长沙市中考数学试题及答案
2024年湖南省长沙市中考数学真题卷及答案解析
2024年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共10个小题,每小题3分,共30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.(3分)我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000,建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A.1.29×108B.12.9×108C.1.29×109D.129×107 3.(3分)“玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是﹣180℃、最高温度是150℃,则它能够耐受的温差是( )A.﹣180℃B.150℃C.30℃D.330℃4.(3分)下列计算正确的是( )A.x6÷x4=x2B.+=C.(x3)2=x5D.(x+y)2=x2+y25.(3分)为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A.9.2B.9.4C.9.5D.9.66.(3分)在平面直角坐标系中,将点P(3,5)向上平移2个单位长度后得到点P′的坐标为( )A.(1,5)B.(5,5)C.(3,3)D.(3,7)7.(3分)对于一次函数y=2x﹣1,下列结论正确的是( )A.它的图象与y轴交于点(0,﹣1)B.y随x的增大而减小C.当时,y<0D.它的图象经过第一、二、三象限8.(3分)如图,在△ABC中,∠BAC=60°,∠B=50°,AD∥BC,则∠1的度数为( )A.50°B.60°C.70°D.80°9.(3分)如图,在⊙O中,弦AB的长为8,圆心O到AB的距离OE=4,则⊙O的半径长为( )A.4B.C.5D.10.(3分)如图,在菱形ABCD中,AB=6,∠B=30°,点E是BC边上的动点,连接AE,DE,过点A作AF⊥DE于点F.设DE=x,AF=y,则y与x之间的函数解析式为(不考虑自变量x的取值范围)( )A.y=B.y=C.y=D.y=二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)为了比较甲、乙、丙三种水稻秧苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知 种秧苗长势更整齐(填“甲”、“乙”或“丙”).12.(3分)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会.小明家参与抽奖,获得一等奖的概率为 .13.(3分)要使分式有意义,则x需满足的条件是 .14.(3分)半径为4,圆心角为90°的扇形的面积为 (结果保留π).15.(3分)如图,在△ABC中,点D,E分别是AC,BC的中点,连接DE.若DE=12,则AB的长为 .16.(3分)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是 .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:()﹣1+|﹣|﹣2cos30°﹣(π﹣6.8)0.18.(6分)先化简,再求值:2m﹣m(m﹣2)+(m+3)(m﹣3),其中m=.19.(6分)如图,在Rt△ABC中,∠ACB=90°,AB=2,AC=2,分别以点A,B为圆心,大于AB的长为半径画弧,两弧分别交于点M和N,作直线MN分别交AB,BC 于点D,E,连接CD,AE.(1)求CD的长;(2)求△ACE的周长.20.(8分)中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.类型人数百分比纯电m54%混动n a%%氢燃料3b%油车5c%请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了 人;表中a= ,b= ;(2)请补全条形统计图:(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?21.(8分)如图,点C在线段AD上,AB=AD,∠B=∠D,BC=DE.(1)求证:△ABC≌△ADE;(2)若∠BAC=60°,求∠ACE的度数.22.(9分)刺绣是我国民间传统手工艺,湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A、B两种奥运主题的湘绣作品作为纪念品.已知购买1件A种湘绣作品与2件B种湘绣作品共需要700元,购买2件A种湘绣作品与3件B种湘绣作品共需要1200元.(1)求A种湘绣作品和B种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A种湘绣作品和B种湘绣作品共200件,总费用不超过50000元,那么最多能购买A种湘绣作品多少件?23.(9分)如图,在▱ABCD中,对角线AC,BD相交于点O,∠ABC=90°.(1)求证:AC=BD;(2)点E在BC边上,满足∠CEO=∠COE.若AB=6,BC=8,求CE的长及tan∠CEO 的值.24.(10分)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形:只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内切圆,而无外接圆的四边形称为“内切型单圆”四边形:既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”).①平行四边形一定不是“平凡型无圆”四边形; ②内角不等于90°的菱形一定是“内切型单圆”四边形; ③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有R=r. (2)如图1,已知四边形ABCD内接于⊙O,四条边长满足:AB+CD≠BC+AD.①该四边形ABCD是“ ”四边形(从约定的四种类型中选一种填入);②若∠BAD的平分线AE交⊙O于点E,∠BCD的平分线CF交⊙O于点F,连接EF.求证:EF是⊙O的直径.(3)已知四边形ABCD是“完美型双圆”四边形,它的内切圆⊙O与AB,BC,CD,AD 分别相切于点E,F,G,H.①如图2,连接EG,FH交于点P.求证:EG⊥FH;②如图3,连接OA,OB,OC,OD,若OA=2,OB=6,OC=3,求内切圆⊙O的半径r及OD的长.25.(10分)已知四个不同的点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)都在关于x的函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象上.(1)当A,B两点的坐标分别为(﹣1,﹣4),(3,4)时,求代数式2024a+1012b+的值;(2)当A,B两点的坐标满足a2+2(y1+y2)a+4y1y2=0时,请你判断此函数图象与x轴的公共点的个数,并说明理由;(3)当a>0时,该函数图象与x轴交于E,F两点,且A,B,C,D四点的坐标满足:2a2+2(y1+y2)a++=0,2a2﹣2(y3+y4)a++=0.请问是否存在实数(m>1),使得AB,CD,m•EF这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m的值和此时函数的最小值;若不存在,请说明理由(注:m•EF表示一条长度等于EF的m倍的线段).2024年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
2022年湖南长沙中考数学试题及答案详解
2022年湖南长沙中考数学试题及答案详解(试题部分)一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. -6的相反数是( ) A.-16 B.-6 C.16 D.62. 如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是 ( )A B C D3. 下列说法中,正确的是( ) A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是134. 下列计算正确的是( ) A.a 7÷a 5=a 2B.5a -4a =1C.3a 2·2a 3=6a 6D.(a -b )2=a 2-b 25. 在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( ) A.(-5,1) B.(5,-1) C.(1,5) D.(-5,-1)6.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定。
