市统计十月份的营业额为38万元,十二月份的营业额为50万元.设每月的平均增长率为x ,则可列方程为( )A .50(1+x )2=38B .38(1﹣x )2=50C .38(1+x )2=50D .50(1﹣x )2=38 7.如图,在▱ABCD 中,∠A =70°,将▱ABCD 绕点B 顺时针旋转到▱A 1BC 1D 1的位置,此时C 1D 1恰好经过点C ,则∠ABA 1=( ) A .30° B .40° C .45°D .50°8.在一次学校运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m ) 1.20 1.25 1.30 1.35 1.40 1.45 跳高人数132351这些运动员跳高成绩的中位数和众数分别是( ) A .1.35,1.40 B .1.40,1.35C .1.40,1.40D .3,59.(4分)如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( ) A .主视图是轴对称图形B .左视图是轴对称图形C .俯视图是轴对称图形D .三个视图都不是轴对称图形10.(4分)已知菱形ABCD 的边长为1,∠DAB =60°,E 为AD 上的动点,F 在CD 上,且AE +CF=1,设△BEF 的面积为y ,AE =x ,当点E 运动时,能正确描述y 与x 关系的图象是( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分) 11.16的平方根是 . 12.因式分解:3a 3﹣3a = .13.如图四边形ABCD 中,AD ∥BC ,连接AC ,E ,F 分别为AC ,CB 的中点,BC =2AD ,S △CEF =2,△ADC 的面积为 .14.数学的美无处不在,数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:﹣=﹣.我们称15、12、10这三个数为一组调和数.现有两个数5,3,再加入一个数x ,使三个数组成一组调和数,则x 的值是 .三、解答题(本大题共2小题,每小题8分,满分16分) 15.计算:(﹣2018)0﹣+3tan30°+|1﹣|16.解不等式并把解集在数轴上表示出来<x ﹣四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)写出点A的对应点A1的坐标,A2的坐标.(3)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P2的坐标.18.(8分)如图,在直角坐标系xOy中,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于A(﹣1,6),B(a,﹣2)两点.(1)分别求一次函数与反比例的解析式;(2)当x满足时,0<y1≤y2.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(10分)如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦AC于E,连接BE,若AC=8,DE=2,求(1)求半圆的半径长;(2)BE的长度.六、解答题(本题满分12分)21.(12分)合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103七、解答题(本题满分12分)22.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:国外品牌国内品牌进价(元/部)44002000售价(元/部)50002500该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.八、解答题(本题满分14分)23.(14分)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,P,D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由.(3)已知抛物线交x轴于A(﹣1,0),B(3,0)两点,交y轴于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求D点坐标.最新沪科版2020年中考数学一模试卷(卷一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分) 1.【分析】根据相反数的定义,即可解答.【解答】解:﹣20201的相反数是20201,故选:A .【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 2.【分析】首先计算积的乘方,然后再计算同底数幂的乘法即可. 【解答】解:a 3(﹣ab 2)2=a 3•a 2b 4=a 5b 4, 故选:A .【点评】此题主要考查了积的乘方和同底数幂的和乘法,关键是掌握计算法则.3.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4, ∴∠4=∠3﹣∠1=95°﹣50°=45°, ∵a ∥b ,∴∠2=∠4=45°. 故选:C .【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.4.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:将673亿用科学记数法表示为:6.73×1010. 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x +2),得:2(2x ﹣1)=x +2, 解得:x =,当x =时,2(x +2)≠0, 所以x =是分式方程的解, 故选:D .【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.6.【分析】为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每月的平均增长率为x ,根据“十二月份的营业额为50万元”,即可得出方程. 【解答】解:设每月的平均增长率为x , 根据题意,得:38(1+x )2=50, 故选:C .【点评】本题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.7.【分析】直接利用旋转的性质结合平行四边形的性质得出∠A =∠C 1=70°,BC =BC 1,进而得出答案.【解答】解:∵将▱ABCD 绕点B 顺时针旋转到▱A 1BC 1D 1的位置, ∴∠A =∠C 1=70°,BC =BC 1, ∴∠BCC 1=∠C 1=70°,∴∠ABA 1=∠CBC 1=180°﹣70°﹣70°=40°. 故选:B .【点评】此题主要考查了旋转的性质以及平行四边形的性质,正确得出∠BCC 1=∠C 1是解题关键.8.【分析】根据中位数和众数的定义,第8个数就是中位数,出现次数最多的数为众数.【解答】解:在这一组数据中1.40是出现次数最多的,故众数是1.40;在这15个数中,处于中间位置的第8个数是1.35,所以中位数是1.35.所以这些运动员跳高成绩的中位数和众数分别是1.35,1.40.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.9.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.【点评】此题考查了轴对称图形,以及学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.10.【分析】证明△BEF是等边三角形,求出△BEF的面积y与x的函数关系式,即可得出答案.【解答】解:连接BD,如图所示:∵菱形ABCD的边长为1,∠DAB=60°,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=1,而AE+CF=1,∴DE=CF,在△BDE和△BCF 中,,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;∴BE=EF,△BEF的面积y =BE2,作BE'⊥AD于E',则AE'=AD =,BE'=,∵AE=x,∴EE'=﹣x,∴BE2=(﹣x)2+()2,∴y =(x ﹣)2+(0≤x≤1);故选:A.【点评】此题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、动点问题的函数图象、三角形的面积问题.求出y与x的函数关系式是解决问题的关键.二、填空题(本大题共4小题,每小题5分,共20分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】首先提取公因式3a,进而利用平方差公式分解因式得出答案.【解答】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为:3a(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.【分析】根据三角形中位线定理和相似三角形的判定与性质求得三角形ABC的面积,然后结合同高三角形的面积的计算方法来求三角形ADC的面积;【解答】解:∵E、F分别为AC、CB的中点,∴EF的△ABC的中位线,∴EF∥AB,且EF =AB,∴△CEF∽△CAB ,且相似比是.又S△CEF=2,∴S△CEF:S△ABC=1:4,∴S△ABC=8.∵AD∥BC,BC=2AD,∴S△ACD =S△ABC=4,故答案为4.【点评】本题考查了三角形中位线定理,三角形的面积,相似三角形的判定与性质.解题时,利用了分割法求得四边形ABCD的面积.14.【分析】根据调合数的定义,分三种情况讨论:①当x>5时,x=15;②3<x<5时,得x =;③当x<3时,得x =.【解答】解:根据题意,得:①当x>5时,.解得:x=15,经检验:x=15为原方程的解;②3<x<5时,,解得x =,经检验:x =为原方程的解;③当x<3时,,解得x =,经检验:x =为原方程的解.故答案是15或或.【点评】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【解答】解:原式=1﹣2+3×+﹣1=1﹣2++﹣1=﹣+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】不等式两边都乘以6去分母后,去括号,移项合并,将x系数化为1求出解集,在数轴上表示出解集即可.【解答】解:去分母得:2(2x﹣3)<6x﹣3,去括号得:4x﹣6<6x﹣3,移项合并得:﹣2x<3,解得:x >﹣,表示在数轴上,如图所示:【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,是一道基本题型.四、解答题(本大题共2小题,每小题8分,满分16分)17.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)点A的对应点A1的坐标(4,3),A2的坐标(2,﹣2);(3)由图可得:P1 (b,﹣a),P2(b﹣2,﹣a﹣5).故答案为:(4,3);(2,﹣2)【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.18.【分析】(1)先将A点坐标代入y2=求出k2,确定反比例函数解析式为y2=﹣;再把B(a,﹣2)代入y2=﹣求出a,确定B点坐标为(3,﹣2),然后利用待定系数法确定一次函数解析式;(2)观察函数图象,当﹣1≤x<0时,反比例函数图象落在一次函数图象的上方并且两个函数都在x轴的上方.【解答】解:(1)把A(﹣1,6)代入y2=,得k2=﹣1×6=﹣6,所以反比例函数解析式为y2=﹣;把B(a,﹣2)代入y2=﹣,得﹣2a=﹣6,解得a=3,所以B点坐标为(3,﹣2),把A(﹣1,6)和B(3,﹣2)代入y1=k1x+b,得,解得,所以一次函数解析式为y1=﹣2x+4;(2)由图象可知,当﹣1≤x<0时,0<y1≤y2.故答案为﹣1≤x<0.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.五、解答题(本大题共2小题,每小题10分,满分20分)19.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD ===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH =,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.【点评】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.20.【分析】(1)根据垂径定理的推论得到OD⊥AC,AE =AC,设圆的半径为r,根据勾股定理列出方程,解方程即可;(2)根据圆周角定理得到∠ACB=90°,根据勾股定理计算即可.【解答】解:(1)设圆的半径为r,∵D是弧AC中点,∴OD⊥AC,AE =AC=4,在Rt△AOE中,OA2=OE2+AE2,即r2=(r﹣2)2+42,解得,r=5,即圆的半径长为5;(2)连接BC,∵AO=OB,AE=EC,∴BC=2OE=6,∵AB是半圆的直径,∴∠ACB=90°,∴BE ==2.【点评】本题考查的是圆心角、弧、弦的关系定理、垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.六、解答题(本题满分12分)21.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.七、解答题(本题满分12分)22.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a 的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.八、解答题(本题满分14分)23.【分析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD 的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.【解答】(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(3)设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),∴,解得,所以,y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4),过点P作PC⊥x轴于C,设AQ与y轴相交于D,则AO=1,AC=1+1=2,PC=4,根据(2)的结论,AO•AC=OD•PC,∴1×2=OD•4,解得OD =,∴点D的坐标为(0,),设直线AD的解析式为y=kx+b(k≠0),则,解得,所以,y =x +,联立,解得,(为点A坐标,舍去),所以,点Q的坐标为(,).【点评】本题是二次函数综合题型,主要考查了相似三角形的判定与性质,待定系数法求二次函数解析式,待定系数法求一次函数解析式,联立两函数解析式求交点坐标,综合题,但难度不大,根据同角的余角相等求出两个角相等得到两三角形相似是解题的关键.。

安徽省十校联考2020年中考模拟(一)数学试卷(解析版)

安徽省十校联考2020年中考模拟(一)数学试卷(解析版)