某班7名学生已经学会炒的菜品的种数依次为3,5,4,6,3,3,4.则这组数据的众数和中位数分别是( )A.3,4B.4,3C.3,3D.4,4 7. 为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的价格为10元/本,乙种读本的价格为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100-x)元C.8(100-x)元D.(100-8x)元8.如图,AB∥CD,AE∥CF,∠BAE=75°,则∠DCF的度数为()A.65°B.70°C.75°D.105°9.如图,PA,PB是☉O的切线,A、B为切点,若∠AOB=128°,则∠P的度数为()A.32°B.52°C.64°D.72°10.如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.若AB=2√2,则AM的长为()A.4B.2C.√3D.√2二、填空题(每小题3分,共18分)11.若式子√x−19在实数范围内有意义,则实数x的取值范围是.12.分式方程2x =5x+3的解为.13. 如图,A 、B 、C 是☉O 上的点,OC ⊥AB ,垂足为点D ,且D 为OC 的中点,若OA =7,则BC 的长为 .14. 关于x 的一元二次方程x 2+2x +t =0有两个相等的实数根,则实数t 的值为 .15. 为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1 000名学生中,随机抽取了100名学生进行调查,结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有 名.16. 当今是大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力,看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1 000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1 000个方格中只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码.现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数; DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1 024,103=1 000,所以我估计2200比1060大。
2023长沙中考数学试卷及答案
2023长沙中考数学试卷及答案尊敬的教师、学生和家长:以下是2023年长沙市中考数学试卷及答案,仅供参考:一、选择题1. 下列四个数中,最小的数是()。
A. $-\dfrac{3}{5}$B. $-\dfrac{4}{7}$C. $-\dfrac{2}{3}$D. $-\dfrac{5}{8}$答案:B2. 若 $x+y=0$,则 $\dfrac{x}{y}+\dfrac{y}{x}$ 的值为()。
A. $-2$B. $0$C. $1$D. $2$答案:A3. 已知函数 $f(x)$ 的图象如图所示,那么下列说法中错误的是()。
![](image.png)A. $f(x)$ 为奇函数B. $f(3)=f(-3)$C. $f(1)>0$ 且 $f(-1)<0$D. $f(x)$ 在 $[-1,1]$ 内单调递减答案:D二、填空题1. 把 $8$ 千克的糖分成 $125$ 相等的部分,每部分重为\_\_\_\_\_ 克。
答案:$64$2. 已知等差数列 $a_1,a_2,\cdots,a_{10}$ 的公差为 $3$,$a_1+a_2+\cdots+a_{10}=55$,$a_2+a_4+\cdots+a_{10}=30$,则$a_1=\_\_\_\_$,$a_3=\_\_\_\_$。
答案:$2$,$8$3. 小明得到的一元二次方程 $x^2-2mx+n=0$ 的两根相差 $3$,则 $m=\_\_\_\_$,$n=\_\_\_\_$。
答案:$3$,$-4$三、解答题1. 设 $A,B,C$ 是三点,$AB=BC$,$\angle BAC=100^\circ$,$\angle ABC=140^\circ$。
求 $\angle BCA$ 的度数。
解答如下:连接 $AC$ 并作 $\angle BCA$ 的平分线 $CD$,如图所示:![](image2.png)由角平分线定理,可得:$$\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{BC}{AC}$$又因为 $AB=BC$,所以 $\dfrac{BD}{DC}=1$,于是$BD=DC$。
精品解析:2022年湖南省长沙市中考数学真题(解析版)
A. 元B. 元C. 元D. 元
【答案】C
【解析】
【分析】根据题意列求得购买乙种读本 本,根据单价乘以数量即可求解.
5.答题卡上不得使用涂改液、涂改胶和贴纸;
6.本学科试卷共25个小题,考试时量120分钟,满分120分.
一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)
1. 的相反数是()
A. B. C. D.6
【答案】D
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
故选:C.
【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.
9.如图,PA,PB是 的切线,A、B为切点,若 ,则 的度数为( )
A. B. C. D.
【答案】B
【解析】
【分析】根据切线的性质以及四边形的内角和即可求解.
【详解】解:∵PA,PB是 的切线,
∴ ,
,
,
则 ,
故选B.
【点睛】本题考查了切线的性质以及四边形的内角和,掌握切线的性质是解题的关键.
【详解】解:A.调查某班45名学生的身高情况宜采用全面调查,故该选项正确,符合题意;
B.“太阳东升西落”是必然事件,故该选项不正确,不符合题意;
C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故该选项不正确,不符合题意;
D.任意投掷一枚质地均匀的硬币26次,出现Байду номын сангаас面朝上的次数可能是13次,故该选项不正确,不符合题意;
长沙数学中考试题库答案
长沙数学中考试题库答案长沙作为湖南省的省会城市,每年都会举行中考,其中数学科目是中考的重要组成部分。
中考数学试题库包含了大量的历年真题和模拟题,旨在帮助学生更好地复习和准备考试。
以下是对长沙数学中考试题库的一些答案解析,供同学们参考。
一、选择题1. 题目:若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
答案:正确。
根据勾股定理,若三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形。
2. 题目:下列哪个数是有理数?A. πB. √2C. 0.1010010001...D. √3答案:C。
π和√3都是无理数,√2是无理数,而0.1010010001...是一个有理数,因为它是无限循环小数。
3. 题目:若x^2 - 5x + 6 = 0,求x的值。
答案:(x - 2)(x - 3) = 0,所以x = 2或x = 3。
二、填空题1. 题目:一个数的平方根是4,这个数是____。
答案:16。
因为4的平方是16。
2. 题目:若一个圆的半径为r,那么它的面积是____πr^2。
答案:πr^2。
圆的面积公式是A = πr^2。
3. 题目:若a > 0,b < 0,且|a| < |b|,则a + b ____ 0。
答案:< 0。
因为b的绝对值大于a的绝对值,所以a + b的结果为负数。
三、解答题1. 题目:证明:对于任意实数x,x^3 - x 能被x - 1整除。
证明:我们可以将x^3 - x写成(x - 1)(x^2 + x + 1),这样可以看出x^3 - x确实能被x - 1整除。
2. 题目:一个长方体的长、宽、高分别是a、b、c,求它的体积。
答案:体积V = a * b * c。
长方体的体积是其长、宽、高的乘积。
3. 题目:解一元二次方程x^2 + 4x + 4 = 0。
答案:(x + 2)^2 = 0,所以x = -2。
2024年湖南省长沙市中考数学试题(解析版)
2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。
2022年长沙市中考数学试卷含参考解析
2022年长沙市中考数学试卷含参考解析参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2B.﹣C.2D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.2.(3.00分)据统计,2022年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102某105B.10.2某103C.1.02某104D.1.02某103【分析】科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10200=1.02某104,故选:C.3.(3.00分)下列计算正确的是()A.a2+a3=a5B.3C.(某2)3=某5D.m5÷m3=m2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(某2)3=某6,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式某+2>0,得:某>﹣2,解不等式2某﹣4≤0,得:某≤2,则不等式组的解集为﹣2<某≤2,将解集表示在数轴上如下:故选:C.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴∴,+1在4到5之间.故选:C.10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间某之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:某5某500某12某500=7500000(平方米)=7.5(平方千米).故选:A.12.(3.00分)若对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),∴某02﹣16≠a(某0﹣3)2+a(某0﹣3)﹣2a∴(某0﹣4)(某0+4)≠a(某0﹣1)(某0﹣4)∴(某0+4)≠a(某0﹣1)∴某0=﹣4或某0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.。
2022年湖南省长沙市中考数学试卷和答案
2022年初中毕业学业考试试卷数 学考生注意:本试卷共26道小题,时量120分钟,满分120分.一、填题(本题共8个小题,每小题3分,满分24分) 、-8的绝对值是 .2、函数y =2-x 中的自变量x 的取值范围是 .3、△ABC 中,∠A=55︒,∠B=25︒,则∠C= .4、方程112=-x 的解为x = .5、如图,P 为菱形ABCD 的对角线上一点,PE ⊥AB 于点E ,PF ⊥AD于点F ,PF=3cm ,则P点到AB 的距离是cm .(第5题)(第6题) 6、如图,在Rt △ABC 中,∠C=90︒,AB=10cm ,D 为AB 的中点,则CD = cm . 、已知a 、b 为两个连续整数,且a <7<b ,则b a += .8、在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的。
右边的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 元.(第8题)20元 44% 10元 20% 50元16%100元 12% 5元8%请将你认为正确的选项的代号填在下面的表格里:题 号 9 10 11 12 13 14 15 16 答 案、下面计算正确的是( )A 、221-=-B 、24±=C 、(3n m ⋅)2=6n m ⋅D 、426m m m =÷ 10、要反映长沙市一周内每天的最高气温的变化情况,宜采用( )A 、条形统计图B 、扇形统计图C 、折线统计图D 、频数分布直方图11、若点P (a ,a -4)是第二象限的点,则a 必须满足( )A 、a <4B 、a >4C 、a <0D 、0<a <412、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( ) A 、文B 、明C 、奥D 、运13、在同一平面直角坐标系中,函数x y 1-=与函数x y =的图象交点个数是( ) A 、0个B 、1个C 、2个D 、3个14、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( ) A 、4.8米B 、6.4米C 、9.6米D 、10米 、如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于( )A 、54B 、53C 、34D 、43(第15题) (第16题)16、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->0得 分 评卷人复评人三、解答题(本题共6个小题,每小题6分,满分36分)讲 文 明 迎 奥运 (第12题)POA· ..17、计算:0)151(30sin 2273--︒+.、先化简,再求值:a a a -+-21422,其中21=a .19、在下面的格点图中,每个小正方形的边长均为1个单位,请按下列要求画出图形: (1)画出图①中阴影部分关于O 点的中心对称图形; (2)画出图②中阴影部分向右平移9个单位后的图形; (3)画出图③中阴影部分关于直线AB 的轴对称图形.(图①)(图②)(图③)、解不等式组:⎪⎩⎪⎨⎧-<-≤-xx x 14340121,并将其解集在数轴上表示出来.21、当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?123-1-2-3-4-5-6、某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.四、解答题(本题共2个小题,每小题8分,满分16分) 23、(本题满分8分)“5·12”汶川大地震后,灾区急需大量帐篷。
2023年湖南省长沙市中考数学试卷(含答案)163742
2023年湖南省长沙市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列各数中,为无理数的是 A. B. C. D.2. 下列四个图案是四届冬奥会会徽图案上的一部分,其中为轴对称图形的是 A. B. C. D.3. 下列计算正确的是( )A.=B.=C.=D.=4. 下列各组数据能作为一个等腰三角形各边长的是( )A.,,B.,,C.,,D.,,5. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )()()+m 4m 3m 7(m 4)3m 7m(m−1)−mm 22÷m 5m 3m 22242344243372020268026805. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )A.B.C.D.6. 如图,直线,且, ,则的度数为( )A.B.C.D.7. 在演讲比赛中,位选手的成绩统计图如图所示,则这位选手成绩的众数是( )A.B. C.D.8. 不等式组的解集在数轴上表示正确的是( )A.B.C.D.9. 下列关于一次函数的说法,其中正确的是( )2020268026802.68×10112.68×10122.68×10132.68×1014AB//CD AC ⊥AD ∠ACD =58∘∠BAD 29∘42∘32∘58∘101080859095−2x+5≥3,<x−12x 3y =−2x+1A.图象经过第一、二、三象限B.图象经过点C.当时,D.随的增大而增大10. 育才学校积极开展志愿者服务活动,来自初三的名同学(男女)组成了“关爱老人”志愿小分队.若从该小分队中任选名同学参加周末的志愿活动,则恰好是男女的概率是( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 因式分解:=________.12. 一组数据的平均数为________.13. 