安徽省十校联考2020年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)1.数轴上表示﹣2和1的点分别是A和B,则线段AB的长为()A.3B.﹣3C.1D.﹣12.下列运算结果为a5的是()A.a5﹣a B.a5•a C.a7÷a2D.(a2)33.把4个相同的正方体按如图方式摆放,那么它的俯视图是()A.B.C.D.4.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃5.能说明命题“若x2≥4,则x≥2”为假命题的一个反例可以是()A.x=﹣1B.x=2C.x=﹣3D.x=56.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°7.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE 的长为()A.3B.2.5C.2D.1.58.如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=309.如图,抛物线y=ax2+2x+a2﹣1(a≠0)是①②③④中的一个,那么该抛物线的顶点为()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)10.如图,∠O=60°,∠ACB的两边与∠O的两边分别交于点A,B,且∠ACB=120°,CA=CB,点P在射线OA上,OP=20,则CP的最小值是()A.10B.C.D.15二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解ax2﹣ax的结果是.12.(5分)如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.13.(5分)如图,点A,B都在双曲线y=(x>0)上,点A横坐标是点B横坐标的2倍,AC,BD都垂直于坐标轴,点C,D为垂足,阴影面积是k﹣2,则k的值是.14.(5分)关于x的方程kx2﹣2x﹣1=0有实数根,其中k为非正整数,则k等于.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)某旅游区的平面图如图所示,分别从景点A,B测得视角∠BAC=120°,∠ABC =25°,景点A,C相距800米,求景点A,B之间的距离.(参考数据:sin25°≈0.45,cos25°≈0.9,tan25°≈0.5,≈1.73;精确到1米)四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.18.(8分)如图,AB是半⊙O的直径,AD⊥切线CD,点C为切点.求证:AC平分∠DAB.五.(本大题共2小题,每小题10分,满分20分)19.(10分)观察下列各式:①=2;②=2;③=2;④=2……按照以上规律,解决下列问题:(1)写出第6个等式.(2)写出你猜想的第n个等式(用含n的等式表示),并证明.20.(10分)如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l的垂线,点E,F为垂足,连接BF.(1)求证:AE=DF;(2)若AE=6,BF=,求△ABF的面积.六、(本题满分12分)21.(12分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)请你补全两个统计图,并观察补全后的统计图,写出一条你发现的结论;(3)若老师想从四次成绩总分前三名的一男两女中选拔两个人参加学校代表队,请你用画树状图或列表的方法求恰好选中两女的概率.七、(本题满分12分)22.(12分)已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.八、(本题满分14分)23.(14分)四边形ABCD中,∠ABC+∠ADC=180°,对角线BD平分∠ABC.(1)如图1,延长BC,AD交于点M.求证:①△MCD∽△MAB;②AD=CD;(2)如图2,连接AC交BD于点F,将△ABC沿着AC翻折得到△AEC,连接DE,若CE∥BD,BC=6,CD=4,求CF的长.2020年安徽省十校联考中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.数轴上表示﹣2和1的点分别是A和B,则线段AB的长为()A.3B.﹣3C.1D.﹣1【分析】根据数轴上两点距离的计算方法进行计算即可.【解答】解:AB=|﹣2﹣1|=3,故选:A.【点评】本题考查数轴表示数的意义,数轴上两点之间的距离等于这两点所表示数的差的绝对值.2.下列运算结果为a5的是()A.a5﹣a B.a5•a C.a7÷a2D.(a2)3【分析】根据幂的运算法则进行计算便可判断正误.【解答】解:A.当a≠0时,a5﹣a≠a5,此选项不合题意;B.a5•a=a5+1=a6,此选项不合题意;C.a7÷a2=a7﹣2=a5,此选项符合题意;D.(a2)3=a2×3=a6,此选项不全题意;故选:C.【点评】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,熟记这些法则是解题的关键.3.把4个相同的正方体按如图方式摆放,那么它的俯视图是()A.B.C.D.【分析】从上面看物体,所得到的图形是该物体的俯视图.【解答】解:从上面看到的是三个正方形“一”字排列,选项B中的图形符合题意,故选:B.【点评】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等、高平齐”.4.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃【分析】根据题意将这位同学一周内的体温写出来相加再除以七,得出其体温的平均值.【解答】解:根据题意检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”得这位同学在一周内的体温分别是37.1、36.7、36.5、37.1、37.2、36.4、36.6;将(37.1+36.7+36.5+37.1+37.2+36.4+36.6)÷7=36.8℃;故选:D.【点评】概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.5.能说明命题“若x2≥4,则x≥2”为假命题的一个反例可以是()A.x=﹣1B.x=2C.x=﹣3D.x=5【分析】当x=﹣3时,满足x2≥4,但不能得到x≥2,于是x=﹣3可作为说明命题“若x2≥4,则x≥2”是假命题的一个反例.【解答】解:说明命题“若x2≥4,则x≥2”是假命题的一个反例可以是x=﹣3.故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°【分析】由等腰三角形的性质可得∠ABC=∠ACB,进而可求出∠B的度数,再由圆内接四边形定理即可求出∠ADC的度数.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵∠CAB=56°,∴∠ABC==62°,∵D是等腰△ABC外接圆弧AC上的点,∴∠ABC+∠ADC=180°,∴∠ADC=118°,故选:B.【点评】本题考查了等腰三角形的性质以及圆内接四边形定理的运用,熟记和圆有关的各种定理是解题的关键.7.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE 的长为()A.3B.2.5C.2D.1.5【分析】由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE﹣AB,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE﹣AB=5﹣3=2;故选:C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.8.如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=30【分析】设9~11月每个月生产成本的下降率都为x,根据该公司9月份及11月份的生产成本,即可得出关于x的一元二次方程.【解答】解:设每个月生产成本的下降率为x,根据题意得:30(1﹣x)2=15,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.如图,抛物线y=ax2+2x+a2﹣1(a≠0)是①②③④中的一个,那么该抛物线的顶点为()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】由抛物线的对称轴为直线x=﹣=﹣≠0,判定图①②不符合题意;根据图抛物线过原点,解得a=±1,由③④得,对称轴直线x=﹣>0,得到a<0,即可判定图③符合题意,图④不符合题意,把a=﹣1代人解析式,然后化成顶点式,即可求得顶点坐标.【解答】解:∵抛物线y=ax2+2x+a2﹣1(a≠0)的对称轴是直线x=﹣=﹣≠0,图①②中的对称轴是y轴,∴图①②不符合题意;∵图③④中“抛物线过原点”,∴a2﹣1=0,解得a=±1,由③④得,对称轴直线x=﹣>0,∴a<0,∴图③符合题意,图④不符合题意,当a=﹣1时,则y=﹣x2+2x=﹣(x﹣1)2+1,∴该抛物线的顶点坐标为(1,1),故选:D.【点评】本题考查了二次函数的图象和性质,通过对图象的分析得出a=﹣1是解题的关键.10.如图,∠O=60°,∠ACB的两边与∠O的两边分别交于点A,B,且∠ACB=120°,CA=CB,点P在射线OA上,OP=20,则CP的最小值是()A.10B.C.D.15【分析】过点C作CM⊥OA,CN⊥OB,M,N为垂足,根据AAS证明△CAM与△CBN 全等,进而利用全等三角形的性质和角平分线的性质解答即可.【解答】解:如图,过点C作CM⊥OA,CN⊥OB,M,N为垂足,在四边形CMON中,∠MCN=360°﹣60°﹣90°﹣90°=120°,∵∠ACM=∠BCA﹣∠BCM=120°﹣∠BCM,∠BCN=∠MCN﹣∠BCM=120°﹣∠BCM,∴∠ACM=∠BCN,在Rt△CAM与Rt△CBN中,,∴△CAM≌△CBN(AAS),∴CM=CN,根据到角的两边距离相等的点在角平分线上,可得,点C一定在∠AOB的平分线上,过点P作PC'⊥OC交OC于点C',在Rt△OPC'中,OP=20,∠POC'=30°,则PC'=PO=10,即CP的最小值为10,故选:A.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解ax2﹣ax的结果是ax(x﹣1).【分析】直接提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).故答案为:ax(x﹣1).【点评】本题主要考查提公因式法分解因式,项本身就是公因式,提取公因式后要注意剩下1或﹣1,不要漏项.12.(5分)如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是115°.【分析】过点C作CD∥a,进而利用平行线的性质解答即可.【解答】解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.【点评】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.13.(5分)如图,点A,B都在双曲线y=(x>0)上,点A横坐标是点B横坐标的2倍,AC,BD都垂直于坐标轴,点C,D为垂足,阴影面积是k﹣2,则k的值是.【分析】根据反比例函数系数k的几何意义得到S△BOD=k=S△AOC,根据三角形面积公式即可证得BD=2OC,证得PE、PF分别是△OBD和△OAC的中位线,即可证得S△BPE=S△BOD=k,S△APF=S△AOC=k,根据题意得到k+k=k﹣2,解得即可.【解答】解:设AC与BD的交点为P,AC与OB的交点为E,BD与OA的交点为F,∵AC,BD都垂直于坐标轴,∴S△BOD=k=S△AOC,∴OD•BD=AC•OC,∵点A横坐标是点B横坐标的2倍,∴AC=2OD,∴BD=2OC,∴PE、PF分别是△OBD和△OAC的中位线,∴S△BPE=S△BOD=k,S△APF=S△AOC=k,∵阴影面积是k﹣2,∴k+k=k﹣2,解得k=,故答案为.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.(5分)关于x的方程kx2﹣2x﹣1=0有实数根,其中k为非正整数,则k等于0或﹣1.【分析】分k=0和k≠0两种情况计算:①当k=0时,原方程化为一元一次方程,有实数根,符合题意;②当k≠0时,原方程为关于x的一元二次方程,根据一元二次方程的解与判别式的关系,得出关于k的不等式,求解并结合k为非正整数即可得出答案.【解答】解:①当k=0时,原方程化为:﹣2x﹣1=0,解得:x=﹣,故k=0符合题意;②当k≠0时,原方程为关于x的一元二次方程,∵有实数根,∴△=(﹣2)2﹣4k×(﹣1)=4+4k≥0,解得:k≥﹣1,∵k为非正整数,k≠0,∴k=﹣1.综上,k=0或k=﹣1.故答案为:0或﹣1.【点评】本题主要考查了一元二次方程的根与判别式的关系,分类讨论并熟练掌握一元二次方程的根与判别式的关系是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,负整数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式=4×()2﹣(﹣1)+3+2=1﹣+1+3+2=5+.【点评】此题考查了实数的运算,负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.(8分)某旅游区的平面图如图所示,分别从景点A,B测得视角∠BAC=120°,∠ABC =25°,景点A,C相距800米,求景点A,B之间的距离.(参考数据:sin25°≈0.45,cos25°≈0.9,tan25°≈0.5,≈1.73;精确到1米)【分析】过点C作BA的垂线,交BA的延长线于点D,利用三角函数解答即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,在Rt△ACD中,∠CAD=60°,由sin∠CAD=,可得:CD=AC•sin∠CAD=800×=400,由cos∠CAD=,可得:AD=AC•cos∠CAD=800×=400,在Rt△BCD中,由tan∠B=可得:,解得:BD=800,∴AB=BD﹣AD=800﹣400≈984(米),答:景点A,B之间的距离约为984米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是1:2.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.【分析】(1)直接利用位似图形的性质得出位似中心的位置;(2)直接利用位似比得出对应点位置进而得出答案.【解答】解:(1)如图所示:点O即为所求,△ABC与△A'B'C'的位似比是:1;2;故答案为:1:2;(2)如图所示:△A1B1C即为所求.【点评】此题主要考查了位似变换,正确得出对应点位置是解题关键.18.(8分)如图,AB是半⊙O的直径,AD⊥切线CD,点C为切点.求证:AC平分∠DAB.【分析】连接OC,根据平行线的性质证出AD∥OC,由OA=OC可以得到∠OAC=∠OCA,由平行线的性质证出∠DAC=∠OCA,即可得出结论.【解答】证明:连接OC,如图所示:∵CD切⊙O于C,∴CO⊥CD,又∵AD⊥CD,∴AD∥CO.∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO∴∠DAC=∠CAO,∴AC平分∠BAD.【点评】此题主要考查了切线的性质、平行线的性质和判定,等腰三角形的性质等知识;熟练掌握切线的性质与判定和等腰三角形的性质是解决问题的关键.五.(本大题共2小题,每小题10分,满分20分)19.(10分)观察下列各式:①=2;②=2;③=2;④=2……按照以上规律,解决下列问题:(1)写出第6个等式.(2)写出你猜想的第n个等式(用含n的等式表示),并证明.【分析】观察每个式子,发现分子共有三项相加,第n个式子的前两项是n2,(n+1)2,第三项的底数是前两项底数的和,即(n+n+1).对于分母,前两项依然是n2,(n+1)2,第三项是前两项底数之积.【解答】解:(1)第6个式子:.故答案为:.(2).证明:左边===右边.∴猜想的第n个式子成立.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.20.(10分)如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l的垂线,点E,F为垂足,连接BF.(1)求证:AE=DF;(2)若AE=6,BF=,求△ABF的面积.【分析】(1)根据正方形的性质和全等三角形的判定和性质解答即可;(2)根据勾股定理和三角形的面积公式解答即可.【解答】证明:(1)∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵BE⊥l,DF⊥l,∴∠AEB=∠AFD=90°,∵∠EAB+∠F AD=90°,∠EAB+∠ABE=90°,∴∠F AD=∠ABE,在△BEA与△AFD中,,∴△BEA≌△AFD(AAS),∴AE=DF,(2)由(1)知△BEA≌△AFD,∴AF=BE,设AF=BE=x,则EF=AF+AE=x+6,在Rt△BEF中,BE2+EF2=BF2,即,即x2+6x﹣40=0,解得:x1=4,x2=﹣10(舍去),∴.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的判定与性质、勾股定理等知识点.六、(本题满分12分)21.(12分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40人;(2)请你补全两个统计图,并观察补全后的统计图,写出一条你发现的结论;(3)若老师想从四次成绩总分前三名的一男两女中选拔两个人参加学校代表队,请你用画树状图或列表的方法求恰好选中两女的概率.【分析】(1)用第一次人数及其所占百分比可得总人数;(2)根据“优秀率=优秀人数÷总人数”求解可得;(3)列表表示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)该班总人数为28÷70%=40人,故答案为:40人;(2)第二次的优秀率为×100%=55%,第三次优秀的人数为40×80%=32人,补全图形如下:由折线统计图知第四次考的最好;(3)列表:共有6种等可能的结果,其中恰好选取两名女生的情况有2种,∴恰好选中两女的概率为=.【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.七、(本题满分12分)22.(12分)已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.【分析】(1)(﹣1,0)代入得0=1+2a+4a+2,,即可求解.(2)①整理得y=a(4﹣2x)+x2+2,即可求解;②函数顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,a=2时纵坐标有最大值6,即可求解.【解答】解:(1)(﹣1,0)代入得0=1+2a+4a+2,∴,∴y=x2+x,∴另一交点为(0,0).(2)①整理得y=a(4﹣2x)+x2+2,令x=2代入y=6,故定点为(2,6),②∵y=x2﹣2ax+4a+2=(x﹣a)2+(﹣a2+4a+2),顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,当a=2时,纵坐标有最大值6,此时x=2,y=6,顶点(2,6),故定点(2,6)是所有顶点中纵坐标最大的点.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,代表的意义及函数特征等.八、(本题满分14分)23.(14分)四边形ABCD中,∠ABC+∠ADC=180°,对角线BD平分∠ABC.(1)如图1,延长BC,AD交于点M.求证:①△MCD∽△MAB;②AD=CD;(2)如图2,连接AC交BD于点F,将△ABC沿着AC翻折得到△AEC,连接DE,若CE∥BD,BC=6,CD=4,求CF的长.【分析】(1)①证出∠MDC=∠ABC,再由∠M=∠M,即可得出△MCD∽△MAB;②连接AC,由相似三角形的性质得=,证△MBD∽△MAC,得∠MBD=∠MAC,证出∠DCA=∠MBD,则∠DCA=∠MAC,即可得出AD=CD;(2)连接BE交AC于点N,证△CEN≌△FBN(ASA),得EC=BF=6,证A、B、C、D四点共圆,由圆周角定理得∠DAC=∠DBC,证△DBC∽△DCF,得==,求出DB=8,进而得出CF=3.【解答】(1)证明:①∵∠ABC+∠ADC=180°,∠MDC+∠ADC=180°,∴∠MDC=∠ABC,又∵∠M=∠M,∴△MCD∽△MAB;②连接AC,如图1所示:∵由①可知,△MCD∽△MAB,∴=,∴=,又∵∠M=∠M,∴△MBD∽△MAC,∴∠MBD=∠MAC,∵∠ABC+∠ADC=180°,BD平分∠ABC,∴2∠MBD+∠ADC=180°,∵∠ADC+∠MAC+∠DCA=180°,∴∠DCA=∠MBD,∴∠DCA=∠MAC,∴AD=CD;(2)解:连接BE交AC于点N,如图2所示:∵将△ABC沿着AC翻折得到△AEC,∴点B与点E关于AC对称,EC=BC=6,∴BN=EN,∵CE∥BD,∴∠CEN=∠FBN,在△CEN和△FBN中,,∴△CEN≌△FBN(ASA),∴EC=BF=6,∵∠ABC+∠ADC=180°,∴A、B、C、D四点共圆,∴∠DAC=∠DBC,∵AD=CD,∴∠DAC=∠DCA,∴∠DBC=∠DCA,又∵∠BDC=∠BDC,∴△DBC∽△DCF,∴==,∴DB•DF=DC2,∴DB•(DB﹣BF)=DC2,∴DB2﹣6DB=16,解得:DB=8,或DB=﹣2(舍去),∵=,即=,解得:CF=3.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、翻折变换的性质、四点共圆、圆周角定理等知识;本题综合性强,熟练掌握相似三角形的判定与性质是解题的关键.。

2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)

2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)

2020年中考数学全真模拟试卷(安徽)(一)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的.1.[2020安徽中考原创]|﹣2020|=()A.0 B.﹣2020 C.2020 D.±2020【答案】C【解析】根据绝对值的定义进行填空即可.【解答】解:|﹣2020|=2020,故选:C.【点睛】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.[2019安庆市一模]下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=a6C.a8÷a2=a6D.(a+b)2=a2+b2【答案】C【解析】根据同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式分别求每个式子的值,再判断即可.【解答】解:A.a2•a3=a5,故本选项不符合题意;B.(﹣a2)3=﹣a6,故本选项不符合题意;C.a8÷a2=a6,故本选项符合题意;D.(a+b)2=a2+2ab+b2,故本选项不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.[2020安徽中考原创]数据显示,冠状肺炎疫情之前,我国口罩总体产能是每天2000多万只,产能为全球最高,占全球近半产能规模.而目前,我国口罩日产量已经达到1.16亿只,而这一产值的提高仅仅用了9天的时间!让全世界见证了中国速度和中国制造的价值所在!将数据1.16亿用科学计数法表示为( )A. 1.16×108B. 11.6×107C. 0.116×109D. 1.16×107【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:116000000=1.17×108.故选A.【点睛】本题考查了科学计数法,表示时关键要正确确定a的值以及n的值.4.[2019合肥包河区一模]从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.[2019合肥一六八中学一模]小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°【答案】B【解析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点睛】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.[2019安徽省芜湖二十九中一模]“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为() A.B.C.D.【答案】B【解析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下1 2 3 4 5 61 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点睛】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.[2019年福建省龙岩市武平县中考数学模拟试卷]如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为()A.1:2 B.1:3 C.1:4 D.1:5【答案】A【解析】由题意可得:S△AOB=S△COD,由点E是CD中点,可得S△ODE=S△COD=S△AOB.即可求△ODE与△AOB的面积比.【解答】∵四边形ABCD是平行四边形∴AO=CO,BO=DO∴S△AOB=S△BOC,S△BOC=S△COD.∴S△AOB=S△COD.∵点E是CD的中点∴S△ODE=S△COD=S△AOB.∴△ODE与△AOB的面积比为1:2故选:A.【点睛】本题主要考查了三角形的中线性质以及平行四边形的性质,能够熟练掌握是解题关键.8.[2019年海南省中考数学模拟试卷(一)]某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100 B.8l(1﹣x)2=100C.81(1+x%)2=100 D.81(1+2x)=100【答案】A【解析】由两次涨价的百分率都为x,结合文化衫原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.【解答】∵两次涨价的百分率都为x,∴81(1+x)2=100.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.[2019年湖北省武汉市武昌区中考数学模拟试卷]如图,在平面直角坐标系中,点P(1,4).Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴.y轴的垂线,垂足为点A.B;过点Q分别作x轴.y轴的垂线,垂足为点C.D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小【答案】A【解析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m.n表示,然后根据函数的性质判断.【解答】由题意得AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4).Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.故选:A.四边形ACQE【点睛】本题考查了反比例函数面积问题,正确的识图和运用k的几何意义是解题的关键.10.[安徽省二十所初中名校教育联盟中考数学一模]在Rt△ABC中,∠ACB=90°,AC=8,BC=3,点D是BC边上一动点,连接AD交以CD为直径的圆于点E.则线段BE长度的最小值为()A.B.1 C.D.【答案】B【解析】作AC为直径的圆,即可得当O.E.B三点共线时,BE是最短,也即求OB的长度即可求.【解答】解:如图,作以AC为直径的圆,圆心为O∵E点在以CD为直径的圆上∴∠CED=90°∴∠AEC=180°﹣∠CED=90°∴点E也在以AC为直径的圆上,若BE最短,则OB最短∵AC=8,∴OC=4∵BC=3,∠ACB=90°∴OB===5∵OE=OC=4∴BE=OB﹣OE=5﹣4=1故选:B.【点睛】此题主要考查勾股定理,圆的性质.利用构造法是解题的关键.二.填空题(本大题共4小题,每小题5分,满分20分)11.[安徽省合肥市瑶海区一模]分解因式:x3﹣4x2+4x=.【答案】x(x﹣2)2【解析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.[安徽省芜湖市一模]抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为______.【答案】y=(x+1)2【解析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(−1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(−1,0),所以新抛物线的解析式为y=(x+1)2.故答案为y=(x+1)2.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.[2019年甘肃省张掖市高台县中考数学模拟试卷]如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为.【答案】112°【解析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故答案为:112°.【点睛】本题主要考察了圆周角定理以及四边形内角和定理等基本性质,熟练掌握相关定理内容是解题关键. 14.[2019合肥一六八中学一模]如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE 折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.【答案】或.【解析】先根据AD=BC=4,DF=CD=AB=6,得出AD<DF,再分两种情况进行讨论:①当FA=FD时,过F作GH⊥AD与G,交BC于H,根据△DGF∽△PHF,得出=,即=,进而解得PF=﹣6,进而得出DP的长;②当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,根据勾股定理求得FG =,FH=6﹣,再根据△DFG∽△PFH,得出=,即=,进而解得PF=﹣6,即可得出PD的长.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2, ∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】本题是折叠问题,主要考查了相似三角形的判定与性质,勾股定理,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三.(本大题共2小题,每小题8分,满分16分)15.[2020安徽省原创]计算:sin30°+(2020)0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法则,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解:原式=+1﹣2+2=.【点睛】此题主要考查了实数的运算,正确化简各数是解题的关键.16.[2019年湖南省邵阳市洞口县中考数学模拟试卷(二)改编]《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】250步【解析】设走路快的人要走x步才能追上走路慢的人,根据走路快的人走100步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了步,根据题意,得x=+100,整理,得=.解得x=250.【点睛】本题考察《九章算术》一元一次方程的应用题.根据题意列出相关方程是解题关键.四.(本大题共2小题,每小题8分,共16分)17.[2019年江苏省盐城市东台市第四联盟中考数学模拟试卷]从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)【答案】(25+25)米【解析】作AD⊥BC于点D,根据正切的定义求出BD,根据正弦的定义求出AD,根据等腰直角三角形的性质求出CD,计算即可.【解答】解:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=50,则AD=25,BD=25,在Rt△ADC中,AD=25,CD=25,则BC=25+25.答:观察点B到花坛C的距离为(25+25)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角俯角的概念.熟记锐角三角函数的定义是解题的关键.18.[2019安徽省滁州市定远县一模]如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)【答案】(1)如图所示(2)如图所示(3)等腰直角三角形【解析】(1)利用点平移的坐标特征写出A1.B1.C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A.B.C的对应点A2.B2.C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【解答】解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.五.(本大题共2小题,每小题10分,共20分)19.[2090安徽省合肥市一六八中学一模]研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.【答案】(1)64;82(2)n(n+2)+1=n2+2n+1=(n+1)2(3)【解析】(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.(3)由(1+)(1+)=×××知,+…+(1+)=,利用此规律计算.【解答】解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.【点睛】本题考查了有理数的运算,是找规律题,找到+…+(1+)=××××××…××=是解题的关键.20.[沧州市2019-2020学年度第一学期期末教学质量评估]实践:如图△ABC是直角三角形,△ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应字母.(保留作图痕迹,不写作法)(1)作△BAC的平分线,交BC于点O.(2)以O为圆心,OC为半径作圆.综合运用:在你所作的图中,(1)AB与△O的位置关系是_____ .(直接写出答案)(2)若AC=5,BC=12,求△O 的半径.【答案】(1)如图所示;相切(2)10 3【解析】(1)运用尺规作角平分线即可;(2)根据折叠性质,利用勾股定理列方程即可.【解答】解:(1)△作△BAC的平分线,交BC于点O;的△以O为圆心,OC为半径作圆.AB与△O的位置关系是相切.(2)相切=13,△DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=103.答:△O的半径为103.【点睛】本题考察尺规作图以及圆的基本性质,切线判定,勾股定理,掌握平分线做法,熟练运用圆的基本性质和勾股定理的列方程计算是解题关键.六.(本大题共2小题,每小题12分,共24分)21.[2019年山东省滨州市中考数学模拟试卷]“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕.豆沙馅粽.红枣馅粽.蛋黄馅粽(以下分别用A.B.C.D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A.B.C.D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.【答案】(1)600(2)如图所示(3)3200人(4)14【解析】(1)利用频数÷百分比=总数,求得总人数;(2)根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.【解答】解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考察概率计算,树状图法和列表法需要熟练掌握.22.[2019年安徽省合肥市肥东县中考数学模拟试卷]在今年“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?并求出这个最大利润.【答案】(1)y=﹣3x+108(2)28元;192元【解析】(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:每天获得的利润为:P=(﹣3x+108)(x﹣20),转换为P=﹣3(x﹣28)2+192,于是求出每天获得的利润P最大时的销售价格.【解答】解:(1)根据题意,设y与x之间的函数解析式为y=kx+b,将x=24.y=36和x=29.y=21代入,得:,解得:,∴y与x之间的函数解析式为y=﹣3x+108;(2)P=(x﹣20)(﹣3x+108)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192,∵a=﹣3<0,∴当x=28时,P取得最大值,最大值为192,答:销售价格定为28元时,才能使每天获得的利润P最大,最大利润为192元.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,销售问题的数量关系利润=销售总额﹣成本费用﹣广告费用的运用,由函数值求自变量的取值范围的运用,解答时求出二次函数的解析式是关键.七.(本大题共1小题,每小题14分,共14分)23.[2019年湖北省天门市五校模拟]某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.【答案】(1)①②③④(2)证明如下(3)等腰直角三角形【解析】操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形的性质就可以得出结论;数学思考:作AB.AC的中点F.G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论;类比探究:作AB.AC的中点F.G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质可以得出△DFM≌△MGE,由全等三角形的性质就可以得出结论;【解答】解:●操作发现:∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵DF⊥AB于点F,EG⊥AC于点G,∴AF=BF=DF=AB,AG=GC=GE=AC.∵AB=AC,∴AF=AG=AB,故①正确;∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,∴△DBM≌△ECM(SAS),∴MD=ME.故②正确;连接AM,根据前面的证明可以得出将图形1,沿AM对折左右两部分能完全重合, ∴整个图形是轴对称图形,故③正确.∵AB=AC,BM=CM,∴AM⊥BC,∴∠AMB=∠AMC=90°,∵∠ADB=90°,∴四边形ADBM四点共圆,∴∠ADM=∠ABM,∵∠AHD=∠BHM,∴∠DAB=∠DMB,故④正确,故答案为:①②③④●数学思考:MD=ME,MD⊥ME.理由:作AB.AC的中点F.G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME,∠FDM=∠GME.∵MG∥AB,∴∠GMH=∠BHM.∵∠BHM=90°+∠FDM,∴∠BHM=90°+∠GME,∵∠BHM=∠DME+∠GME,∴∠DME+∠GME=90°+∠GME,即∠DME=90°,∴MD⊥ME.∴DM=ME,MD⊥ME;●类比探究:∵点M.F.G分别是BC.AB.AC的中点,∴MF∥AC,MF=AC,MG∥AB,MG=AB,∴四边形MFAG是平行四边形,∴MG=AF,MF=AG.∠AFM=∠AGM∵△ADB和△AEC是等腰直角三角形,∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°∴MF=EG,DF=MG,∠AFM﹣∠AFD=∠AGM﹣∠AGE, 即∠DFM=∠MGE.在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴MD=ME,∠MDF=∠EMG.∵MG∥AB,∴∠MHD=∠BFD=90°,∴∠HMD+∠MDF=90°,∴∠HMD+∠EMG=90°,即∠DME=90°,∴△DME为等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,中位线定理以及平行四边形的性质等,正确的作出辅助线是解题的关键.。

2020年安徽省合肥市庐江县中考数学模拟考试试卷(一)

2020年安徽省合肥市庐江县中考数学模拟考试试卷(一)

2020年安徽省合肥市庐江县中考数学模拟试卷(一)一.选择题(共10小题,满分40分,每小题4分)1.﹣2019的相反数等于()A.﹣2019B.C.D.20192.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为()A.1587.33×108B.1.58733×1013C.1.58733×1011D.1.58733×10123.如图所示的几何体,它的左视图是()A.B.C.D.4.下列从左到右的变形是因式分解的是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣6a+5=a(a﹣6)+5C.x2﹣y2+2x+1=(x+y)(x﹣y)+2x+1D.(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)25.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%6.设x1、x2是方程x2+4x﹣3=0的两个根,则+的值为()A.B.﹣C.3D.47.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5B.平均数是5C.众数是6D.方差是68.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°9.已知抛物线y=ax2+bx+c的部分图象如图所示,则当y>0时,x的取值范围是()A.x<3B.x>﹣1C.﹣1<x<3D.x<﹣1 或x>310.如图,在等腰Rt△ABC中,∠C=90°,直角边AC长与正方形MNPQ的边长均为2cm,CA与MN在直线l上.开始时A点与M点重合;让△ABC向右平移;直到C点与N点重合时为止.设△ABC与正方形MNPQ重叠部分(图中阴影部分)的面积为ycm2,MA 的长度为xcm,则y与x之间的函数关系大致是()A.B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.M是个位数字不为零的两位数,将M的个位数字与十位数字互换后,得另一个两位数N,若M﹣N恰是某正整数的立方,则这样的数共个.12.分解因式:m2﹣4m+4=.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.已知关于x的不等式mx+n<0的解集是x>4,点(1,n)在双曲线y=上,那么一次函数y=(n﹣1)x+m的图象不通过第象限.三.解答题(共2小题,满分16分,每小题8分)15.计算:2cos45°﹣(π﹣3)0+﹣|﹣1|.16.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?四.解答题(共2小题,满分16分,每小题8分)17.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt △A2B2C2.并计算在该旋转过程中Rt△A1B1C1扫过部分的面积.18.(1)观察一列有规律的数:,,,…,它的第n个数是(用含n的代数式表示).(2)求(1)中含n个数的和,比较它与1的大小.五.解答题(共2小题,满分20分,每小题10分)19.如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.20.已知△ABC,(1)用无刻度的直尺和圆规作△ABD,使∠ADB=∠ACB.且△ABD的面积为△ABC面积的一半,只需要画出一个△ABD即可(作图不必写作法,但要保留作图痕迹)(2)在△ABC中,若∠ACB=45°,AB=4,则△ABC面积的最大值是六.解答题(共1小题,满分12分,每小题12分)21.某校组织代表队参加市“与经典同行”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x <90;D组:90≤x<95;E组:95≤x<100,并绘制如下两幅不完整的统计图:请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,E组人数占参赛选手的百分比是多少?它对应的圆心角是多少度?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.某商店购进一批成本为每件30元的商品,商店按单价不低于成本价,且不高于50元销售.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润高于800元,请直接写出每天的销售量y(件)的取值范围.八.解答题(共1小题,满分14分,每小题14分)23.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数的概念解答即可.【解答】解:﹣2019的相反数等于2019,故选:D.【点评】本题考查了相反数,解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法将1587.33亿表示为1587.33×108=1.58733×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解答】解:如图所示的几何体的左视图为:.故选:D.【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.4.【分析】因式分解是指将一个多项式写成几个整式的乘积的形式,本题按照因式分解的定义及其分解方法,逐个选项分析即可.【解答】解:选项A:是整式的乘法运算,故A不正确;选项B:只将前两项提取公因式了,整体上并不是因式分解,故B不正确;选项C:仅将前两项利用平方差公式分解了,整体上并未分解,故C不正确;选项D:是将(x﹣y)当作一个整体,利用完全平方公式进行的因式分解,D正确.故选:D.【点评】本题考查了因式分解的定义及其分解方法,明白因式分解的定义及其分解方法,是解题的关键.5.【分析】设降价得百分率为x,根据降低率的公式a(1﹣x)2=b建立方程,求解即可.【解答】解:设降价的百分率为x根据题意可列方程为25(1﹣x)2=16解方程得,(舍)∴每次降价得百分率为20%故选:A.【点评】本题考查了一元二次方程实际应用问题关于增长率的类型问题,按照公式a(1﹣x)2=b对照参数位置代入值即可,公式的记忆与运用是本题的解题关键.6.【分析】由一元二次方程根与系数的关系,可以求得两根之积与两根之和,即可解答.【解答】解:因为x1、x2是方程x2+4x﹣3=0的两个根,所以x1+x2=﹣4,x1x2=﹣3.,故选:A.【点评】本题主要考查了一元二次方程根与系数的关系,比较简单.利用根与系数的关系,将代数式变形解答是解题的关键.7.【分析】根据平均数、中位数、众数和方差的概念,对选项一一分析,选择正确答案.【解答】解:A、根据按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=[4(4﹣6)2+5(5﹣6)2+7(6﹣6)2+3(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选:C.【点评】此题主要考查了平均数、中位数、众数和方差的概念.要掌握这些基本概念才能熟练解题.8.【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以∠A=∠COD=25°,然后根据三角形外角性质计算∠PCA的度数.【解答】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴∠A=∠COD=25°,∴∠PCA=∠A+∠D=25°+40°=65°.故选:C.【点评】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.9.【分析】根据函数图象中的数据,可以得到该函数的对称轴和与x轴的一个交点,从而可以得到另一个交点坐标,然后再根据函数图象即可得到当y>0时,x的取值范围.【解答】解:由函数图象可知,该函数的对称轴是直线x=1,与x轴的一个交点坐标为(3,0).则该函数与x轴的另一个交点为(﹣1,0),故当y>0时,x的取值范围是﹣1<x<3,故选:C.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.10.【分析】根据动点的运动过程确定每段阴影部分与x的关系类型,根据函数的性质确定选项.【解答】解:当x≤2cm时,重合部分是边长为x的等腰直角三角形,面积为:y=x2,是一个开口向上的二次函数;当x>2时,重合部分是直角梯形,面积为:y=2﹣(x﹣2)2,是一个开口向下的二次函数.故选:C.【点评】本题考查了动点问题的函数图象,解决本题的关键是确定每段阴影部分与x的关系类型,根据函数的性质确定选项.二.填空题(共4小题,满分20分,每小题5分)11.【分析】设两位数M=10a+b,则N=10b+a,并且a、b正整数,且1≤a,b≤9,那么得到M﹣N=(10a+b)﹣(10b+a)=9(a﹣b)=c3,进一步得到c3<100,所以c≤4,而且c3是9的倍数,所以c=3,然后由此得到a﹣b=3,接着就可以解决题目问题.【解答】解:设两位数M=10a+b,则N=10b+a,由a、b正整数,且1≤a,b≤9,∴M﹣N=(10a+b)﹣(10b+a)=9(a﹣b)=c3,又c是某正整数,显然c3<100,∴c≤4,而且c3是9的倍数,所以c=3,即a﹣b=3,∴满足条件的两位数有41、52、63、74、85、96共6个.故答案为:6.【点评】此题他主要考查了立方根的定义和性质,难度比较大,要求学生有比较好的分析问题和解决问题的能力才能熟练地解决题目的问题.12.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(m﹣2)2,故答案为:(m﹣2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】由不等式和双曲线y=可知:k=n﹣1>0,b=m<0,所以函数y=(n﹣1)x+m的图象经过一、三、四象限.【解答】解:∵不等式mx+n<0的解集是:x>4.∴m<0,n>0.∵点(1,n)在双曲线y=上,∴n=2.∴k=n﹣1>0,b=m<0.∴函数y=(n﹣1)x+m的图象经过一、三、四象限.故答案为:二.【点评】在y=kx+b中,k的正负决定直线的升降;b的正负决定直线与y轴交点的位置是在y轴的正方向上还是负方向上.三.解答题(共2小题,满分16分,每小题8分)15.【分析】首先代入特殊角的三角函数值,再计算零次幂、化简二次根式和绝对值,然后再计算加减即可.【解答】解:原式=2×﹣1+﹣(﹣1),=﹣1+﹣(﹣1),=.【点评】此题主要考查了实数运算,关键是掌握特殊角的三角函数值、绝对值的性质、零次幂计算公式.16.【分析】设小长方形的长为x米,宽为y米,由大长方形的周长及上下两边相等,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总价=单价×长方形的面积即可求出结论.【解答】解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出A1C1的长度,然后根据弧长公式列式计算即可得解.【解答】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标为(1,0);(2)如图所示,△A2B2C2即为所求作的三角形,根据勾股定理,可得,Rt△A1B1C1扫过的面积.【点评】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.18.【分析】(1)由意义可知:分子都是1,分母可以拆成两个连续自然数的乘积,由此得出第n个数是;(2)把分数拆分,进一步抵消得出答案即可.【解答】解:(1)数列,,,…,它的第n个数是;(2)++++…+=1﹣+﹣+﹣+…+﹣=1﹣=<1.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律,解决问题.五.解答题(共2小题,满分20分,每小题10分)19.【分析】过B作BE⊥AC于E,解直角三角形即可得到结论.【解答】解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB =90,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=90,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C两港之间的距离为(90+30)km.【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.20.【分析】(1)先作出△ABC的外接圆,再作AB边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB为弦且AB所对圆心角为90°的⊙O,则垂直于弦AB的直径与优弧的交点即为使三角形面积最大的点C,根据作图得出AB边上的高可得答案.【解答】解:(1)如图1所示,∠ABD即为所求.(2)如图2所示,作以AB为弦,且AB所对圆心角为90°的⊙O,∵C点轨迹为圆上不与AB重合的任一点,∴当C在C'位置上时,高最长,故面积最大,∵AB=4,∴AP=BP=OP=2,则OC=OA=2,∴PC=2+2,∴△ABC的面积为•AB•PC=×4×(2+2)=4+4,故答案为:4+4.【点评】本题主要考查作图﹣复杂作图,解题的关键判断出点C是以AB为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.六.解答题(共1小题,满分12分,每小题12分)21.【分析】(1)用A组类的人数除以它所占的百分比得到调查的总人数,再用总人数乘以B组所占的百分比求出B组的人数,从而补全统计图;(2)用E组的人数除以总人数即可求出E组人数占参赛选手的百分比,再用360°乘以E组所占的百分比得到扇形统计图中“E”所在扇形圆心角的度数;(3)通过树状图展示12种等可能的结果数,找出恰好选中两名女生的结果数,然后根据概率公式求解.【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人),频数分布直方图补充如下:故答案为:40;(2)E组人数占参赛选手的百分比是:×100%=15%;E组对应的圆心角度数是:360°×15%=54°;(3)根据题意画树状图如下:由上图可以看出,所有可能出现的结果有l2种,这些结果出现的可能性相等,选中两名女生的结果有2种,则选中两名女生的概率是==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)>800,解得:40<x<70,∵30≤x≤50 解得:40<x≤50,当x=40时,y=﹣2×40+160=80,当x=50时,y=﹣2×50+160=60,∴60≤y<80,∴每天的销售量应为不少于60件而少于80件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)①由正方形的性质得出∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,即∠ADE=∠CDG,由SAS证明△ADE≌△CDG得出∠A=∠DCG=90°,即可得出结论;②过点N作NP∥DE,通过全等三角形的性质和相似三角形的性质分别求出GM=3MF,PN=MF,即可求解;(2)利用勾股定理可求DE,GN的长,即可求解.【解答】证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===【点评】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键.。