如图,四边形中,,点是对角线上一点,是等边三角形,,则的度数为 ________.14. 如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为________.15. 如图,在 中,直径垂直于弦,若 ,则 的度数是_________.16. 已知线段,则经过,两点的最小的圆的半径为________.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )(−2,1)x >1y <0y x 3122111323123425−20xy+4x 2y 2−2,−1,5,1,2,1ABCD ∠ABC =,BC =BD 50∘E BD △AED AE =BE ∠ADC y =(x >0)k x A AB ⊥x B OA =2S △AOB k ⊙O CD AB ∠C =25∘∠BOD AB =6cm A B sin ⋅++|1−|−217. 计算:. 18. 先化简,再求值:,其中,=. 19. 年月日时分,中国空间站天和核心舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得成功.建造空间站、建成国家太空实验室,是实现我国载人航天工程“三步走”战略的重要目标,是建设科技强国、航天强国的重要引领性工程.天和核心舱发射成功,标志着我国空间站建造进入全面实施阶段,为后续任务展开奠定了坚实基础.某校航天爱好者的同学们构建数学模型,使用卷尺和测角仪测量天和核心舱的高度.如图所示,核心舱架设在米的稳固支架上,他们先在水平地面点处测得天和核心舱最高点的仰角为,然后沿水平方向前进米,到达点处,测得点的仰角为.测角仪的高度为米.求天和核心舱的高度.(结果精确到米,参考数据: ,,, 20. 月日是“世界读书日”,某校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解该校学生周末两天的读书时间,校团委随机调查了八年级部分学生的读书时间(单位:分钟),把读书时间分为四组:,,,. 部分数据信息如下:.组和组的所有数据:.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:被调查的学生共有________人,并补全频数分布直方图;在扇形统计图中,组所对应的扇形圆心角是________:若该校八年级共有名学生,请估计八年级学生中周末两天读书时间不少于分钟的人数.21. 如图,,,,,垂足分别为,.如图,猜想,,之间的数量关系,并证明;如图,若,,当点在内部时,则的长为________.(直接用含,的式子表示).22. 某学校为奖励学生分两次购买,两种品牌的圆珠笔,两次的购买情况如下表:第一次第二次2sin ⋅++|1−|60∘(π−2)0()13−23–√(a −b +a(2b −3a))2a =−12b 4202142911231B A 22∘MN 24C A 45∘MB 1.60.1sin ≈0.3722∘cos ≈0.9322∘tan ≈0.4022∘≈1.41)2–√423x A(30≤x <60)B(60≤x <90)C(90≤x <120)D(120≤x <150)a B C 859060701107565781008090809590b (1)(2)C ∘(3)40090∠ACB =90∘AC =BC AD ⊥CE BE ⊥CE D E (1)1BE DE AD (2)2AD =m DE =n D △ABC BE m n A B品牌圆珠笔支品牌圆珠笔支总计采购款元问,两种品牌圆珠笔的购买单价各是多少元?由于奖励人数增加,学校决定第三次购买,且购买品牌圆珠笔支数比品牌圆珠笔支数的倍多支,在采购总价不超过元的情况下,最多能购进多少支品牌圆珠笔?23. 如图,在中, ,点在边上,且若直线经过点,将该平行四边形的面积平分,并与平行四边形的另一边交于点,用无刻度的直尺画出点连接,,判断四边形的形状,并说明理由.24. 如图,的直径为,弦为,的平分线交于点.(1)求的长;(2)试探究、、之间的等量关系,并证明你的结论;(3)连接,为半圆上任意一点,过点作于点,设的内心为,当点在半圆上从点运动到点时,求内心所经过的路径长. 25. 如图,在平面直角坐标系中,抛物线,经过点、,过点作轴的平行线交抛物线于另一点.(1)求抛物线的表达式及其顶点坐标;(2)如图,点是第一象限中上方抛物线上的一个动点,过点作于点,作轴于点,交于点,在点运动的过程中,的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接,在轴上取一点,使和相似,请求出符合要求的点坐标.A /2030B /3040/102144(1)A B (2)B A 1.55213A 加ABCD AD =6E AD AE =2(1)1E F F;(2)AF CE AFCE ⊙O AB 10cm AC 6cm ∠ACB ⊙O D AD CA CB CD OD P ADB P PE ⊥OD E △OPE M P B A M y =−+bx+c 12x 2A(1,3)B(0,1)A x C 1M BC MH ⊥BC H ME ⊥x E BC F M △MFH 2AB y P △ABP △ABC P参考答案与试题解析2023年湖南省长沙市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】无理数的识别【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:、,是整数,属于有理数,故此选项不符合题意;、,是整数,属于有理数,故此选项不符合题意;、是分数,属于有理数,故此选项不符合题意;、属于无理数,故此选项符合题意.故选:.2.【答案】D【考点】轴对称图形【解析】此题暂无解析【解答】解:只有沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,其它三个不是轴对称图形.故选.3.【答案】C【考点】整式的混合运算【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】A =28–√32B =24–√2c 14D 10−−√D D D (4)313−m 22÷5322=,故选项错误(1)=,故选项正确(2)=,故选项错误(3)故选:.4.【答案】C【考点】三角形三边关系【解析】此题暂无解析【解答】此题暂无解答5.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】亿==.6.【答案】C【考点】平行线的性质垂线【解析】先根据平行线的性质得出的度数,再由得出,进而可得出结论.【解答】解:直线,,.,,.故选.7.【答案】C(m 4)3m 13B m(m−1)−m m 2C 2÷m 5m 32m 2D C a ×10n 1≤|a |<10n n a n ≥10n <1n 2680268000000000 2.68×1011∠BAC AC ⊥AD ∠CAD =90∘∵AB//CD ∠ACD =58∘∴∠BAC =−∠ACD =−=180∘180∘58∘122∘∵AC ⊥AD ∴∠CAD =90∘∴∠BAD =∠BAC −∠CAD =−=122∘90∘32∘C折线统计图【解析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据统计图可得:分的人数有个,人数最多,则众数是.故选.8.【答案】B【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】,解不等式①得:,解不等式②得:,则不等式组的解集为.【解答】解:解不等式①得:,解不等式②得:,则不等式组的解集为.故选.9.【答案】C【考点】一次函数的性质【解析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:、∵函数中,,,∴该函数的图象经过一、二、四象限,故本选项错误;、时,,故本选项错误;、∵函数中,,则随的增大而减小,直线与轴的交点为,∴当时,,故本选项正确;、∵函数中,,,∴当值增大时,函数值减小,故本选项错误;故选.10.90590C −2x+5≥3①<②x−12x 3x ≤1x <3x ≤1 −2x+5≥3①,<②,x−12x 3x ≤1x <3x ≤1B A y =−2x+1k =−2<0b =1>0B x =−2y =−2×(−2)+1=5C y =−2x+1k =−2<0y x x (,0)12x >1y <0D y =−2x+3k =−2<0b =1>0x y C列表法与树状图法概率公式【解析】此题暂无解析【解答】解:根据列举法可得:(男,女1)(男,女2)(女1,女2)一共有种情况,恰好是一男一女的有种情况,所以,(恰好是一男一女)故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】因式分解-运用公式法【解析】直接利用完全平方公式分解因式得出答案.【解答】原式=.12.【答案】【考点】算术平均数【解析】此题暂无解析【解答】解:由题意得,这组数据的平均数为:.故答案为:.13.32P =.23B (5x−2y)2(5x−2y)21=1−2−1+5+1+2+161等边三角形的性质等腰三角形的性质三角形的外角性质三角形内角和定理【解析】由等边三角形的性质可得,再由等边对等角可得,利用三角形的外角性质可得的度数,再结合,可得的度数,利用,可得的度数,进而得到答案.【解答】解:是等边三角形,.,.,,.,.,,.故答案为:.14.【答案】【考点】反比例函数系数k 的几何意义【解析】根据=利用反比例函数系数的几何意义即可求出值,再根据函数在第一象限有图象即可确定的符号,此题得解.【解答】解:∵轴于点,且,∴,∴.∵反比例函数在经过第一象限,∴.故答案为:15.【答案】【考点】∠AED =∠ADE =60∘∠BAE =∠ABE ∠ABE ∠ABC =50∘∠CBD BC =BD ∠CDB ∵△AED ∴∠AED =∠ADE =60∘∵AE =BE ∴∠BAE =∠ABE ∵∠AED =∠ABE+∠BAE ∴2∠ABE =60∘∴∠ABE =30∘∵∠ABC =50∘∴∠CBD =∠ABC −∠ABE =−=50∘30∘20∘∵BC =BD ∴∠C =∠BDC ===−∠CBD 180∘2−180∘20∘280∘∴∠ADC =∠ADE+∠BDC =+=60∘80∘140∘140∘4S △AOB 2k k k AB ⊥x B =2S △AOB =|k |=2S △AOB 12k =±4k =4 4.50∘圆周角定理垂径定理【解析】由垂径定理和“等弧所对的圆周角是所对的圆心角的一半”推知,得到答案.【解答】解:∵在中,直径垂直于弦,∴,∴.故答案为.16.【答案】【考点】圆的有关概念【解析】经过线段最小的圆即为以为直径的圆,求出半径即可.【解答】解:每个圆周上点就可以有一个内部交点,所以当这些交点不重合的时候,圆内交点最多,所以,本题等价于将个点个分组共有多少组,显然应该是:.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )17.【答案】解:原式.【考点】特殊角的三角函数值负整数指数幂零指数幂实数的运算【解析】此题暂无解析【解答】解:原式.18.【答案】∠DOB =2∠C ⊙O CD AB =ADˆBD ˆ∠DOB =2∠C =50∘50∘3cmAB AB 464=156×5×4×34×3×2×1=2×−1×9+−1=2+73–√23–√3–√=2×−1×9+−1=2+73–√23–√3–√−2ab ++2ab −3222−2+22原式==,当,=时,原式=.【考点】整式的混合运算——化简求值【解析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把与的值代入计算即可求出值.【解答】原式==,当,=时,原式=.19.【答案】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.−2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312a b −2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312A AF ⊥MN F BC E MBCN NCEF AE =xm Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m A AF ⊥MN F BC E MBCN NCEF AE =xm在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.20.【答案】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.【考点】频数(率)分布直方图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m (1)4÷20%=2020B 8D 2108(3)400×=1606+22090160(1)4÷20%=2020B 8D 2组所对应的扇形圆心角是.故答案为:.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.21.【答案】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.【考点】全等三角形的性质与判定【解析】无无【解答】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.同理可证,∴,,∴,∴.故答案为:.(2)C ×=620360∘108∘108(3)400×=1606+22090160(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DEBE =DE+AD m−n(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DE BE =DE+AD (2)△ACD ≅△CBE CE =AD BE =CD CE =CD+DE =BE+DE BE =AD−DE =m−n m−n22.【答案】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.【考点】二元一次方程组的应用——其他问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.23.【答案】【考点】平行四边形的性质勾股定理列表法与树状图法反比例函数综合题二次函数的应用【解析】此题暂无解析【解答】此题暂无解答24.【答案】(1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A (1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A∵是的直径,∴==,∵的平分线交于,∴==,∴=,∴=,∴=,∴===;=.证明如下:延长到,使=,∵=,=,∴=,在和中,,∴,∴=,=,∴==,为等腰直角三角形,∴==.连接,,∵,∴=,∵点为的内心,∴=,在和中,,∴,∴==,∴点在以为弦,并且所对的圆周角为的两段劣弧上(分左右两种情况):设弧所在圆的圆心为,∵=,∴=,∴==,∴的长为=,∴点的路径长为.【考点】圆的综合题【解析】AB ⊙O ∠ACB ∠ADB 90∘∠ACB ⊙O D ∠ACD ∠BCD 45∘AD BD A +B D 2D 2AB 4AD BD AB CA+CB CD CA F AF CB ∠CBD+∠CAD 180∘∠FAD+∠CAD 180∘∠CBD ∠FAD △ADF △BDC △ADF ≅△BDC(SAS)CD FD ∠CDB ∠FDA ∠CDF ∠ADB 90∘△CDF CA+CB CF CD OM PM PE ⊥OD ∠PEO 90∘M △OPE ∠OMP 135∘△OMD △OMP △OMD ≅△OMP(SAS)∠OMD ∠OMP 135∘M OD 135∘OD OMD O ′∠OMD 135∘∠OO D ′90∘O O ′OD πM π此题暂无解析【解答】此题暂无解答25.【答案】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC–√∴,∴,∴,综上所述满足条件的点有,.【考点】二次函数综合题【解析】(1)将,,代入抛物线,即可得出答案;(2)延长交轴于点,由点可求得,由=,设,求得,则,由勾股定理得,,所以的周长可用表示,最后利用二次函数的性质解决问题;(3)由,为公共角,可得.从而=.分当=时,当=时两种情况讨论即可得出答案.【解答】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,=PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133A(1,3)B(0,1)y =−+bx+c12x 2CA y D C(4,3)=BD CD 12tan ∠C tan ∠M ==FH MH 12M(a,−+a +1)12a 252F(a,a +1)12MF =−+2a 12a 2FH =MF,MH =MF 5–√525–√5△MFH MF ==AD BD BD CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC 2∘∠PAB ∠BAC A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√56+10–√当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133。