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)合肥市某日的气温是2C ~6C ︒︒-,则该日的温差是( ) A .8C ︒B .5C ︒C .2C ︒D .8C ︒-2.(4分)计算23a a -g 的结果是( ) A .5aB .5a -C .6a -D .6a3.(4分)在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( )A .B .C .D .4.(4分)太阳中心的温度高达19200000C ︒,有科学记数法将19200000C ︒可表示为( ) A .61.9210⨯B .71.9210⨯C .619.210⨯D .719.210⨯5.(4分)如图,已知//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若148∠=︒,则2∠的度数是( )A .64︒B .65︒C .66︒D .67︒6.(4分)不等式组2(3)254x x +⎧⎨->⎩…的解集是( )A .21x -<„B .21x -<„C .12x -<„D .12x -<„7.(4分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是( ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6︒D .估计该市这一年(365天)达到优和良的总天数不多于290天8.(4分)某商品原价300元,连续两次降价%a 后售价为260元,下面所列方程正确的是()A .2300(1%)260a +=B .2300(1%)260a -=C .300(12%)260a -=D .2300(1%)260a -=9.(4分)若函数y ax c =-与函数by x=的图象如右图所示,则函数2y ax bx c =++的大致图象为( )A .B .C .D .10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,23BC =,Q 为AC 上的动点,P 为Rt ABC ∆内一动点,且满足120APB ∠=︒,若D 为BC 的中点,则PQ DQ +的最小值是( )A .434-B .43C .4D .434+二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)要使式子1a +有意义,则a 的取值范围是 . 12.(5分)分解因式:324a ab -= .13.(5分)如图,一个边长为4cm 的等边三角形ABC 的高与O e 的直径相等.O e 与BC 相切于点C ,与AC 相交于点E ,则劣弧¶CE的长= .14.(5分)对于一个函数,如果它的自变量x 与函数值y 满足:当11x -剟时,11y -剟,则称这个函数为“闭函数”.例如:y x =,y x =-均是“闭函数”.已知2(0)y ax bx c a =++≠是“闭函数”,且抛物线经过点(1,1)A -和点(1,1)B -,则a 的取值范围是 . 三、(本大题共2小题,每小题8分,满分16分) 15.(802019219(3)|5|(1)()2π-+---+-+.16.(8分)先化简,再求值:23()111x x xx x x -÷+--,其中2x =-. 四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC ∆为格点三角形(顶点在网格线的交点).(1)将ABC ∆向上平移2个单位得到△111A B C ,请画出△111A B C ;(2)将ABC ∆绕着某点O 逆时针方向旋转90︒后,得到△222A B C ,请画出旋转中心O ,并直接写出在此旋转过程中,线段AB 扫过的区域的面积.18.(8分)观察以下等式: 第1个等式:11111122-+=⨯,第2个等式:11212233-+=⨯, 第3个等式:11313344-+=⨯,第4个等式:11414455-+=⨯, ⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式:;(2)写出你猜想的第(n n 为正整数)个等式:(用含n 的等式表示),并证明. 五、(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量山坡上的电线杆PQ 的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45︒,信号塔底端点Q 的仰角为30︒,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60︒,求信号塔PQ 得高度.20.(10分)如图,点P在Oe外,PC是Oe的切线,C为切点,直线PO与Oe相交于点A、B.(1)若30A∠=︒,求证:3PA PB=;(2)小明发现,A∠在一定范围内变化时,始终有1(90)2BCP P∠=︒-∠成立.请你写出推理过程.六、(本题满分12分)21.(12分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.七、(本题满分12分)22.(12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 八、(本题满分14分)23.(14分)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,ABC ∆中,AC AB >,DE 是ABC ∆在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC b =,AB c =. ①求证:DF EF =;②若6b =,4c =,求CG 的长度; (2)若题(1)中,BDH EGH S S ∆∆=,求bc的值.2020年安徽省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)合肥市某日的气温是2C ~6C ︒︒-,则该日的温差是( ) A .8C ︒B .5C ︒C .2C ︒D .8C ︒-【解答】解:6(2)8()C --=︒. 故选:A .2.(4分)计算23a a -g 的结果是( ) A .5aB .5a -C .6a -D .6a【解答】解:235a a a -=-g 故选:B .3.(4分)在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( )A .B .C .D .【解答】解:“阳马”的俯视图是一个矩形,还有一条看得见的棱, 故选:A .4.(4分)太阳中心的温度高达19200000C ︒,有科学记数法将19200000C ︒可表示为( ) A .61.9210⨯B .71.9210⨯C .619.210⨯D .719.210⨯【解答】解:将19200000用科学记数法表示为:71.9210⨯. 故选:B .5.(4分)如图,已知//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若148∠=︒,则2∠的度数是( )A .64︒B .65︒C .66︒D .67︒【解答】解://AB CD Q ,180118048132BEF ∴∠=︒-∠=︒-︒=︒, EG Q 平分BEF ∠, 132266BEG ∴∠=︒÷=︒, 266BEG ∴∠=∠=︒.故选:C .6.(4分)不等式组2(3)254x x +⎧⎨->⎩…的解集是( )A .21x -<„B .21x -<„C .12x -<„D .12x -<„【解答】解:由①得:2x -… 由②得:1x <,所以不等式组的解集为:21x -<„. 故选:A .7.(4分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是( ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6︒D .估计该市这一年(365天)达到优和良的总天数不多于290天 【解答】解:A 、被抽查的天数是:3264%50÷=(天),则命题正确;B 、空气轻度微污染的天数是:508323115-----=,则所占的比例是:5100%10%50⨯=,则命题正确;C 、表示优的扇形统计图的圆心角是:836057.650︒⨯=︒,则命题正确; D 、一年中达到优和良的天数是83236529250+⨯=(天),则命题错误. 故选:D .8.(4分)某商品原价300元,连续两次降价%a 后售价为260元,下面所列方程正确的是()A .2300(1%)260a +=B .2300(1%)260a -=C .300(12%)260a -=D .2300(1%)260a -=【解答】解:当商品第一次降价%a 时,其售价为300300%300(1%)a a -=-; 当商品第二次降价%a 后,其售价为2300(1%)300(1%)%300(1%)a a a a ---=-.2300(1%)260a ∴-=. 故选:D .9.(4分)若函数y ax c =-与函数by x=的图象如右图所示,则函数2y ax bx c =++的大致图象为( )A .B .C .D .【解答】解:Q 一次函数的图象经过一、三、四象限, 0a ∴>,0c >,∴二次函数的图象开口向上,淘汰A 、C 选项;Q 反比例函数的图象位于二、四象限,0b ∴<,∴对称轴02bx a=->, ∴对称轴位于y 轴的右侧.故选:D .10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,23BC =,Q 为AC 上的动点,P 为Rt ABC ∆内一动点,且满足120APB ∠=︒,若D 为BC 的中点,则PQ DQ +的最小值是( )A 434B 43C .4D 434【解答】解:如图以AB 为边,向左边作等边ABE ∆,作ABE ∆的外接圆O e ,连接OB ,则点P 在O e 上.在Rt ABC ∆中,90ACB ∠=︒Q ,60ABC ∠=︒,23BC = 43AB ∴=则易知4OB =,OB BC ⊥,作点D 关于AC 的对称点D ',连接OD ',OP ,PD ',PD '交AC 于Q ,则PQ QD PQ QD PD +=+'=',PD OD OP ''-Q …,4OP OB ==,224(33)43OD '+434PD ∴'…,PQ DQ ∴+434,故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(51a +a 的取值范围是 1a -…且1a ≠ . 【解答】解:由题意,得10a +…,10a -≠,解得1a -…且1a ≠, 故答案为:1a -…且1a ≠.12.(5分)分解因式:324a ab -= (2)(2)a a b a b +- . 【解答】解:324a ab -22(4)a a b =- (2)(2)a a b a b =+-.故答案为:(2)(2)a a b a b +-.13.(5分)如图,一个边长为4cm 的等边三角形ABC 的高与O e 的直径相等.O e 与BC 相切于点C ,与AC 相交于点E ,则劣弧¶CE的长= 233cm π .【解答】解:连接OC 、OE ,作AD BC ⊥于D ,作OF AC ⊥于F , 在Rt ABD ∆中,sin 23AD AB B ==g , 3OC OE ∴==,BC Q 为O e 的切线, OC BC ∴⊥,906030OCE ∴∠=︒-︒=︒, OC OE =Q , 120COE ∴∠=︒,∴劣弧¶CE的长120323ππ⨯==, 故答案为:23cm π.14.(5分)对于一个函数,如果它的自变量x 与函数值y 满足:当11x -剟时,11y -剟,则称这个函数为“闭函数”.例如:y x =,y x =-均是“闭函数”.已知2(0)y ax bx c a =++≠是“闭函数”,且抛物线经过点(1,1)A -和点(1,1)B -,则a 的取值范围是 102a -<„或102a <„. 【解答】解:Q 抛物线2(0)y ax bx c a =++≠经过点(1,1)A -和点(1,1)B -, 1a b c ∴++=-①1a b c -+=②①+②得:0a c += 即a 与c 互为相反数, ①-②得:1b =-;所以抛物线表达式为2(0)y ax x a a =--≠,∴对称轴为12x a=, 当0a <时,抛物线开口向下,且102x a=<, Q 抛物线2(0)y ax x a a =--≠经过点(1,1)A -和点(1,1)B -,画图可知,当112a -„时符合题意,此时102a -<„,当1102a-<<时,图象不符合11y -剟的要求,舍去 同理,当0a >时,抛物线开口向上,且102x a=>, 画图可知,当112a …时符合题意,此时102a <„,当1012a<<时,图象不符合11y -剟的要求,舍去, 综上所述:a 的取值范围是102a -<„或102a <„,故答案为:102a -<„或102a <„.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:02019219(3)|5|(1)()2π-+---+-+.【解答】解:原式315142=+--+=. 16.(8分)先化简,再求值:23()111x x xx x x -÷+--,其中2x =-. 【解答】解:原式2233(1)(1)(1)(1)x x x x x x x x x---+-=+-g24x =--,当2x =-时,原式0=.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC ∆为格点三角形(顶点在网格线的交点).(1)将ABC ∆向上平移2个单位得到△111A B C ,请画出△111A B C ;(2)将ABC ∆绕着某点O 逆时针方向旋转90︒后,得到△222A B C ,请画出旋转中心O ,并直接写出在此旋转过程中,线段AB 扫过的区域的面积.【解答】解:(1)如图所示:△111A B C 即为所求;(2)如图所示:点O 即为所求;线段AB 22222290(61)90(42)174πππ++=g g g g .18.(8分)观察以下等式: 第1个等式:11111122-+=⨯,第2个等式:11212233-+=⨯, 第3个等式:11313344-+=⨯,第4个等式:11414455-+=⨯, ⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式:;(2)写出你猜想的第(n n 为正整数)个等式:(用含n 的等式表示),并证明. 【解答】解:(1)第5个等式为:11515566-+=⨯;(2)第n 个等式为:111(1)1nn n n n -+=++;()()()()()()2211:1111111n n n n n n n n n n n n n n n n +=-+++++=++===+证明左边右边∴等式成立;五、(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量山坡上的电线杆PQ 的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45︒,信号塔底端点Q 的仰角为30︒,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60︒,求信号塔PQ得高度.【解答】解:延长PQ 交直线AB 于点M ,连接AQ ,如图所示: 则90PMA ∠=︒, 设PM 的长为x 米,在Rt PAM ∆中,45PAM ∠=︒, AM PM x ∴==米, 100BM x ∴=-(米),在Rt PBM ∆中,tan PMPBM BM∠=Q , tan 603100xx ∴︒==-,解得:50(33)x =+, 在Rt QAM ∆中,tan QMQAM AM∠=Q , tan 50(33)tan 3050(31)QM AM QAM ∴=∠=+⨯︒=+g (米),100PQ PM QM ∴=-=(米);答:信号塔PQ 的高度约为100米.20.(10分)如图,点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B .(1)若30A ∠=︒,求证:3PA PB =;(2)小明发现,A ∠在一定范围内变化时,始终有1(90)2BCP P ∠=︒-∠成立.请你写出推理过程.【解答】解:(1)AB Q 是直径 90ACB ∴∠=︒, 30A ∠=︒Q , 2AB BC ∴= PC Q 是O e 切线 30BCP A ∴∠=∠=︒, 30P ∴∠=︒, PB BC ∴=,12BC AB =, 3PA PB ∴=(2)Q 点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B , BCP A ∴∠=∠,180A P ACB BCP ∠+∠+∠+∠=︒Q ,且90ACB ∠=︒, 290BCP P ∴∠=︒-∠,1(90)2BCP P ∴∠=︒-∠六、(本题满分12分)21.(12分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题. (1)该记者本次一共调査了 200 名行人; (2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【解答】解:(1)21%200÷=(名).故答案为200;(2)④所在扇形的圆心角70360126 200⨯︒=︒,③的人数2009%18⨯=人,②的人数20018270110---=人,第②种情况110人,第③种情况18,补全图形如图:.(3)1101120020p==,他属于第②种情况的概率为11 20.七、(本题满分12分)22.(12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 【解答】解:(1)当每吨售价是240元时, 此时的月销售量为:260240457.56010-+⨯=;(2)设当售价定为每吨x 元时, 由题意,可列方程260(100)(457.5)900010xx --+⨯=. 化简得2420440000x x -+=. 解得1200x =,2220x =.当售价定为每吨200元时,销量更大, 所以售价应定为每吨200元.(3)我认为,小静说的不对. Q 由(2)知,2420440000x x -+=,∴当月利润最大时,x 为210元.理由:方法一:当月利润最大时,x 为210元, 而对于月销售额22603(457.5)(160)19200104x W x x -=+⨯=--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元; 而当x 为200元时,月销售额为18000元.17325Q 元18000<元,∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分) 八、(本题满分14分)23.(14分)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,ABC ∆中,AC AB >,DE 是ABC ∆在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC b =,AB c =. ①求证:DF EF =;②若6b =,4c =,求CG 的长度; (2)若题(1)中,BDH EGH S S ∆∆=,求bc的值.【解答】(1)①证明:F Q 为AC 中点,DE 是ABC ∆在BC 边上的中分线段,DF ∴是CAB ∆的中位线,1122DF AB c ∴==,1122AF AC b ==,1()2CE b c =+,11()()22AE b CE b b c b c ∴=-=-+=-,111()222EF AF AE b b c c ∴=-=--=,DF EF ∴=;②解:过点A 作AP BG ⊥于P ,如图1所示:DF Q 是CAB ∆的中位线,//DF AB ∴, DFC BAC ∴∠=∠,DFC DEF EDF ∠=∠+∠Q ,EF DF =,DEF EDF ∴∠=∠,2BAP PAC DEF ∴∠+∠=∠, ED BG ⊥Q ,AP BG ⊥, //DE AP ∴, PAC DEF ∴∠=∠, BAP DEF PAC ∴∠=∠=∠, AP BG ⊥Q ,第21页(共21页)4AB AG ∴==,642CG AC AG ∴=-=-=;(2)解:连接BE 、DG ,如图2所示: BDH EGH S S ∆∆=Q ,BDG DEG S S ∆∆∴=,//BE DG ∴,//DF AB Q ,ABE FDG ∴∆∆∽, ∴21AB AE DF FG ==,1111()()2224FG AE b c b c ∴==⨯-=-, AB AG c ==Q ,CG b c ∴=-,11()()24CF b FG CG b c b c ∴==+=-+-, 35b c ∴=,∴53b c =.。

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)

2020年中考数学一模试卷一、选择题.1.﹣2的绝对值是()A.﹣2B.2C.﹣D.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.3.如图所示的几何体的左视图为()A.B.C.D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346858.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=.12.函数y=中,自变量x的取值范围是.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.解:|﹣2|=2.故选:B.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.3.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:=0.00002=2×10﹣5.故选:D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.9.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).12.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为40°或100°或70°.【分析】如图1,连接AP,根据直角三角形的判定和性质得到∠APB=90°,当BC=BP时,得到∠BCP=∠BPC,推出AB垂直平分PC,求得∠ABP=∠ABC=25°,于是得到θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,根据线段垂直平分线的性质得到CH垂直平分PB,求得∠CHB=90°,根据等腰三角形的性质得到θ=2×50°=100°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,推出PG垂直平分BC,得到∠BGO=90°,根据三角形的内角和得到θ=∠BOG =70°.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=4×+1﹣3+1=﹣+2.16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为(﹣2,﹣2)或(﹣6,0).【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可或作C1B2和B1C2的垂直平分线,它们的交点旋转中心.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).线段B2C2可以看成是线段C1B1绕着点(﹣6,0)顺时针旋转90°得到,此时P点的坐标为(﹣6,0).故答案为(﹣2,﹣2)或(﹣6,0).四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.【分析】(1)联立两直线解析式得到关于x、y的方程组,解之即可得;(2)求得直线l2:y2=x+3与x轴的交点,然后根据图象即可求得;(3)根据题意表示出E、F的坐标,得到关于m的方程,解之可得答案.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】作DE⊥AB于点E,作CF⊥DE于点F,由tan37°=≈0.75求得AE=40.2,由AB=57知BE=17.3,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF =45°知DF=CF=17.4,从而得BC=EF=30﹣17=13.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40.2∵AB=57,∴BE=17.3∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17.4∴BC=EF=30﹣17=13.5答:教学楼BC高约13米.五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.【分析】(1)连接OP,构造全等三角形(△POA≌△POC),由该全等三角形的性质证得结论;(2)设∠A=∠C=x°,利用圆周角定理和三角形内角和定理列出方程,由方程思想解答.【解答】(1)证明:如图,连接OP.∵=,∴PA=PC.在△POA与△POC中,.∴△POA≌△POC(SSS).∴∠A=∠C;(2)设∠A=∠C=x°,则∠POB=2∠A=2x°.∵OD=DC,∴∠DOC=∠C=x°.在△POC中,x+3x+x=180°x=36.∴∠A=36°.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n个数和公式可得结论;(2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n个数的立方和等于前n个数的和的平方,根据(1)中的结论可解答.解:(1)1+2+3+…+n=;故答案为:;(2)第1列所有数字之和=1+2+3+…+n=,第2列所有数字之和=2+4+6+…+2n=2(1+2+3+…+n)=,…第n列所有数字之和=n(1+2+3+…+n)=,∴格中所有数字之和为:++…+===;故答案为:;(3)∵13=12,13+23=9=(1+2)2,13+23+33=36=(1+2+3)2,…∴13+23+33+ (1003)=(1+2+3+…+100)2,=50502,=25502500.七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020学年安徽省中考第一次调研模拟数学试题及参考答案