2022年湖南省长沙市中考数学试卷和答案解析
2022年湖南省长沙市中考数学试卷和答案解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣6的相反数是()A.﹣B.﹣6C.D.62.(3分)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.3.(3分)下列说法中,正确的是()A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.(3分)下列计算正确的是()A.a7÷a5=a2B.5a﹣4a=1C.3a2•2a3=6a6D.(a﹣b)2=a2﹣b25.(3分)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(3分)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是()A.3,4B.4,3C.3,3D.4,4 7.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元8.(3分)如图,AB∥CD,AE∥CF,∠BAE=75°,则∠DCF的度数为()A.65°B.70°C.75°D.105°9.(3分)如图,PA,PB是⊙O的切线,A、B为切点,若∠AOB =128°,则∠P的度数为()A.32°B.52°C.64°D.72°10.(3分)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若式子在实数范围内有意义,则实数x的取值范围是.12.(3分)分式方程的解为.13.(3分)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.14.(3分)关于x的一元二次方程x2+2x+t=0有两个相等的实数根,则实数t的值为.15.(3分)为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有名.16.(3分)当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).三、参考答案题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.参考答案应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣4|+()﹣1﹣()2+20350.18.(6分)解不等式组:.19.(6分)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为20m的斜坡,坡角∠BAD=30°,BD⊥AD于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为15°.(1)求该斜坡的高度BD;(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)20.(8分)2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.频数频率成绩x/分60≤x150.1<70a0.270≤x<8080≤x45b<9060c90≤x<100(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.21.(8分)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.22.(9分)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意参考答案下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.②刘三姐的姐妹们给出的答案是唯一正确的答案.③该歌词表达的数学题的正确答案有无数多种.(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.23.(9分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB =AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO =2,求BD的长及四边形ABCD的周长.24.(10分)如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD上,连接EF.(1)求证:△ABE∽△DCE;(2)当=,∠DFE=2∠CDB时,则﹣=;+=;+﹣=.(直接将结果填写在相应的横线上)(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.②当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE•CE.25.(10分)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.参考答案与解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【参考答案】解:﹣6的相反数是6,故选:D.【解析】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.【参考答案】解:根据主视图的概念,可知选B,故选:B.【解析】本题考查三视图的概念,掌握概念是解题的关键.3.【参考答案】解:A、调查某班45名学生的身高情况宜采用全面调查,故A符合题意;B、“太阳东升西落”是必然事件,故B不符合题意;C、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C不符合题意;D、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D不符合题意;故选:A.【解析】本题考查了概率的意义,全面调查与抽样调查,条形统计图,随机事件,熟练掌握这些数学概念是解题的关键.4.【参考答案】解:∵a7÷a5=a7﹣5=a2,∴A的计算正确;∵5a﹣4a=a,∴B的计算不正确;∵3a2•2a3=6a5,∴C选项的计算不正确;∵(a﹣b)2=a2﹣2ab+b2,∴D选项的计算不正确,综上,计算正确的是A,故选:A.【解析】本题主要考查了同底数幂的除法法则,合并同类项的法则,单项式乘以单项式的法则和完全平方公式,正确使用上述法则与公式进行运算是解题的关键.5.【参考答案】解:根据中心对称的性质,可知:点(5,1)关于原点O中心对称的点的坐标为(﹣5,﹣1).故选:D.【解析】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.6.【参考答案】解:∵这7个数据中出现次数最多的数据是3,∴这组数据的众数是3.把这组数据按从小到大顺序排为:3,3,3,4,4,5,6,位于中间的数据为4,∴这组数据的中位数为4,故选:A.【解析】本题主要考查众数的定义:一组数据中出现次数最多的数据就是这组数据的众数,中位数是指将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数这这组数据的中位数.7.【参考答案】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:C.【解析】此题主要考查了列代数式,正确表示出乙的本数是解题关键.8.【参考答案】解:如图:∵AB∥CD,∴∠DGE=∠BAE=75°,∵AE∥CF,∴∠DCF=∠DGE=75°,故选:C.【解析】本题考查平行线的性质,解题的关键是掌握两直线平行,同位角相等.9.