2020学年安徽省中考第一次调研模拟数学试题及参考答案

2020学年安徽省中考第一次调研模拟数学试题1.如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF =D .:1:2AB CD =2.下列命题中,正确的是( ) A .两个直角三角形一定相似 B .两个矩形一定相似C .两个等边三角形一定相似D .两个菱形一定相似3.已知二次函数y =ax 2﹣1的图象经过点(1,﹣2),那么a 的值为( )A .a =﹣2B .a =2C .a =1D .a =﹣14.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12CD 5. 设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r ()=()B . m n a ma na ++r r r ()=C .m a b ma mb +r r r r (+)=D .若0ma =r r ,那么0a =r r6.若⊙A 的半径为5,圆心A 的坐标是(1,2),点P 的坐标是(5,2),那么点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不能确定 7.二次函数21y x =-图像的顶点坐标是_________.8.将二次函数y =2x 2的图象向右平移3个单位,所得图象的对称轴为_________.9.请写出一个开口向下,且经过点(0,2)的二次函数解析式_________.10.若2||3a =r ,那么3||a =r_________.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10 cm ,那么地图上距离为4.5 cm 的两地之间的实际距离为__________千米.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于_________. 13.Rt △ABC 中,90C ∠=︒,2AB AC =,那么sin B =_________.14.直角三角形的重心到直角顶点的距离为4cm ,那么该直角三角形的斜边长为_________.15.如图,四边形ABCD 中,AB ∥CD ,点E 在CB 延长线上,ABD CEA ∠=∠,若3AE=2BD ,BE=1,那么DC=_________.16.⊙O 的直径6AB =,C 在AB 延长线上,2BC =,若⊙C 与⊙O 有公共点,那么⊙C 的半径r 的取值范围是_________.17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.18.如图,Rt △ABC 中,90ACB ∠=︒,4AC =,5BC =,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C 落在C '处,连接AC ',若AC '∥BC ,那么CP 的长为_________.19.计算:sin30tan30cos60cot30︒⋅︒+︒⋅︒.20.已知:如图,在△ABC 中,AB =AC ,点E 、F 在边BC 上,∠EAF =∠B .求证:BF•CE =AB 2.21.如图,已知,△ABC 中,点D 、E 分别在AB 、AC 上,9AB =,6AC =,2AD =,3AE =(1)求DE BC 的值; (2)设AB a =u u u r r ,AC b =u u u r r ,求DE u u u r .(用含a r 、b r 的式子表示)22.如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.如图,已知,二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C ,OCA ∠的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ',若ABP BCP S S ''=V V ,求m 的值.25.如图,已知:梯形ABCD 中,∠ABC =90°,∠DAB =45°,AB ∥DC ,DC =3,AB =5,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 于射线CB 交于点F .(1)若AP 13=,求DE 的长;(2)联结CP ,若CP =EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似?若相似,求FG 的值;若不相似,请说明理由.2020学年安徽省中考第一次调研模拟数学试题参考答案1.A【解析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质对各选项进行判断.∵AB∥CD∥EF,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:CE=1:3,CE:EA=2:3.故选:A.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.2.C【解析】利用反例可分析排除判断.等腰直角三角形和非等腰直角三角形显然不相似,故A错误;正方形和长方形都是矩形,显然不相似,故B错误;内角分别是60°,120°,60°,120°的菱形和内角分别是80°,100°,80°,100°的菱形显然不相似,故D错误;故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.D【解析】将点带入函数表达式即可求得a的值.将点(1,-2)代入二次函数y=ax2-1得a-1=-2解得a=-1.故答案为D.【点睛】本题考查的知识点是二次函数图像上点的坐标特征,解题关键是熟记二次函数图像点的坐标特征.4.B【解析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.5.D【解析】空间向量的线性运算的理(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v 是有方向的,而0没有,所以错误.∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a v =0v ,则m=0或a v =0v.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.6.A【解析】先根据两点间的距离公式计算出PA 的长,然后比较PA 与半径的大小,再根据点与圆的关系的判定方法进行判断.∵圆心A 的坐标是(1,2),点P 的坐标是(5,2),∴<5,∴点P 在⊙A 内,故选A .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.也考查了坐标与图形性质.7.(0,-1)【解析】二次函数的性质类型的题目,根据题意,把二次函数的一般形式转化为顶点式解析式; 再根据顶点式解析式即可求出二次函数的顶点坐标.因为y =x 2-1=(x -0)2-1,即当x =0时,y =-1,所以二次函数y =x 2-1的顶点坐标为(0,-1).答案为:(0,-1).【点睛】本题考查的知识点是二次函数的性质,解题关键是要把二次函数解析式转化为顶点式. 8.直线x =3【解析】先利用顶点式得到y=2x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后的对应点的坐标为(3,0),然后根据顶点式即可得到平移后的抛物线解析式,再将其改写成顶点式即可得.二次函数y=2x 2的顶点坐标为(0,0),点(0,0)沿y 轴向右平移3个单位所得对应点的坐标为(3,0),所以所得图象的函数解析式y=2(x−3)2 ,故对称轴为:直线x=3.故答案为直线x=3.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是将函数图像的几何变换转化为点的变换.9.22y x =-+(答案不唯一)【解析】根据二次函数开口向下,所写出的二次函数a <0即可.二次函数y=-x 2+2开口向下,且经过(0,2).故答案为:y=-x 2+2(答案不唯一).【点睛】本题考查的知识点是二次函数的性质,解题关键是利用二次函数图象开口方向和二次函数图象上点的坐标特征.10.92【解析】 先求出a v 的值,随之即可解答. 已知23a =v, 可得a v =32, 所以3a v =3·32=92. 【点睛】读懂题目求出关键值是解答本题的关键.11.225【解析】根据地图上距离的比值等于实际距离的比值即可求解.设A、B两地的实际距离为x千米.根据题意得到:105004.5x.解得x=225千米.【点睛】本题主要考查了地图上距离的比值等于实际距离的比值.12.1:16【解析】根据相似三角形的性质即可得出结论.∵两个相似三角形的周长之比是1:4,∴其相似比等于1:4,∴它们的面积比是21:24=1:16,故答案为1:16.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.13.1 2【解析】在直角△ABC中,AB2=AC2+BC2,且AB=2AC,利用勾股定理即可解答. ∵△ABC为直角三角形,且∠C=90°,∴AB2=AC2+BC2,∵AB=2AC,∴sin B=ACAB=12.【点睛】掌握勾股定理是解答本题的关键.14.12cm【解析】根据三角形重心的性质可求得这条中线的长,再根据三角形斜边上的中线等于斜边的一半即可求得斜边的长.重心到顶点的距离与重心到对边中点的距离之比为2∶1, 又因为三角形的重心到直角顶点的距离为4, 可得这条中线长6cm(斜边上的中线). 即斜边长12cm. 【点睛】此题主要考查直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 15.32【解析】根据平行线定理和三角形相似相关知识即可解答. 由题知AB ∥CD ,可得∠ABE=∠DCB ,∠ABD=∠BDC , 又因为ABD CEA ∠∠=,所以∠CEA=∠BDC , 根据∠CEA=∠BDC ,∠ABE=∠DCB ,可判定△AEB ∽△BDC , 因为3AE=2BD ,BE=1, 可得3BE=2DC ,解得DC=32. 【点睛】掌握平行线定理和三角形相似相关知识是解答本题的关键. 16.28r ≤≤ 【解析】利用⊙C 与⊙O 相切或相交,即可确定r 的范围. ∵⊙O 的直径AB=6,C 在AB 延长线上,BC=2, ∴CA=8,∵⊙C 与⊙O 有公共点,即⊙C 与⊙O 相切或相交, ∴r=2或r=8或2<r <8, 即2≤r≤8. 故答案为:2≤r≤8. 【点睛】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R >r);⑤两圆内含⇔d<R-r(R>r).17.15或45【解析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为15;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为4 5 .【点睛】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.18.2.5【解析】如图所示,过点C′作C′D⊥AC,垂足为D,先由勾股定理求出BD的长,进而可得AC′的长,设CP=x,则AP=4-x,C′P=CP=x,根据勾股定理列方程解出x的值即可.如图所示,过点C′作C′D⊥AC,垂足为D.由题意可知BC=BC′=5,C′D=AC=4,∴BD3,AC′=CD=BC-BD=5-3=2.设CP=x,则AP=4-x,根据翻折的性质易知,C′P=CP=x,根据勾股定理有x2=22+(4-x)2,解得x=2.5.【点睛】本题主要考查翻折的性质和勾股定理,熟练掌握翻折的性质是解答本题的关键.19.3【解析】根据30°角和60°角的三角函数值进行计算即可.sin30°∙tan30°+cos60°∙cot30°=11×2323=. 【点睛】本题主要考查特殊角的三角函数值,熟记特殊角的三角函数值是解答本题的关键. 20.证明见解析. 【解析】利用两角对应成比例可得△ABF ∽△ECA ,对应边成比例可得相应的比例式,整理可得所求的乘积式.证明:∵∠AEC =∠B+∠BAE =∠EAF+∠BAE =∠BAF , 又∵AB =AC , ∴∠B =∠C , ∴△ABF ∽△ECA , ∴AB :CE =BF :AC , ∴BF•EC =AB•AC =AB 2. 【点睛】本题考查的知识点是相似三角形的判定与性质, 等腰三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质, 等腰三角形的性质. 21.(1)13;(2)1229b a v v- 【解析】(1)根据两组对应边成比例且对应边的夹角相等证△ADE ∽△ACB ,即可得到DEBC;(2)根据对应边成比例,进行计算即可. (1)∵13AD AE AC AB ==,且∠A =∠A , ∴△ADE ∽△ACB , ∴DE BC =13. (2)∵AB =9,AD =2,AC =6,AE =3,∴2192AD a AE b u u u v u u u v vv =,=,∴1229DE AE AD b au u u v u u u v u u u v v v =-=-,【点睛】本题主要考查相似三角形的判定及性质和向量,熟练掌握有关知识点并灵活应用是解答的关键.22.(1)94;(2)12.【解析】(1)由∠ACB=90°,AD⊥AB,易证:△ABC∽△F AC,得:AC BCCF AC=,即可得到答案;(2)过点C作CH⊥AB于点H,根据面积法,可得:CH125=,进而得到:AH95=,EH6=5,根据正切三角函数的定义,即可求解.(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴AC BCCF AC=,即343CF=,解得:CF94 =;(2)如图,过点C作CH⊥AB于点H,则AD∥CH,即:∠D=∠ECH,∵AC=3,BC=4,∴AB=5,∴CH125 AC BCAB⋅==,∴AH95==,EH=AE﹣AH96355=-=,∴tan D=tan∠ECH12 EHCH==.【点睛】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,添加辅助线,把∠D的正切值化为∠ECH的正切值,是解题的关键.23.tan∠BAC512=,AB=19.5米.【解析】如图所示,延长PA,过B点作BC⊥PA,垂足为C,过Q点作QD∥PC,过A点作EA⊥PC,EA与QD相交于F,根据EF∥BD证得△QEF∽△QBD,根据相似比求得QD的长,进一步得到AC的长,最后求出AB的长和坡度.如图所示,延长PA,过B点作BC⊥PA,垂足为C,过Q点作QD∥PC,过A点作EA⊥PC,EA与QD相交于F.依题意易知,BC=7.5,BD=6,EF=APtan14°=6×0.25=1.5,∵EF∥BD,∴△QEF∽△QBD,∴EF QFBD QD=,∴QD=24,∴AC=QD-PA=18,∴AB19.5米,坡度为tan∠BAC=BCAC=7.551812=.【点睛】本题主要考查了相似三角形的判定与性质,解题关键是掌握相似三角形判定定理,证明△QEF∽△QBD.24.(1)二次函数解析式为y=x2-2x,顶点P的坐标是(1,-1);(2)m=5 6 .【解析】(1)先根据题中所给条件求出A点坐标,再利用待定系数法求出函数解析式,将求出的函数解析式化为顶点式,即可得到顶点P的坐标;(2)用含m的代数式表示出P′的坐标,用含m的代数式表示S△ABP′和S△BCP′,根据S△ABP′=S△B CP′求出m的值即可.(1)∵一次函数解析式为y=12x-3,∴OC=3,∵tan∠OCA=23 OAOC=,∴OA=2,∴A点坐标为(2,0),将A点坐标代入函数解析式得4+2b=0,解得:b=﹣2,∴二次函数解析式为y=x2-2x,将二次函数解析式化为顶点式,得y=(x-1)2-1,∴顶点P的坐标为(1,﹣1).(2)如图所示,其中l为抛物线的对称轴,D为l与x轴的交点,当y=0时,12x-3=0,解得x=6,∴B点坐标为(6,0),∴AB=6-2=4,在Rt△BOC中,BC∵P′是将二次函数图像向下平移m个单位后得到的抛物线的顶点,∴P′的坐标为(1,﹣1-m),∴DP′=1+m∴S△ABP′=12×AB×DP′=12×4×(1+m)=2+2m,当P′在直线y=12x-3的左侧时,S△BCP′=S△BOC-(S梯形ODP′C+S△BDP′)=111×3?6[?(13)?1?5?(1)]222m m-++++=92-3m,∵S△ABP′=S△BCP′,∴2+2m=92-3m,解得m=12,当P′在直线y=12x-3的右侧时,S△BCP′=(S梯形ODP′C+S△BDP′)-S△BOC=111[?(13)?1?5?(1)]?3?6222m m++++-=92﹣+3m,∵S△ABP′=S△BCP′,∴2+2m=﹣92+m,解得m=132,综上,m=12或132.【点睛】本题主要考查一次函数的图像与性质、二次函数的图像与性质、图像的平移、三角形面积公式,解题的关键是:(1)求出二次函数解析式;(2)用含m的代数式表示S△ABP′和S△BCP.′25.(1)1;(2)AP=;(3)FG=1.【解析】(1)如图,过点A,作AH//BC,交CD的延长线于点H,在Rt△AHE中求出AE,即可求解;(2)设:AP=x,利用△APE∽△PEC,得出PC2=CE⋅AP,利用勾股定理得出PC2=PB2+BC2,即可求解;(3)利用△ADE∽△FGE,得到3α=45°,进而求出相应线段的长度,再利相似比AD DE FG GE=,即可求解.(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP=根据勾股定理得,HE==3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EP A=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴PE AE EC PE=,即:PE2=AE•CE,而EC =2PB =2(5﹣x ), 即:PC 2=CE •AP =2(5﹣x )x ,而PC 2=PB 2+BC 2,即:PC 2=(5﹣x )2+22, ∴2(5﹣x )x =(5﹣x )2+22,解得:x 103+=(不合题意值已舍去),即:AP =; (3)如图3中,在线段CF 上取一点G ,连接EG .设∠F =α,则∠APE =∠AEP =∠BPF =90°﹣α, 则:∠EAP =180°﹣2∠APE =2α, ∵△ADE ∽△FGE ,设∠DAE =∠F =α, 由∠DAB =45°,可得3α=45°,2α=30°, 在Rt △ADH 中,AH =DH =2,在Rt △AHE 中,∠HEA =∠EAB =2α=30°,∠HAE =60°,∴HE =AH •tan ∠HAE =∴DE =HE ﹣HD =2,EC =HC ﹣HE =5﹣, ∵△ADE ∽△FGE , ∴∠ADC =∠EGF =135°, 则∠CEG =45°,∴EG ==,∴AD DE FG GE=,即:FG=,解得:FG=1.【点睛】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题。

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省中考九年级数学模拟测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.2020的倒数是()A.-2020B.12020-C.2020D.120202.化简-ab-2ab 的结果是()A.-1 B.ab C.-3ab D .-ab3.2020年2月11日,世卫组织总干事谭德赛在全球研究与创新论坛记者会上宣布,将新型冠状病毒引发的疾病命名为“COVID-19”.已知冠状病毒直径约80~120nm(1nm=10-9m).“120nm”用科学记数法可表示为()A.1.2×10-7m B.1.2×10-11m C.0.12×10-10m D.12×10-11m4.如图是由若干个大小相同的小立方块组成的几何体的三视图,则构成该几何体的小立方块的个数是()A.3 B.4 C.5D .6第4题图第6题图第7题图5.将一条直的等宽纸带,按如图所示方式折叠,则a 的度数为()A.80° B.65° C.60°D .45°6.甲、乙、丙三位同学通过“手心手背”游戏“找朋友”,规定:当恰好只有两个人所出的手势相同时,这两个人就成为“朋友”,若三人同时出手势一次,则甲、乙两位同学成为“朋友”的概率是()A.12B.13C.14D .237.如图,四边形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若DOCADO S S ∆∆=,则BC AD的值为()A .B .C .D .8.某企业2017年给希望工程捐款a 万元,之后捐款金额逐年增加,且每年的增长率为10%,从2017年到2019年,该企业共给希望工程捐款b 万元,则()A.b=a(1+10%)2B.b=a+a(1+10%)+a(1+10%)2C.b=a(1+10%×2)D.b=a+a(1+10%)+a(1+10%x2)9.若抛物线y1=a1x2+b1x+c1,y2=a2x2+b2x+c2满足111222(0,1)a b c k ka b c===≠,则称抛物线y1,y2互为”友好抛物线”.对于“友好抛物线”y1,y2,有下列说法:①开口方向相同;②开口大小可能相同;③对称轴相同;④若y2有最大值,且最大值为m,则y1有最大值,且最大值为km.其中正确说法的个数是()A.1B.2C.3D.410.如图,在矩形ABCD中,AB=8,BC=6,点P为直线AB外一点,且∠APB=90°,则满足PC=4的点P的个数是()A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,满分20分)11.计算÷的结果是.PE为边作正方形PEDQ,使点Q恰好在半圆上,则OP的长为.14.在平面直角坐标系xOy中,点A(1.1)在反比例函数y=kx(k=0)的图象上,过点A作AB⊥x轴于点B.分别作点O,B关于直线y=-x+a的对称点O',B',当线段O'B'与反比例函数y=kx的图象有公共点时,a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.解方程:3x(x-3)=x2-9.16.《九章算术》中有这样一道题,原文如下:今有不善行者先行一十里,善行者追之一百里,先至不善行者二十里.问善行者几何里及之?大意为:走路慢的人先走10里,走路快的人追了100里,超过走路慢的人20里,问:走路快的人走多少里时追上走路慢的人?请解决下列问题:(1)走路快的人走100里的时间内,走路慢的人走了里;(2)请解答《九章算术》中的这道题.四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,每个小正方形的边长都是1,已知点A,B,C,D均为网格线的交点.(1)在网格中将△ABC绕点D顺时针旋转90°,画出旋转后得到的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)在网格中画出△DEF,使△DEF∽△ABC,且相似比为2:1(点E,F为格点);(3)若M是线段AB上的一个动点(可以与两端点重合),△A1DM的面积为S,则S的取值范围是.18.在平面直角坐标系中,一只蚂蚁从原点O出发,沿着O→A1→A2→A3→A4→A5→A6→…的路线运动,每次移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A1,A3,A9;(2)请直接写出点A2n的坐标(n是正整数);(3)当蚂蚁运动到A2020时停止运动,此时蚂蚁的运动轨迹是中心对称图形还是轴对称图形?如果是中心对称图形,求出其对称中心的坐标;如果是轴对称图形,写出其对称轴.五、(本大题共2小题,每小题10分,满分20分)19.小明在一块空地上试飞一架无人机。

安徽省2020版中考数学一模试卷(I)卷

安徽省2020版中考数学一模试卷(I)卷

安徽省2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)(2018·龙岩模拟) 实数在数轴上的对应点位置如图所示,把按照从小到大的顺序排列,正确的是().A .B .C .D .2. (2分)(2016·资阳) 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A . 7.6×B . 7.6×C . 7.6×D . 7.6×3. (2分) (2020七下·南宁期末) 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A . 第一次右拐60°,第二次左拐120°B . 第一次左拐60°,第二次右拐60°C . 第一次左拐60°,第二次左拐120°D . 第一次右拐60°,第二次右拐60°4. (2分)如果一个图形有两条互相垂直的对称轴,那么这个图形()A . 只能是轴对称图形B . 不可能是中心对称图形C . 一定是轴对称图形,也一定是中心对称图形D . 一定是轴对称图形,但无法判别是中心对称图形5. (2分) (2020八上·贵州期中) 如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A . 120B . 150C . 240D . 3606. (2分)某校初中部20个班开展合唱比赛,以抽签方式决定每个班的出场顺序,签筒中有20根形状、大小完全相同的纸签。

上面分别标有1,2,…,20,某班长首先抽签,他在看不到纸签上的数字的情况下,从签筒中随机抽取一根纸签,抽中序号是5的倍数的概率是:()A .B .C .D .7. (2分) (2017九下·东台期中) 一个物体的三视图如下图所示,则该物体是()A . 圆锥B . 球C . 圆柱D . 长方体8. (2分)放学后,小明倒了一杯开水,下列能近视刻画这杯水的水温y(℃)与时间t(h)的函数关系的图象是()A .B .C .D .9. (2分) (2020八上·柯桥月考) 如图,依据尺规作图的痕迹,计算∠α=()A . 68°B . 56°C . 28°D . 34°10. (2分)下列四个函数图象中,当x<0时,y随x的增大而减小的是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)把16x5﹣4x3分解因式的结果是________ .12. (1分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x 轴的另一个交点为(3,0);④abc>0.其中正确的结论是________ (填写序号).13. (1分) (2019七下·西安期末) 某同学要测量某烟囱的高度,他将一面镜子放在他与烟囱之间的地面上某一位置,然后站到与镜子、烟囱成一条直线的地方,刚好从镜中看到烟囱的顶部,如果这名同学身高为1.65米,他到镜子的距离是2米,测得镜面到烟囱的距离为20米,烟囱的高度________ 米.14. (1分) (2017八下·富顺竞赛) 已知,则简的值等于 ________ .15. (1分) (2017七下·抚顺期中) 如图所示,课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置应表示为________.”16. (2分) (2019七下·大兴期末) 据报道,截止到2013年12月31日我国微信用户规模已达到6亿.以下是根据相关数据制作的统计图表的一部分:2012年及2013年电话、短信、微信的截止到2013年12月31日微信用户对日人均使用时长统计表单位:分钟“微信公众平台”参与关注度统计图请根据以上信息,回答以下问题:(1)从2012年到2013年微信的日人均使用时长增加了________分钟;(2)截止到2013年12月31日,在我国6亿微信用户中偶尔使用微信用户约为________亿(结果精确到0.1).三、解答题 (共13题;共142分)17. (15分)计算(1)﹣(2) 6 ÷8(3)﹣ +()2+|1﹣ |18. (5分) (2017九上·沂源期末) 解不等式组.19. (10分) (2017八下·徐汇期末) 已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.20. (5分)(2019·惠安模拟) 我国古代有一道著名的算术题,原文为:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意为:一批客人来到李三的旅店住宿,如果每个房间住7人,那么有7位客人没房住;如果每个房间住9人,那么有1间空房,问共有多少位客人?多少间房?请你用初中数学知识方法求出上述问题的解。

【2020年】安徽省数学中考模拟试题(含答案)

【2020年】安徽省数学中考模拟试题(含答案)

2020年安徽省中考模拟试题含答案注意事项:1、本试卷共八大题,满分150分,考试时间为120分钟。

2、请将答案填写在答题卷上。

考试结束后,将试题卷和答题卷一并交回。

一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个2.如图,点D ,E 分别是△ABC 的边AB ,AC 的中点,则△ADE 的面积与四边形BCED 的面积的比为( )(第2题) (第3题) (第4题)A.1:2B.1:3C.1:4D.1:13.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =x k 的图象经过点B ,则k 的值是( )A.1B.2C.3 D.23 4.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A.BP AB =CB AC B.∠APB =∠ABC C.AB AP =ACAB D.∠ABP =∠C 5.在△ABC 中,(2cos A ﹣2)2+|1﹣tan B |=0,则△ABC 一定是( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形6.已知x =1是方程x 2+bx ﹣2=0的一个根,则方程的另一个根是( )A.1B.2C.﹣2D.﹣17.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y =2x ,y =x 2-3(x >0),y =x 2(x >0),y =-x31(x <0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y 随x 的增大而增大的概率是( )A.41B.21C.43 D.1 8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中正确的是( )(第8题) (第9题) (第10题)A.a >0B.3是方程ax 2+bx +c =0的一个根C.a +b +c =0D.当x <1时,y 随x 的增大而减小9.如图所示,直线l 和反比例函数y =x k (k >0)的图象的一支交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A.S 1<S 2<S 3B.S 1>S 2>S 3C.S 1= S 2>S 3D.S 1= S 2<S 3 10.如图,⊙O 是△ABC 的外接圆,弦AC 的长为3,sin B =43,则⊙O 的半径为( ) A.4 B.3 C.2 D.3二、填空题:(本大题共4小题,每小题5分,满分20分)11.如图,若点A 的坐标为(1,3),则sin∠1= .(第11题) (第12题)12.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan∠OAB =21,则AB 的长是____________. 13.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是___________________.(第13题) (第14题)14.在矩形ABCD 中,AB =6,BC =8,AC ,BD 相交于O ,P 是边BC 上一点,AP 与BD 交于点M ,DP 与AC 交于点N .①若点P 为BC 的中点,则AM :PM =2:1;②若点P 为BC 的中点,则四边形OMPN 的面积是8;③若点P 为BC 的中点,则图中阴影部分的总面积为28;④若点P 在BC 的运动,则图中阴影部分的总面积不变.其中正确的是_____________.(填序号即可)三、解答题(本大题共2个小题,每小题8分,满分16分)15.计算:(2﹣1)0+(﹣1)2015+(31)-1﹣2sin30°16.解方程:x 2﹣5x +3=0四、(本大题共2个小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD (顶点是网格线的交点),按要求画出四边形AB 1C 1D 1和四边形AB 2C 2D 2.⑴以A 为旋转中心,将四边形ABCD 顺时针旋转90°,得到四边形AB 1C 1D 1;⑵以A 为位似中心,将四边形ABCD 作位似变换,且放大到原来的两倍,得到四边形AB 2C 2D 2.18.如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A 、B 两处,同时测得事发地点C 在A 的南偏东60°且C 在B 的南偏东30°上.已知B 在A 的正东方向,且相距100里,请分别求出两艘船到达事发地点C 的距离.(注:里是海程单位,相当于一海里.结果保留根号)五、(本大题共2个小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,直线y =﹣21x +2分别与x 、y 轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x轴于点E ,OE =2.⑴求反比例函数的解析式;⑵连接OD ,求△OBD 的面积.20.如图,已知△ABC 为直角三角形,∠C =90°,边BC 是⊙O 的切线,切点为D ,AB经过圆心O 并与圆相交于点E ,连接AD .⑴求证:AD 平分∠BAC ;⑵若AC =8,tan∠DAC =43,求⊙O 的半径.六、(本题满分12分)21.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.⑴先从袋中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,填空:若A 为必然事件,则m 的值为_______,若A 为随机事件,则m 的取值为______;⑵若从袋中随机摸出2个球,正好红球、黑球各1个,用列表法与树状图法求这个事件的概率.七、(本题满分12分)22.如图1,在四边形ABCD 中,∠DAB 被对角线AC 平分,且AC 2=AB ·AD ,我们称该四边形为“可分四边形”,∠DAB 称为“可分角”.⑴如图2,四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,如果∠DCB =∠DAB ,则∠DAB =_________.⑵如图3,在四边形ABCD 中,∠DAB =60°,AC 平分∠DAB ,且∠BCD =150°,求证:四边形ABCD 为“可分四边形”;⑶现有四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,且AC =4,BC =2,∠D =90°,求AD 的长?图1 图2 图3八、(本题满分14分)23.已知抛物线l 1:y =﹣x 2+2x +3与x 轴交于点A 、B (点A 在点B 左边),与y 轴交于点C ,抛物线l 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2).⑴求抛物线l 2的解析式;⑵点P 为线段AB 上一动点(不与A 、B 重合),过点P 作y 轴的平行线交抛物线l 1于点M ,交抛物线l 2于点N .①当四边形AMBN 的面积最大时,求点P 的坐标;②当CM=DN≠0时,求点P的坐标.备用图数学参考答案一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1—5 CBCAD,6-10 CCBDC二、填空:11、 12、 8 13、 x<﹣1,或0<x<2 14、①③三、解答题:15、(8分)原式=216、(8分) x1=,x2=.17、(8分)18、(8分)解:作BG⊥AC于G,∵点C在A的南偏东60°,∴∠A=90°﹣60°=30°,∵C在B的南偏东30°,∴∠ABC=120°,∴∠C=30°,∴BC=AB=100里,∴BG=BC•sin30°=50里,CG=BC•cos30°=50里,∴AC=2CG=100里.答:A船到达事发地点C的距离是100里,B船到达事发地点C的距离是100里.19、(10分)解:(1)∵OE=2,CE⊥x轴于点E.∴C的横坐标为﹣2,把x=﹣2代入y=﹣x+2得,y=﹣×(﹣2)+2=3,∴点C的坐标为C(﹣2,3).设反比例函数的解析式为y=,(m ≠0)将点C 的坐标代入,得3=.∴m=﹣6. ∴该反比例函数的解析式为y=﹣.(2)由直线线y=﹣x+2可知B (4,0),解得,,∴D (6,﹣1), ∴S △OBD =×4×1=2.20(10分)解:(1)连接OD , ∵BC 是⊙O 的切线, ∴OD⊥BC ∴∠ODB=90°又∵∠C=90° ∴AC∥OD ∴∠CAD=∠ADO又∵OA=OD ∴∠OAD=∠ADO ∴∠CAD=∠OAD∴ AD 平分∠BAC(2)在R t △ACD 中 AD=1022=+CD AC连接DE ,∵AE 为⊙O 的直径 ∴∠ADE=90° ∴∠ADE=∠C∵∠CAD=∠OAD∴△ACD∽△ADE∴AD AE AC AD =,即10810AE = ∴AE=225 ∴⊙O 的半径是42521、解:(1)∵“摸出黑球”为必然事件, ∴m=3,∵“摸出黑球”为随机事件,且m >1, ∴m=2; 故答案为:3,2; (2)画树状图得:∵共有20种等可能的结果,从袋中随机摸出2个球,正好红球、黑球各1个的有12种情况,∴从袋中随机摸出2个球,正好红球、黑球各1个的概率为: =.22(1)︒=∠120DAB(2)∵AC 平分∠DAB,∠DAB=60°∴∠DAC=∠CAB=30°∵∠DCB=150° ∴∠DCA=150°-∠ACB在△ADC 中,∠ADC=180°- ∠DAC - ∠DCA =180°-30°-(150°-∠ACB)=∠ACB∴△ACD∽△ABC ∴AB AC AC AD = ∴AD AB AC ⋅=2, 即证四边形ABCD 为“可分四边形” (3)∵四边形ABCD 为“可分四边形”,∠DAB 为“可分角”∴AC 平分∠DAB,AD AB AC ⋅=2即∠DAC=∠CAB,ABAC AC AD = ∴△ACD∽△ABC ∴∠ACB=∠D=90° 在Rt△ACB 中AB= 5222=+BC AC∵ AD AB AC ⋅=2∴AD=55852422==AB AC 23.解:(1)∵令﹣x 2+2x+3=0,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0).设抛物线l 2的解析式为y=a (x+1)(x ﹣4).∵将D (0,﹣2)代入得:﹣4a=﹣2, ∴a=. ∴抛物线的解析式为y=x 2﹣x﹣2;(2)①如图1所示:∵A (﹣1,0),B (3,0), ∴AB=4.设P (x ,0),则M (x ,﹣x 2+2x+3),N (x , x 2﹣x ﹣2).∵MN ⊥AB , ∴S AMBN =AB ·MN=﹣3x 2+7x+10(﹣1<x <3).∴当x=时,S AMBN 有最大值. ∴此时P 的坐标为(,0).②如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行.∵DC ∥MN ,CM=DN , ∴四边形CDNM 为等腰梯形. ∴∠DNH=∠CMG .在△CGM 和△DNH 中, ∴△CGM ≌△DNH . ∴MG=HN . ∴PM ﹣PN=1.设P (x ,0),则M (x ,﹣x 2+2x+3),N (x , x 2﹣x ﹣2).∴(﹣x 2+2x+3)+(x 2﹣x ﹣2)=1,解得:x 1=0(舍去),x 2=1. ∴P (1,0).当CM∥DN时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN.=5 ∴﹣x2+2x+3﹣(x2﹣x﹣2)=5,∴x1=0(舍去),x2=,∴P(,0).总上所述P点坐标为(1,0),或(,0).。

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省中考九年级数学模拟测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.2020的倒数是()A.-2020B.12020-C.2020D.120202.化简-ab-2ab 的结果是()A.-1 B.ab C.-3ab D .-ab3.2020年2月11日,世卫组织总干事谭德赛在全球研究与创新论坛记者会上宣布,将新型冠状病毒引发的疾病命名为“COVID-19”.已知冠状病毒直径约80~120nm(1nm=10-9m).“120nm”用科学记数法可表示为()A.1.2×10-7m B.1.2×10-11m C.0.12×10-10m D.12×10-11m4.如图是由若干个大小相同的小立方块组成的几何体的三视图,则构成该几何体的小立方块的个数是()A.3 B.4 C.5D .6第4题图第6题图第7题图5.将一条直的等宽纸带,按如图所示方式折叠,则a 的度数为()A.80° B.65° C.60°D .45°6.甲、乙、丙三位同学通过“手心手背”游戏“找朋友”,规定:当恰好只有两个人所出的手势相同时,这两个人就成为“朋友”,若三人同时出手势一次,则甲、乙两位同学成为“朋友”的概率是()A.12B.13C.14D .237.如图,四边形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若DOCADO S S ∆∆=,则BC AD的值为()A .B .C .D .8.某企业2017年给希望工程捐款a 万元,之后捐款金额逐年增加,且每年的增长率为10%,从2017年到2019年,该企业共给希望工程捐款b 万元,则()A.b=a(1+10%)2B.b=a+a(1+10%)+a(1+10%)2C.b=a(1+10%×2)D.b=a+a(1+10%)+a(1+10%x2)9.若抛物线y1=a1x2+b1x+c1,y2=a2x2+b2x+c2满足111222(0,1)a b c k ka b c===≠,则称抛物线y1,y2互为”友好抛物线”.对于“友好抛物线”y1,y2,有下列说法:①开口方向相同;②开口大小可能相同;③对称轴相同;④若y2有最大值,且最大值为m,则y1有最大值,且最大值为km.其中正确说法的个数是()A.1B.2C.3D.410.如图,在矩形ABCD中,AB=8,BC=6,点P为直线AB外一点,且∠APB=90°,则满足PC=4的点P的个数是()A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,满分20分)11.计算÷的结果是.PE为边作正方形PEDQ,使点Q恰好在半圆上,则OP的长为.14.在平面直角坐标系xOy中,点A(1.1)在反比例函数y=kx(k=0)的图象上,过点A作AB⊥x轴于点B.分别作点O,B关于直线y=-x+a的对称点O',B',当线段O'B'与反比例函数y=kx的图象有公共点时,a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.解方程:3x(x-3)=x2-9.16.《九章算术》中有这样一道题,原文如下:今有不善行者先行一十里,善行者追之一百里,先至不善行者二十里.问善行者几何里及之?大意为:走路慢的人先走10里,走路快的人追了100里,超过走路慢的人20里,问:走路快的人走多少里时追上走路慢的人?请解决下列问题:(1)走路快的人走100里的时间内,走路慢的人走了里;(2)请解答《九章算术》中的这道题.四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,每个小正方形的边长都是1,已知点A,B,C,D均为网格线的交点.(1)在网格中将△ABC绕点D顺时针旋转90°,画出旋转后得到的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)在网格中画出△DEF,使△DEF∽△ABC,且相似比为2:1(点E,F为格点);(3)若M是线段AB上的一个动点(可以与两端点重合),△A1DM的面积为S,则S的取值范围是.18.在平面直角坐标系中,一只蚂蚁从原点O出发,沿着O→A1→A2→A3→A4→A5→A6→…的路线运动,每次移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A1,A3,A9;(2)请直接写出点A2n的坐标(n是正整数);(3)当蚂蚁运动到A2020时停止运动,此时蚂蚁的运动轨迹是中心对称图形还是轴对称图形?如果是中心对称图形,求出其对称中心的坐标;如果是轴对称图形,写出其对称轴.五、(本大题共2小题,每小题10分,满分20分)19.小明在一块空地上试飞一架无人机。

2020年安徽省中考数学模拟试卷(含解析)

2020年安徽省中考数学模拟试卷(含解析)