【参考答案】解:∵PA,PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°,∵∠AOB=128°,∴∠P=360°﹣∠OAP﹣∠OBP﹣∠AOB=52°,故选:B.【解析】本题考查了切线的性质,熟练掌握切线的性质是解题的关键.10.【参考答案】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.【解析】本题考查尺规作图中的相关计算问题,解题的关键是根据作图证明△AMB是等腰直角三角形.二、填空题(本大题共6个小题,每小题3分,共18分)11.【参考答案】解:由题意得:x﹣19≥0,解得:x≥19,故答案为:x≥19.【解析】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.12.【参考答案】解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.【解析】此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.【参考答案】解:∵OA=OC=7,且D为OC的中点,∴OD=CD,∵OC⊥AB,∴∠ODA=∠CDB=90°,AD=BD,在△AOD和△BCD中,∴△AOD≌△BCD(SAS),∴BC=OA=7.故答案为:7.【解析】本题主要考查垂径定理和全等三角形的判定与性质,解题关键是熟知垂径定理内容.14.【参考答案】解:∵关于x的一元二次方程x2+2x+t=0有两个相等的实数根,∴Δ=0,即22﹣4×1×t=0,解得t=1,故答案为:t=1.【解析】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a ≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.15.【参考答案】解:估计该校全体学生中知晓湖南省“强省会战略”的学生有:1000×=950(名).故答案为:950.【解析】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.16.【参考答案】解:(1)∵2200就是200个2相乘,∴YYDS(永远的神)的说法正确;∵2200就是200个2相乘,2002是2个200相乘,∴2200不等于2002,∴DDDD(懂的都懂)说法不正确;∵21=2,22=4,23=8,24=16,25=32,…,∴2n的尾数2,4,8,6循环,∵200÷4=50,∴2200的个位数字是6,∴JXND(觉醒年代)说法正确;∵210=1024,103=1000,∴2200=(210)20=(1024)20,1060=(103)20=100020,∵1024>1000,∴2200>1060,∴QGYW(强国有我)说法正确;故答案为:DDDD.【解析】本题考查实数的运算,熟练掌握乘方的性质,积的乘方运算法则,尾数的循环规律是解题的关键.三、参考答案题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.参考答案应写出必要的文字说明、证明过程或演算步骤)17.【参考答案】解:|﹣4|+()﹣1﹣()2+20350=4+3﹣2+1=6.【解析】本题考查了零指数幂,负整数指数幂,绝对值,实数的运算,准确熟练地化简各式是解题的关键.18.【参考答案】解:,解不等式①得:x>﹣2,解不等式②得:x≤4,∴原不等式组的解集为:﹣2<x≤4.【解析】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组是解题的关键.19.【参考答案】解:(1)在Rt△ABD中,∵∠ADB=90°,∠BAD =30°,BA=20m,∴BD=BA=10(m),答:该斜坡的高度BD为10m;(2)在△ACB中,∠BAD=30°,∠BCA=15°,∴∠CBA=15°,∴AB=AC=20(m),答:斜坡新起点C与原起点A之间的距离为20m.【解析】本题主要考查坡度坡角的定义及解直角三角形,得到AB =AC是解题的关键.20.【参考答案】解:(1)由题意得:a=150﹣15﹣45﹣60=30,b =45÷150=0.3,c=60÷150=0.4,故答案为:30,0.3,0.4;(2)补全频数分布直方图如下:(3)画树状图如下:共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,∴选出的2名学生恰好为一名男生、一名女生的概率为=.【解析】此题考查的是用树状图法求概率以及频数分布表和频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【参考答案】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.【解析】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定定理.22.【参考答案】解:(1)设“三多“的每群狗有x条,则“一少“的狗有(300﹣3x)条,根据题意得:,解得75<x<100,∵x为奇数,∴x可取77,79,81......99,共12个,∴①正确,②③错误,故答案为:√,×,×;(2)设“三多“的每群狗有m条,“一少“的狗有n条,根据题意得:,解得,答:“三多“的每群狗有85条,“一少“的狗有45条.【解析】本题考查不等式组及二元一次方程组的应用,解题的关键是读懂题意,列出不等式组和方程组.23.【参考答案】(1)证明:∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD===,∴菱形ABCD的周长=4AD=4.【解析】本题考查了平行四边形的性质、菱形的判定与性质、三角形中位线定理以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.24.【参考答案】(1)证明:∵,∴∠ACD=∠ABD,即∠ABE=∠DCE,又∵∠DEC=∠AEB,∴△ABE∽△DCE;(2)解:∵△ABE∽△DCE,∴==,∴AE•CE=BE•DE,∴﹣==0,∵∠CDB+∠CBD=180°﹣∠BCD=∠DAB=2∠CDB,又∵∠DFE=2∠CDB,∴∠DFE=∠DAB,∴EF∥AB,∴∠FEA=∠EAB,∵=,∴∠DAC=∠BAC,∴∠FAE=∠FEA,∴FA=FE,∵EF∥AB,∴△DFE∽△DAB,∴=,∴====1,∵+==1,∴+=1,∴=0,故答案为:0,1,0;(3)解:①△ABE,△DCE都为等腰三角形,理由:记△ADE、△EBC的面积为S3、S4,则S=S1+S₂+S3+S4,∵==,∴S1S2=S3S4①,∵,即S=S1+S2+2,∴S3+S4=2②,由①②可得,即(﹣)2=0,∴S3=S4,∴S△ABE+S△ADE=S△ABE+S△EBC,即S△ABD=S△ADC,∴CD∥AB,∴∠ACD=∠BAC,∠CDB=∠DBA,∵∠ACD=∠ABD,∠CDB=∠CAB,∴∠EDC=∠ECD=∠EBA=∠EAB,∴△ABE,△DCE都为等腰三角形;②∵=,∴∠DAC=∠EAB,∵∠DCA=∠EBA,∴△DAC∽△EAB,∴=,∵AB=m,AD=n,CD=p,∴EA•AC=DA×AB=mn,∵∠BDC=∠BAC=∠DAC,∴∠CDE=∠CAD,又∠ECD=∠DCA,∴△DCE∽△ACD,∴=,∴EA•AC+CE•AC=AC2=mn+p2,则AC=,.EC==,∴AE=AC﹣CE=,∴AE•CE=.【解析】本题考查了圆周角定理,相似三角形的性质与判定,对于相似恒等式的推导是解题的关键.25.【参考答案】解:(1)①∵t=1,∴≤x≤,∵函数y=4044x,∴函数的最大值M=6066,函数的最小值N=2022,∴h=2022;②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt﹣k+b,∴h=k;当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N=kt+k+b,∴h=﹣k;综上所述:h=|k|;(2)t﹣≥1,即t≥,函数y=(x≥1)最大值M=,最小值N=,∴h=,当t=时,h有最大值;(3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,∴函数的对称轴为直线x=2,y的最大值为4+k,①当2≤t﹣时,即t≥,此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,∴h=t﹣2,此时h的最小值为;②当t+≤2时,即t≤,此时N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,∴h=2﹣t,此时h的最小值为;③当t﹣≤2≤t,即2≤t≤,此时N=﹣(t+﹣2)2+4+k,M=4+k,∴h=(t﹣)2,④当t<2≤t+,即≤t<2,此时N=﹣(t﹣﹣2)2+4+k,M=4+k,∴h=(t﹣)2,h的函数图象如图所示:h的最小值为,由题意可得=4+k,解得k=﹣;综上所述:k的值为﹣.【解析】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,根据定义结合所学的一次函数、反比例函数、二次函数的图象及性质综合解题,分类讨论是解题的关键.。