2020年安徽省中考数学模拟试卷一、选择题(本大题共10小题,共40.0分)1.−2的相反数是()A. 2B. −2C. 12D. −122. 3.计算(−a)2⋅(a2)3正确的()A. a8B. −a8C. a7D. −a73.2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为()A. 6.952×106B. 6.952×108C. 6.952×1010D. 695.2×1084.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A. B. C. D.5.下列因式分解正确的是()A. x2−1=(x−1)2B. a3−2a2+a=a2(a−2)C. −2y2+4y=−2y(y+2)D. m2n−2mn+n=n(m−1)26.估算√18+√24×√13的运算结果在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间7.某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为x,根据题意得方程()A. 5000(1+x)+5000(1+x)2=7200B. 5000(1+x2)=7200C. 5000(1+x)2=7200D. 5000+5000(1+x)2=72008.如图,是某次射击比赛中,一位选手五次射击成绩的频数分布直方图,则关于这位选手的成绩(单位:环),下列说法错误的是()A. 众数是8B. 中位数是8C. 平均数是8D. 方差是1.049.如图,点A,B,C,D都在⊙O上,BD为直径,若∠A=65°,则∠DBC的度数是()A. 15°B. 25°C. 35°D. 45°10.如图,中AB=4,BC=2,正方形ADEF的边长为2,F,A,B在同一直线上,正方形ADEF向右平移到点F与B重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图像表示正确的是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.命题“如果a2=b2,那么a=b”的逆命题是______________________________________.12.不等式组{x−3(x−2)≥−41+2x3<x−1的解集是______ .13.如图,曲线l是由函数y=12在第一象限内的图象绕坐标原点O逆时针x旋转90°得到的,且过点A(m,6),B(−6,n),则△OAB的面积为______.14.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为______.三、计算题(本大题共1小题,共6.0分)15.计算:(2a+b)(2a−b)−2a(a−2b)四、解答题(本大题共8小题,共82.0分)16.某教育部门分两次采购一批篮球和足球(每次采购两种球都要购买),购买篮球和足球的清单如下表.(1)求篮球和足球的单价.(2)由于两种球都不够分配,李主任去补充采购.正好商家搞促销,两种球都打折,且折扣一样.已知李主任此次采购了90个篮球,80个足球,共花去了9120元,问商家是打几折出售这两种球的⋅17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),在建立的平面直角坐标系中,△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1.(1)在图中标示出旋转中心P,并写出它的坐标;(2)以原点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,在图中画出△A2B2C2,并写出C2的坐标.18.观察下列关于自然数的等式:①42−32=1×7②52−32=2×8③62−32=3×9④72−32=4×10…根据上述规律解决下列问题:(1)完成第⑤个等式:(______)2−(______)2=(______)×(______)(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.19.(1)如图1,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.(2)如图2,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD=√2,求∠BAC的度数.20.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°角(∠FGK=80°),身体前倾成125°角(∠EFG=125°),脚与洗漱台距离GC=15cm(点D、C、G、K在同一直线上)(精确到0.1cm,参考数据:sin80°≈0.98,cos80°≈0.17,√2≈1.41).(1)此时小强头部E与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少距离?21.某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,(调查时,将喜爱程度分为四级:A级(非常喜欢),B级(喜欢),C级(一般),D级(不喜欢)).根据调查结果,绘制成如下两幅不完整的统计图.请你结合图中信息解答下列问题:(1)本次调查共抽取______名学生,在扇形图中,表示A级的扇形的圆心角为______°;(2)若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;(3)已知在A级学生中有3名男生,现要从本次调查中的5名A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.22.如图,开口向下的抛物线与x轴交于点A(−1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.23.已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=,点D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.(1)如图1,若点D是AC中点,连接PC.①求AC的长;②试猜想四边形BCPD的形状,并加以证明;(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求CH的长.【答案与解析】1.答案:A解析:解:根据相反数的定义,−2的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.答案:A解析:依据幂的乘方以及同底数幂的乘法法则进行计算即可.【详解】解:(−a)2⋅(a2)3=a2⋅a6=a8,故选:A.本题主要考查了幂的乘方以及同底数幂的乘法法则的应用,幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=69520000000=6.952×1010,故选C.4.答案:B解析:解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.根据图形、找出几何体的左视图与俯视图,判断即可.此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.5.答案:D解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.直接利用公式法以及提取公因式法分解因式进而判断即可.解:A.x2−1=(x+1)(x−1),故此选项错误;B.a3−2a2+a=a(a−1)2,故此选项错误;C.−2y2+4y=−2y(y−2),故此选项错误;D.m2n−2mn+n=n(m−1)2,正确.故选D.6.答案:C解析:解:√18+√24×√13=3√2+√24×13=3√2+2√2=5√2=√50;∵√49<√50<√64,∴7<√50<8.故原式的运算结果在7和8之间,先将已知式子化简,然后进行估计即可.本题主要考查了无理数的运算以及大小,熟悉无理数的相关内容是解答本题的关键.7.答案:C解析:解:设平均每月增长的百分率为x,则二月份产值为5000(1+x),三月份产值为:5000(1+ x)(1+x),根据题意,得5000(1+x)2=7200.故选:C.主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),本题可先用x表示出2月份产值,再根据2月份的产值表示出3月份产值的式子,然后令其等于7200即可列出方程.本题考查了由实际问题抽象出一元二次方程,解此类题目时常常要先解出前一个月份的产值,再列出所求月份的产值的方程,令其等于已知的条件即可.8.答案:C解析:本题主要考查了频数分布直方图的知识,涉及一组数据的众数、中位数、平均数、方差,熟练掌握各个统计量的概念是解题的关键.由图可知,环数为7的1人,环数为8的2人,环数为9的1人,(7+8+8+9+10)=8.4,方差为环数为10的1人,所以众数为8,中位数为8,平均数为151(1.96+0.16+0.16+0.36+2.56)=1.04,由此可得出结论.5解:由图可知,这一组数据为7,8,8,9,10.所以8出现最多,所以众数为8,最中间为8,所以中位数为8,(7+8+8+9+10)=8.4,平均数为15(1.96+0.16+0.16+0.36+2.56)=1.04,方差为15所以错误的是C,故选C.解析:解:∵BD为直径,∴∠BCD=90°,由圆周角定理得,∠D=∠A=65°,∴∠DBC=90°−65°=25°,故选:B.根据圆周角定理得到∠BCD=90°,∠D=∠A=65°,根据直角三角形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆周角定理是解题的关键.10.答案:B解析:本题考查了动点问题的函数图象.解题的关键是根据动点运动的轨迹分段写出函数解析式,根据解析式确定函数的图象.根据正方形在平移过程中与三角形重叠的面积不同分段写出函数解析式:当0≤x≤2时;当2<x≤4时;当4<x≤6时,y与x的函数解析式即可判断.解:如图,当0≤x≤2时,AQ=x,PQ=12x,∴y=12×AQ×PQ=14x2;当2<x≤4时,如图,,AF=x−2,MF=12x−1,PQ=12x,y=12(12x−1+12x)×2=x−1;当4<x≤6时,如图,,AF =x −2,MF =12x −1,FB =6−x , ∴y =12(2+12x −1)(6−x )=−14x 2+x +3.根据二次函数的图象和性质及一次函数的图象和性质可判断选项B 正确. 故选B .11.答案:如果a =b ,那么a 2=b 2解析:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.解:“如果a 2=b 2,那么a =b ”的逆命题是:如果a =b ,那么a 2=b 2. 故答案为如果a =b ,那么a 2=b 2.12.答案:4<x ≤5解析:解:{x −3(x −2)≥−4①1+2x 3<x −1②∵解不等式①得:x ≤5, 解不等式②得:x >4, ∴不等式组的解集为4<x ≤5, 故答案为:4<x ≤5.先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.13.答案:16解析:本题考查反比例函数的图象、旋转的性质、待定系数法求反比例函数的解析式,解题的关键是矩形解决问题,属于中考填空题中的压轴题.作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,根据旋转的性质得出点A(m,6),B(−6,n)在函数y=−12x的图象上,根据待定系数法求得m、n的值,继而得出P(6,6),然后根据S△AOB=S矩形OMPN−S△OAM−S△OBN−S△PAB即可求得结果.解:作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,∵曲线l是由函数y=12x在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(−6,n),∴点A(m,6),B(−6,n)在函数y=−12x的图象上,∴6m=−12,−6n=−12,解得m=−2,n=2,∴A(−2,6),B(−6,2),∴P(−6,6),∴S△AOB=S矩形OMPN −S△OAM−S△OBN−S△PAB=6×6−12×2×6−12×6×2−12×4×4=16,故答案为16.14.答案:5或6解析:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.需要分类讨论:PB=PC和PB=BC两种情况.解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=12AD=3.在Rt△ABP中,由勾股定理得PB=√AP2+AB2=√32+42=5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.故答案为:5或6.15.答案:解:(2a+b)(2a−b)−2a(a−2b)=4a2−b2−2a2+4ab=2a2−b2+4ab.解析:本题考查整式混合运算,掌握平方差公式,正确计算是本题的解题关键.用平方差公式和单项式乘多项式的法则进行计算,然后合并同类项.16.答案:解:(1)设篮球的价格为x元/个,足球的价格为y元/个.根据题意,得{60x+50y=9800, 30x+70y=9400,解得{x=80, y=100.答:篮球的价格为80元/个,足球的价格为100元/个.(2)设商家是打n折出售这两种球的.根据题意,得90×80×n10+80×100×n10=9120,解得n=6.答:商家是打6折出售这两种球的.解析:本题考查了二元一次方程组的应用、一元一次方程的应用,解答本题的关键是明确题意.(1)设篮球的价格为x元/个,足球的价格为y元/个,根据题意即可得出关于x、y的方程组,解之,即可得出结论;(2)设商家是打n折出售这两种球,根据题意即可得出关于n的一元一次方程,解之,即可得出结论.17.答案:解:(1)如图,点P为所作,P点坐标为(3,1);(2)如图,△A2B2C2为所作,C2的坐标为(2,4)或(−2,−4).解析:(1)作BB1和CC1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或−2得到对应点A2、B2、C2的坐标,然后描点即可得到△A2B2C2.本题考查了作图−位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.18.答案:解:(1)8;3;5;11(2)猜想的第n个等式为(n+3)2−32=n(n+6),左边=n2+6n+9−9=n2+6n=n(n+6)=右边,∴(n+3)2−32=n(n+6).解析:解:(1)根据题意知,第⑤个等式为:82−32=5×11,故答案为:8、3、5、11;(2)见答案.(1)由已知等式知,等式左边为序数与3和的平方与3的平方的差,等式右边即为序数与序数加6的乘积,据此可得;(2)根据(1)中所得规律可得第n个等式,利用整式的乘法运算即可验证.本题主要考查数字的变化规律,解题的关键是得出等式左边为序数与3和的平方与3的平方的差,等式右边即为序数与序数加6的乘积.19.答案:(1)证明:∵∠OBD=∠ODB,∴OB=OD,在△AOB与△COD中,{OA=OC∠AOB=∠COD OB=OD,∴△AOB≌△COD(SAS),∴AB=CD;(2)解:连接OC,如图所示:∵CD与⊙O相切,∴OC⊥CD,∵OA=OC,OA=1,∴OC=1,∴CD=√OD2−OC2=√(√2)2−12=1,∴CD=OC,∴△OCD为等腰直角三角形,∴∠COB=45°,∴∠BAC=12∠COB=22.5°.解析:(1)由∠OBD=∠ODB,得出OB=OD,再由SAS证得△AOB≌△COD,即可得出结论;(2)连接OC,由CD与⊙O相切,得出OC⊥CD,求出CD=1,得出△OCD为等腰直角三角形,推出∠COD=45°,即可得出结果.本题主要考查了全等三角形的判定与性质、切线的性质、等腰直角三角形的判定与性质、圆周角定理等知识;熟练掌握全等三角形的判定与性质与圆周角定理是解决问题的关键.20.答案:解:(1)如图,过点F作FN⊥DK于点N,过点E作EM⊥NF,交NF的延长线于点M.∵EF+FG=166cm,FG=100cm,∴EF=66cm,∵∠FGK=80°,∴FN=100⋅sin80°≈98(cm),∠GFN=10°.∵∠EFG=125°,∴∠EFM=180°−125°−10°=45°,∴FM=66⋅cos45°=33√2≈46.53(cm),∴MN=FN+FM≈144.5cm,答:此时小强头部E与地面DK相距约144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24cm,∵EM=66⋅sin45°≈46.53cm,∴PH≈46.53cm,∵GN=100⋅cos80°≈17(cm),CG=15cm,∴OH=24+15+17=56(cm),∴OP=OH−PH≈56−46.53≈9.5(cm).答:他应向前约9.5cm.解析:本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断.21.答案:(1)50;36;=18,(2)解:300×350答:估计该年级观看“中国诗词大会”节目BD级(不喜欢)的学生人数为18;(3)解:列表如图,∵所有等可能的情况有20种,其中所选出的2名学生中至少有1名女生的有14种,∴选出的2名学生中至少有1名女生的概率为1420=710.解析:解:(1)本次抽样调查的样本容量是17÷34%=50,表示“A级(非常喜欢)”的扇形的圆心角为550×360°=36°,故答案为:50,36;(2)300×350=18,答:估计该年级观看“中国诗词大会”节目BD级(不喜欢)的学生人数为18.(3)列表如下:男男男女女男---(男,男)(男,男)(女,男)(女,男)男(男,男)---(男,男)(女,男)(女,男)男(男,男)(男,男)---(女,男)(女,男)女(男,女)(男,女)(男,女)---(女,女)女(男,女)(男,女)(男,女)(女,女)---∵所有等可能的情况有20种,其中所选出的2名学生中至少有1名女生的有14种,∴选出的2名学生中至少有1名女生的概率为1420=710.(1)用C等级人数除以其百分比可得总人数,用A等级人数占总人数的比例乘以360度可得;(2)用样本中D等级所占比例乘以总人数可得答案;(3)列表得出所有等可能结果,利用概率公式求解可得此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.答案:解:(1)∵A(−1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x−2),将C代入得:4=−2a,解得:a=−2,∴该抛物线的解析式为:y=−2(x+1)(x−2)=−2x2+2x+4;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,∵A(−1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=12×1×4+12×4m+12×2×(−2m2+2m+4)=−2m2+4m+6=−2(m−1)2+8,当m=1时,S最大,最大值为8.解析:(1)设二次函数表达式为y=a(x+1)(x−2),再将点C代入,求出a值即可;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,利用S四边形CABP=S△OAC+S△OCP+S△OPB 得出S关于m的表达式,再求最值即可.本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP的面积表示出来.23.答案:解:(1)①在Rt△ABC中,∵BC=4,AB=4√5,∴AC=√(4√5)2−42=8,②如图1中,四边形BCPD是平行四边形.理由:∵AC=4,AD=DC,∵BC=4,∴BC=CD=4,∴△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°−45°=90°,∴∠BCD=∠PDC=90°,∴DP//BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=8−x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(8−x)2+42,∴x=5,∵DB=DA,DN⊥AB,由△ADN∽△ABC,可得ANAC =ADAB,∴AN8=4√5∴BN=AN=2√5,在Rt△BDN中,DN=√BD2−BN2=√5,由△BDN∽△BAM,可得DNAM =BDAB,∴√5AM =4√5,∴AM=4,由△ADM∽△APE,可得AMAE =ADAP,∴4AE =58,∴AE=325,∴PE=√PA2−AE2=24 5易证四边形PECH是矩形,∴CH=PE=245.解析:本题考查四边形综合题、勾股定理.相似三角形的判定和性质、翻折变换、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.(1)①根据勾股定理求出AC即可;②想办法证明DP//BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=8−x,在Rt△BDC中,可得x2=(8−x)2+42,推出x=5,由△ADN∽△ABC,可得ANAC =ADAB,可得AN8=4√5推出BN=AN=2√5,在Rt△BDN中,DN=√BD2−BN2=√5,由△BDN∽△BAM,可得DNAM =BDAB,可得√5AM =4√5,推出AM=4,推出AP=2AM=8,由△ADM∽△APE,可得AMAE=ADAP,可得4AE=58,推出AE=325,推出PE=√PA2−AE2=245,即可解决问题.。

安徽省2020年中考数学全真模拟试卷(一)含解析

安徽省2020年中考数学全真模拟试卷(一)含解析

安徽省2020年中考数学全真模拟试卷(一)一、选择题(共10小题,每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.92.(4分)下列运算中正确的是()A.(﹣a)2=a2B.3﹣2=﹣6C.(π﹣1)0=0D.(a3)2=a5 3.(4分)如图中几何体的左视图是()A.B.C.D.4.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.076微克,用科学记数法表示是()A.0.76×10﹣2微克B.7.6×10﹣2微克C.76×102微克D.7.6×102微克5.(4分)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<36.(4分)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=()A.30°B.40°C.50°D.60°7.(4分)方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(4分)如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是1359.(4分)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B、C不重合)EF∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A.B.C.D.10.(4分)在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形,等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上.这个等腰三角形剪法有()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,共20分)11.(5分)方程x2=x的解是.12.(5分)合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为.13.(5分)如图,A、B、C为⊙O上三点,∠ACB=20°,则∠BAO的度数为度.14.(5分)如图,E、F是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.三、(本题每小题8分,共16分)15.(8分)计算:(﹣2020)0﹣3tan30°﹣|﹣2|.16.(8分)我国古代数学著作《九章算术》中记载:“今有人共买鸡,人出九;盈十一;人出六;不足十六,问人数、鸡价各几何?”其大意是:今有人合伙买鸡,若每人出9钱,则多11钱:若每人出6钱,则差16钱,问合伙人数、鸡价各是多少?四、解答题:(每小题8分,共16分)17.(8分)如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米.地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.73).18.(8分)如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(﹣1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.五、(本题每小题10,满分20分)19.(10分)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是个;最少是个.(n是正整数)20.(10分)如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.六、(本题满分12分)21.(12分)2016年3月22日式第24个“世界水日”,校学生会主席小明同学就“节水方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2)2016年该初中九年级共有学生400人,按此调查,可以估计2016年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.七、(本题满分12分)22.(12分)某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=﹣x+150,成本为50元/件,无论销售多少,每月还需支出广告费90000元,设月利润为w内(元),若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.八、(本题满分14分)23.(14分)如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=F A,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽∽;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.9【分析】根据算术平方根的定义进行解答.【解答】解:的值为3.故选:B.2.(4分)下列运算中正确的是()A.(﹣a)2=a2B.3﹣2=﹣6C.(π﹣1)0=0D.(a3)2=a5【分析】各式计算得到结果,即可作出判断.【解答】解:A、(﹣a)2=a2,正确;B、3﹣2=,错误;C、(π﹣1)0=1,错误;D、(a3)2=a6,错误;故选:A.3.(4分)如图中几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:左视图可得一个矩形,中间有提条看不到的线,用虚线表示,故D正确,故选:D.4.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.076微克,用科学记数法表示是()A.0.76×10﹣2微克B.7.6×10﹣2微克C.76×102微克D.7.6×102微克【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.076=7.6×10﹣2,故选:B.5.(4分)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围【解答】解:①x+8<4x﹣1﹣3x<﹣9x>3②x>m∵不等式组的解集为x>3∴m≤3故选:C.6.(4分)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=()A.30°B.40°C.50°D.60°【分析】首先根据平行线的性质确定∠1+∠CBA+∠BAC+∠2=180°,然后根据等边三角形的性质确定∠CBA=∠BAC=60°,从而确定正确的答案.【解答】解:∵l1∥l2,∴∠1+∠CBA+∠BAC+∠2=180°,∵△ABC是等边三角形,∴∠CBA=∠BAC=60°,∴∠1+∠2=180°﹣(∠CBA+∠BAC)=180°﹣120°=60°,故选:D.7.(4分)方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先将方程整理为一般形式,再根据根的判别式的值与零的大小关系即可判断.【解答】解:原方程可化为2x2+6x=0,∵△=b2﹣4ac=36﹣4×2×0=36>0,∴方程有两不相等的实数根.故选:A.8.(4分)如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是135【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;此选项正确;D、方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;此选项错误;故选:D.9.(4分)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B、C不重合)EF∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A.B.C.D.【分析】根据△DEF的面积=菱形的面积﹣△ADF的面积﹣△CDE的面积﹣△BEF的面积,表示出△DEF的面积即可.【解答】解:∵菱形ABCD中,∠B=60°,∴△ABC是等边三角形,∵EF∥AC,∴△BFE是等边三角形,∴BE=BF=x,∵BE=x,∴,∵AB=1,∴EC=AF=1﹣x,∴,∵,∴(其中0<x<1).故选:C.10.(4分)在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形,等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上.这个等腰三角形剪法有()A.1B.2C.3D.4【分析】分为两种情况:①当∠A为顶角时,②当∠A为底角时,画出图形,即可得出选项.【解答】解:有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,有两种情况:如图2,图3,此时AE=EF=5cm.故选:C.二、填空题(共4小题,每小题5分,共20分)11.(5分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=112.(5分)合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为y=6500(1+x)2.【分析】首先根据题意可得2014年的房价=2013年的房价×(1+增长率),2015年的房价=2014年的房价×(1+增长率),由此可得2015年的平均房价y=6500(1+x)2.【解答】解:由题意得:y=6500(1+x)2,故答案为:y=6500(1+x)2.13.(5分)如图,A、B、C为⊙O上三点,∠ACB=20°,则∠BAO的度数为70度.【分析】根据圆周角定理先求出∠O,再利用三角形内角和定理和等腰三角形的性质求解.【解答】解:连接OB,∵∠ACB=20°∴∠AOB=2∠C=40°∵OB=OA∴∠BAO=∠OAB==70°.14.(5分)如图,E、F是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为40cm2.【分析】作出辅助线EF,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【解答】解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.三、(本题每小题8分,共16分)15.(8分)计算:(﹣2020)0﹣3tan30°﹣|﹣2|.【分析】原式利用零指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1﹣3×﹣2+=1﹣﹣2+=﹣1.16.(8分)我国古代数学著作《九章算术》中记载:“今有人共买鸡,人出九;盈十一;人出六;不足十六,问人数、鸡价各几何?”其大意是:今有人合伙买鸡,若每人出9钱,则多11钱:若每人出6钱,则差16钱,问合伙人数、鸡价各是多少?【分析】设合伙人数为x,根据题意给出的等量关系即可求出答案.【解答】解:设合伙人数为x,根据题意可知:9x﹣11=6x+16,解得:x=9,∴鸡价为9x﹣11=70,答:合伙人数为9人,鸡价为70钱;四、解答题:(每小题8分,共16分)17.(8分)如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米.地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.73).【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【解答】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=1.2米,∴AC=AB﹣BC=6.8(米),∵∠DCA=90°﹣∠A=30°,∴CD=AC×cos∠DCA=6.8×≈5.9(米).答:该校地下停车场的高度AC为6.8米,限高CD约为5.9米.18.(8分)如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(﹣1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.【分析】(1)利用旋转的性质得出对应点位置进而得出答案;(2)利用△ABC的面积扩大为原来的4倍,得出相似比为:1:2,进而得出对应点位置即可得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2的坐标为:(1,﹣5).五、(本题每小题10,满分20分)19.(10分)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是10个,最少是4个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是14个,最少是5个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是4n+2个;最少是n+2个.(n是正整数)【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.【解答】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.20.(10分)如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.【分析】(1)根据直径所对的圆周角是直角求出∠C=90°,根据平行线的性质求出∠OEB=90°,即OD⊥BC,根据垂径定理即可证得结论;(2)设圆的半径为x,则OB=OD=x,OE=x﹣3,根据勾股定理求出答案.【解答】解:(1)∵AB是半圆O的直径,∴∠C=90°,∵OD∥AC,∴∠OEB=∠C=90°,∴OD⊥BC,∴BE=CE,∴E为BC的中点;(2)设圆的半径为x,则OB=OD=x,OE=x﹣3,∵BE=BC=4,在Rt△BOE中,OB2=BE2+OE2,∴x2=42+(x﹣3)2,解得x=,∴AB=2x=.六、(本题满分12分)21.(12分)2016年3月22日式第24个“世界水日”,校学生会主席小明同学就“节水方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2)2016年该初中九年级共有学生400人,按此调查,可以估计2016年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.【分析】(1)根据题意确定出样本的容量,进而求出选B与D的人数,求出各自占的百分比,补全扇形与条形统计图即可;(2)由“了解较多”与“非常了解”的百分比,乘以400即可得到结果;(3)列出得出所有等可能的情况数,找出恰好是一名男生一名女生的情况数,即可求出所求概率.【解答】解:(1)由条形统计图中A对应的数据和扇形统计图中A对应的百分比可知,抽取的样本容量为2÷10%=20,故选B的有20×30%=6(人),选D的有20﹣2﹣6﹣8=4(人),选C的百分比为8÷20=0.4=40%;选D的百分比为4÷20=0.2=20%;(2)∵选项“了解较多”以上的学生占抽取样本容量的(2+4)÷20=0.3=30%,∴九年级学生中节水方式“了解较多”以上的学生约有400×30%=120人;(3)选A的是一男一女,记作男1,女1,根据题意可知选择D的有4人且2男2女,分别记作男2,男3,女2,女3,列表如下:男2男3女2女3男1(男1,男2)(男1,男3)(男1,女2)(男1,女3)女1(女1,男2)(女1,男3)(女1,女2)(女1,女3)由上面可得共有8种等可能的情况,其中1男1女的有4种,则选择1男1女的概率P==.七、(本题满分12分)22.(12分)某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=﹣x+150,成本为50元/件,无论销售多少,每月还需支出广告费90000元,设月利润为w内(元),若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=140元/件,w内=0元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.【分析】(1)将x=1000代入求值即可;(2)根据“利润=销售额﹣成本﹣广告费”可求出w内与x间的函数关系式,根据“利润=销售额﹣成本﹣附加费”可求出w外与x间的函数关系式;(3)先运用二次函数的性质求出w内取最大值时x的值,再根据w外的最大值等于w内的最大值,列出关于a的方程,解方程即可求出a的值;【解答】解:(1)当x=1000时,y=﹣×1000+150=140元/件,w内=1000×(140﹣50)﹣90000=0元;(2)w内=x(y﹣50)﹣90000=x(﹣x+150﹣50)﹣90000=﹣x2+100x﹣90000,即w内=﹣x2+100x﹣90000,w外=x(150﹣a)﹣x2=﹣x2+(150﹣a)x,即w外=﹣x2+(150﹣a)x;(3)∵w内=﹣x2+100x﹣90000,∴当x=﹣=5000时,w内最大;∵在国外销售月利润的最大值与在国内销售月利润的最大值相同,∴=,整理,得(150﹣a)2=13600,解得a1=34,a2=284(不合题意,舍去).∴a=34.八、(本题满分14分)23.(14分)如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=F A,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽△ABF∽△BCD;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.【分析】(1)①根据等腰三角形的性质得到∠DBC=∠DCB,∠FBA=∠F AB,∠ACE =∠EAC,等量代换得到∠F AB=∠BCD=∠EAC,于是得到结论;②根据相似三角形的性质得到,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到∠EDC=∠FBD,∠FDB=∠ACB等量代换得到∠FDB =∠ACB,根据全等三角形的判定即可得到结论;(3)根据全等三角形的性质得到FB=DE,DF=CE,等量代换得到FD=AE,F A=DE,推出四边形AFDE是平行四边形,连接AD,于是得到AD平分∠BAC,根据菱形的判定定理即可得到结论.【解答】解:(1)①∵DB=DC,∴∠DBC=∠DCB,∵FB=F A,EA=EC,∴∠FBA=∠F AB,∠ACE=∠EAC,∵∠FBA=∠DBC=∠ECA,∴∠F AB=∠BCD=∠EAC,∴△ACE∽△ABF∽△BCD;故答案为:△ABF,△BCD;②由①知,△ACE∽△BCD,∴,即,∵∠ECA=∠DCB,∴∠ECD=∠ACB,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴∠ABC=∠EDC,∵∠ABC=∠FBD,∴∠EDC=∠FBD,同理△BFD∽△BAC,∴∠FDB=∠ACB,∵∠ACB=∠ECD,∴∠FDB=∠ACB,在△FBD与△EDC中,∴△FBD≌△EDC;(3)四边形AFDE是菱形,理由:∵△FBD≌△EDC,∴FB=DE,DF=CE,∵FB=F A,EA=EC,∴FD=AE,F A=DE,∴四边形AFDE是平行四边形,连接AD,则AD平分∠BAC,即∠BAD=∠CAD,∵∠BAF=∠CAE,∴∠DAF=∠DAE,∵AF∥DE,∴∠DAF=∠ADE,∴∠EAD=∠ADE,∴EA=ED,∴▱AFDE是菱形.。

2020年安徽省中考数学模试题(含答案)

2020年安徽省中考数学模试题(含答案)

2020年安徽省中考模拟考试数学试题一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.5 2.0 1.2 2.4?0 0 0 0绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°= .【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年安徽省中考数学模拟试卷(一)副标题题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.合肥市某日的气温是−2℃~6℃,则该日的温差是()A. 8℃B. 5℃C. 2℃D. −8℃2.计算−a2⋅a3的结果是()A. a5B. −a5C. −a6D. a63.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是()A. B. C. D.4.太阳中心的温度高达19200000℃,有科学记数法将19200000℃可表示为()A. 1.92×106B. 1.92×107C. 19.2×106D. 19.2×1075.如图,已知AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A. 64°B. 65°C. 66°D. 67°6.不等式组{2(x+3)≥25−x>4的解集是()A. −2≤x<1B. −2<x≤1C. −1<x≤2D. −1≤x<27.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是()A. 被抽取的天数为50天B. 空气轻微污染的所占比例为10%C. 扇形统计图中表示优的扇形的圆心角度数57.6°D. 估计该市这一年(365天)达到优和良的总天数不多于290天8.某商品原价300元,连续两次降价a%后售价为260元,下面所列方程正确的是()A. 300(1+a%)2=260B. 300(1−a2%)=260C. 300(1−2a%)=260D. 300(1−a%)2=2609.若函数y=ax−c与函数y=b的图象如右图所示,则函数y=ax2+bx+c的大致x图象为()A. B.C. D.10.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2√3,Q为AC上的动点,P为Rt△ABC内一动点,且满足∠APB=120°,若D为BC的中点,则PQ+DQ的最小值是()A. √43−4B. √43C. 4D. √43+4二、填空题(本大题共4小题,共20.0分)11.要使式子√a+1有意义,则a的取值范围是______.a−112.分解因式:a3−4ab2=______.13.如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则劣弧CE⏜的长=______.14.对于一个函数,如果它的自变量x与函数值y满足:当−1≤x≤1时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,−1)和点B(−1,1),则a的取值范围是______.三、解答题(本大题共8小题,共78.0分)15.计算:√9+(π−3)0−|−5|+(−1)2019+(12)−2.16.先化简,再求值:(xx+1−3xx−1)÷xx2−1,其中x=−2.17.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC为格点三角形(顶点在网格线的交点).(1)将△ABC向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕着某点O逆时针方向旋转90°后,得到△A2B2C2,请画出旋转中心O,并直接写出在此旋转过程中,线段AB扫过的区域的面积.18.观察以下等式:第1个等式:11−11×2+12=1,第2个等式:12−12×3+23=1,第3个等式:13−13×4+34=1,第4个等式:14−14×5+45=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.19.为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.20.如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=12(90°−∠P)成立.请你写出推理过程.21.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了______名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.22.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.①求证:DF=EF;②若b=6,c=4,求CG的长度;(2)若题(1)中,S△BDH=S△EGH,求b的值.c2323.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.答案和解析1.【答案】A【解析】解:6−(−2)=8(°C).故选:A.根据:温差=最高气温−最低气温,计算即可.本题主要考查了有理数减法,掌握计算温差的公式和有理数的减法法则是解决本题的关键.2.【答案】B【解析】解:−a2⋅a3=−a5故选:B.根据同底数幂的乘法法则求解即可求得答案.本题主要考查了同底数幂的乘法知识,解题的关键是熟记法则.3.【答案】A【解析】解:“阳马”的俯视图是一个矩形,还有一条看得见的棱,故选:A.找到从上面看所得到的图形即可.本题考查了学生的思考能力和对几何体三种视图的空间想象能力与及考查视图的画法,看得到的棱画实线,看不到的棱画虚线.4.【答案】B【解析】解:将19200000用科学记数法表示为:1.92×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:∵AB//CD,∴∠BEF=180°−∠1=180°−48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选:C.根据平行线的性质和角平分线的定义求解.此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.6.【答案】A【解析】解:由①得:x≥−2由②得:x<1,所以不等式组的解集为:−2≤x<1.故选:A.根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.本题主要考查利用不等式的性质解一元一次不等式,根据找不等式组的解集的规律找出不等式组的解集是解此题的关键.7.【答案】D【解析】解:A、被抽查的天数是:32÷64%=50(天),则命题正确;B、空气轻度微污染的天数是:50−8−32−3−1−1=5,则所占的比例是:5×100%=10%,则命题正确;50=57.6°,则命题正确;C、表示优的扇形统计图的圆心角是:360°×850=292(天),则命题错误.D、一年中达到优和良的天数是365×8+3250故选D.(1)根据空气是良的天数是32天,所占的百分比是64%,即可求得调查的总天数;(2)利用调查的总天数减去其它类型的天数即可求得空气轻度微污染的天数,然后利用百分比的意义求解;(3)利用360°乘以对应的百分比即可求得;(4)利用365天乘以达到优和良的天数所占的比例即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:当商品第一次降价a%时,其售价为300−300a%=300(1−a%);当商品第二次降价a%后,其售价为300(1−a%)−300(1−a%)a%=300(1−a%)2.∴300(1−a%)2=260.故选:D.根据降价后的价格=原价(1−降低的百分率),本题可先用a%表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于260即可.9.【答案】D【解析】解:∵一次函数的图象经过一、三、四象限,∴a>0,c>0,∴二次函数的图象开口向上,淘汰A、C选项;∵反比例函数的图象位于二、四象限,∴b<0,>0,∴对称轴x=−b2a∴对称轴位于y轴的右侧.故选:D.首先根据一次函数和反比例函数图象确定a、c和b的符号,然后判断二次函数的图象即可.本题考查了一次函数、反比例函数及二次函数的图象与比例系数的关系,牢记系数的符号对图象的影响是解题的关键.10.【答案】A【解析】解:如图以AB为边,向左边作等边△ABE,作△ABE的外接圆⊙O,连接OB,则点P在⊙O上.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,BC=2√3,∴AB=4√3,则易知OB=4,OB⊥BC,作点D关于AC的对称点D′,连接OD′,OP,PD′,PD′交AC于Q,则PQ+QD=PQ+ QD′=PD′,∵PD′≥OD′−OP,OP=OB=4,OD′=√42+(3√3)2=√43,∴PD′≥√43−4,∴PQ+DQ的最小值为√43−4,故选:A.如图以AB为边,向左边作等边△ABE,作△ABE的外接圆⊙O,连接OB,则点P在⊙O 上.作点D关于AC的对称点D′,连接OD′,OP,PD′,PD′交AC于Q,则PQ+QD= PQ+QD′=PD′,根据PD′≥OD′−OP,求出OP,OD′即可解决问题.本题考查轴对称−最短问题,解直角三角形等知识,解题的关键是学会利用轴对称解决最短问题,属于中考选择题中的压轴题.11.【答案】a≥−1且a≠1【解析】解:由题意,得a+1≥0,a−1≠0,解得a≥−1且a≠1,故答案为:a≥−1且a≠1.根据分子的被开方数不能为负数,分母不能为零,可得答案.本题考查了分式有意义的条件,利用分子的被开方数不能为负数,分母不能为零得出不等式是解题关键.12.【答案】a(a+2b)(a−2b)【解析】解:a3−4ab2=a(a2−4b2)=a(a+2b)(a−2b).故答案为:a(a+2b)(a−2b).观察原式a3−4ab2,找到公因式a,提出公因式后发现a2−4b2符合平方差公式的形式,再利用平方差公式继续分解因式.本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.13.【答案】2√33πcm【解析】解:连接OC、OE,作AD⊥BC于D,作OF⊥AC于F,在Rt△ABD中,AD=AB⋅sinB=2√3,∴OC=OE=√3,∵BC为⊙O的切线,∴OC⊥BC,∴∠OCE=90°−60°=30°,∵OC=OE,∴∠COE=120°,∴劣弧CE⏜的长=120π×√3180=2√33π,故答案为:2√33πcm.连接OC、OE,作AD⊥BC于D,作OF⊥AC于F,根据正弦的定义求出AD,根据题意求出⊙O的半径,根据切线的性质得到OC⊥BC,根据弧长公式计算即可.本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.14.【答案】−12≤a<0或0<a≤12【解析】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(1,−1)和点B(−1,1),∴a+b+c=−1①a−b+c=1②①+②得:a+c=0即a与c互为相反数,①−②得:b=−1;所以抛物线表达式为y=ax2−x−a(a≠0),∴对称轴为x=12a,当a<0时,抛物线开口向下,且x=12a<0,∵抛物线y=ax2−x−a(a≠0)经过点A(1,−1)和点B(−1,1),画图可知,当12a ≤−1时符合题意,此时−12≤a<0,当−1<12a<0时,图象不符合−1≤y≤1的要求,舍去同理,当a>0时,抛物线开口向上,且x=12a>0,画图可知,当12a ≥1时符合题意,此时0<a≤12,当0<12a<1时,图象不符合−1≤y≤1的要求,舍去,综上所述:a的取值范围是−12≤a<0或0<a≤12,故答案为:−12≤a<0或0<a≤12.把A、B的坐标代入函数解析式,即可求出a+c=0,b=−1,代入得出抛物线表达式为y=ax2−x−a(a≠0),得出对称轴为x=12a,再进行判断即可.本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运用性质和已知函数的新定义求解是解此题的关键.15.【答案】解:原式=3+1−5−1+4=2.【解析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,绝对值的代数意义,以及乘方的意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.【答案】解:原式=x2−x−3x2−3x(x+1)(x−1)⋅(x+1)(x−1)x=−2x−4,当x=−2时,原式=0.【解析】根据分式的混合运算法则化简,然后代入计算即可.本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.17.【答案】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:点O即为所求;线段AB扫过的区域的面积为:90⋅π⋅(√62+12)2360−90⋅π⋅(√42+22)2360=17π4.【解析】(1)首先确定A、B、C三点关于平移后的对应点位置,再连接即可;(2)根据对应点到旋转中心距离相等确定O的位置.根据扇形面积公式,利用线段AB 所扫过的面积等于两个扇形的面积差.本题考查了作图−旋转变换和对称变换,关键是确定对称点和旋转后对应点的位置.18.【答案】解:(1)第5个等式为:15−15×6+56=1;(2)第n个等式为:1n −1n(n+1)+nn+1=1;证明:左边=n+1n(n+1)−1n(n+1)+n2n(n+1) =n2+nn(n+1) =n(n+1)n(n+1)=1=右边∴等式成立;【解析】(1)根据提供的算式写出第5个算式即可;(2)根据规律写出通项公式然后证明即可.本题考查了数字的变化类问题,解题的关键是仔细观察各个等式并从中找到规律.19.【答案】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在Rt△PAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x−100(米),在Rt△PBM中,∵tan∠PBM=PMBM,∴tan60°=xx−100=√3,解得:x=50(3+√3),在Rt△QAM中,∵tan∠QAM=QMAM,∴QM=AM⋅tan∠QAM=50(3+√3)×tan30°=50(√3+1)(米),∴PQ=PM−QM=100(米);答:信号塔PQ的高度约为100米.【解析】延长PQ交直线AB于点E,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出PQ的长度即可.本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.20.【答案】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=12AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=90°−∠P,∴∠BCP=12(90°−∠P)【解析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.21.【答案】(1)200(2)④所在扇形的圆心角70200×360°=126°,③的人数200×9%=18人,②的人数200−18−2−70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p=110200=1120,他属于第②种情况的概率为1120.【解析】解:(1)2÷1%=200(名).故答案为200;(2)见答案(3)见答案(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以360°,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:②的人数除以总人数,可得答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】(1)①证明:∵F为AC中点,DE是△ABC在BC边上的中分线段,∴DF是△CAB的中位线,∴DF=12AB=12c,AF=12AC=12b,CE=12(b+c),∴AE=b−CE=b−12(b+c)=12(b−c),∴EF=AF−AE=12b−12(b−c)=12c,∴DF=EF;②解:过点A作AP⊥BG于P,如图1所示:∵DF是△CAB的中位线,∴DF//AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠PAC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE//AP,∴∠PAC=∠DEF,∴∠BAP=∠DEF=∠PAC,∵AP⊥BG,∴AB=AG=4,∴CG=AC−AG=6−4=2;(2)解:连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE//DG,∵DF//AB,∴△ABE∽△FDG,∴ABDF =AEFG=21,∴FG=12AE=12×12(b−c)=14(b−c),∵AB=AG=c,∴CG=b−c,∴CF=12b=FG+CG=14(b−c)+(b−c),∴3b=5c,∴bc =53.【解析】(1)①由题意得出DF是△CAB的中位线,得出DF=12AB=12c,AF=12AC=1 2b,CE=12(b+c),AE=12(b−c),求出EF=AF−AE=12c,即可得出结论;②过点A作AP⊥BG于P,由中位线定理得出DF//AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE//AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP⊥BG,得出AB=AG=4,即可得出结果;(2)连接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE//DG,再由DF//AB,得出△ABE∽△FDG,得出ABDF =AEFG=21,推出FG=14(b−c),CF=12b=FG+CG=14(b−c)+(b−c),即可得出结果.本题是三角形综合题,考查了新定义、等腰三角形的判定与性质、平行线的判定与性质、三角形中位线定理、相似三角形的判定与性质、同底三角形面积相等则高相等等知识;熟练掌握中位线定理与平行线的性质是解题的关键.23解:(1)当每吨售价是240元时,此时的月销售量为:45+×7.5=60;(2)设当售价定为每吨x元时,由题意,可列方程(x-100)(45+×7.5)=9000.化简得x2-420x+44000=0.解得x1=200,x2=220.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.(3)我认为,小静说的不对.∵由(2)知,x2-420x+44000=0,∴当月利润最大时,x为210元.理由:方法一:当月利润最大时,x为210元,而对于月销售额=来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325元<18000元,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)。

相关文档
最新文档