湖南省长沙市2022年中考[数学]考试真题与答案解析
湖南省长沙市2022年中考[数学]考试真题与答案解析一、选择题在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分。
1. 的相反数是()6-A. B. C.D. 616-6-16答案:D2. 如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A. B. C. D.答案:B3. 下列说法中,正确的是()A. 调查某班45名学生的身高情况宜采用全面调查B. “太阳东升西落”是不可能事件C. 为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D. 任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次答案:A4. 下列计算正确的是( )A. B. C. D. 752a a a ÷=541a a -=236326a a a ⋅=222()a b a b-=-答案:A5. 在平面直角坐标系中,点关于原点对称的点的坐标是( )(5,1)A. B. C. D. (5,1)-(5,1)-(1,5)(5,1)--答案:D6. 《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4,则这组数据的众数和中位数分别是( )A. 3,4B. 4,3C. 3,3D. 4,4答案:A7. 为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A. 元B. 元C. 元D. 元8x 10(100)x -8(100)x -(1008)x -答案:C8. 如图,,则的度数为()75AB CD AE CF BAE ∠=︒∥,∥,DCF ∠A. B. C. D. 65︒70︒75︒105︒答案:C9. 如图,PA ,PB 是的切线,A 、B 为切点,若,则的度数为()O 128AOB ∠=︒P ∠A. B. C. D. 32︒52︒64︒72︒答案:B10. 如图,在中,按以下步骤作图:ABC ①分别过点A 、B 为圆心,大于的长为半径画弧,两弧交于P 、Q 两点;12AB②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M 、连接AM 、BM .若,则AM 的长为()AB =A. 4B. 2C.D. 答案:B二、填空题11. ___________.答案:19x ≥解析:,解得,故答案为:. 190x ∴-≥19x ≥19x ≥12. 分式方程的解是_____________ .253x x =+答案:x =2解析:两边同乘x (x +3),得2(x +3)=5x ,解得x =2,经检验x =2是原方程的根;故答案为:x =2.13. 如图,A 、B 、C 是上的点,,垂足为点D ,且D 为OC 的中点,若O OC AB ⊥,则BC 的长为___________.7OA =答案:7解析:如图,连接,,OB CAA 、B 、C 是上的点,,,O OC AB ⊥AD DB ∴=D 为OC 的中点,,四边形是菱形,,.OD DC ∴=∴AOBC 7OA =7BC AO ∴==故答案为:7.14. 关于的一元二次方程有两个不相等的实数根,则实数t 的值为220x x t ++=___________.答案:1t <解析:关于的一元二次方程有两个不相等的实数根,,x 220x x t ++=22410t ∴∆=-⨯⨯>,故答案为:.1t ∴<1t <15. 为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有___________名.答案:950解析:估计该校全体学生中知晓湖南省“强省会战略”的学生有(名)951000100⨯950=故答案为:95016. 当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,2002现有四名网友对的理解如下:2002YYDS (永远的神):就是200个2相乘,它是一个非常非常大的数;2002DDDD (懂的都懂):等于;20022200JXND (觉醒年代):的个位数字是6;2002QGYW (强国有我):我知道,所以我估计比大.10321024,101000==20026010其中对的理解错误的网友是___________(填写网名字母代号).2002答案:DDDD解析:是200个2相乘,YYDS (永远的神)的理解是正确的;2002,DDDD (懂的都懂)的理解是错误的;200100222(2)200=≠,2的乘方的个位数字4个一循环,1234522,24,28,216,232===== ∴,的个位数字是6,JXND (觉醒年代)的理解是正确的;200450÷= ∴2002,,且2001020603202(2),10(10)== 10321024,101000==103210>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD .20060210∴>三、解答题本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤。
2024长沙市中考数学试卷
选择题:
下列哪个数是最小的正整数?
A. -1
B. 0
C. 1(正确答案)
D. 2
若一个多边形的内角和为720°,则这个多边形是:
A. 四边形
B. 五边形
C. 六边形(正确答案)
D. 七边形
下列哪个选项是方程x2 - 4x - 5 = 0的一个根?
A. x = -1
B. x = 0
C. x = 5(正确答案)
D. x = -5
在直角三角形中,如果一条直角边长为3,斜边长为5,那么另一条直角边的长是:
A. 2
B. 3
C. 4(正确答案)
D. 5
下列哪个数集包含所有的整数?
A. 自然数集
B. 有理数集
C. 实数集
D. 整数集(正确答案)
若一个圆的半径为r,则其面积S与r的关系式为:
A. S = πr
B. S = 2πr
C. S = πr2(正确答案)
D. S = 2πr2
下列哪个图形是中心对称图形但不是轴对称图形?
A. 正方形
B. 等边三角形
C. 平行四边形(非特殊)(正确答案)
D. 圆
若一次函数y = kx + b的图象经过点(1,2)和(-1,0),则k的值为:
A. -1
B. 0
C. 1(正确答案)
D. 2
下列哪个选项描述的是二次函数y = ax2 + bx + c(a ≠ 0)的顶点坐标公式?
A. (-b/2a, c - b2/4a)(正确答案)
B. (b/2a, c - b2/4a)
C. (-b/a, c)
D. (b/a, c)。
2023年湖南省长沙市中考数学真题(解析版)全文
2023年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.【答案】B【解析】解:A 选项,17是分数,属于有理数,故本选项不符合题意;B 选项,π是无限不循环小数是无理数,故本选项符合题意;C 选项,﹣1是整数,属于有理数,故本选项不符合题意;D 选项,0是整数,属于有理数,故本选项不符合题意.故选:B .2.【答案】D【解析】解:根据轴对称图形的定义可知:A 、B 、C 都不是轴对称图形,只有D 是轴对称图形.故选:D .3.【答案】A【解析】解:A 选项,235x x x ×=,本选项符合题意;B 选项,()339x x =,本选项不符合题意;C 选项,()21x x x x +=+,本选项不符合题意;D 选项,()2221441a a a -=-+,本选项不符合题意;故选:A .4.【答案】C【解析】解:134+= ,∴1,3,4不能组成三角形,故A 选项不符合题意;227+< ,∴2,2,7不能组成三角形,故B 不符合题意;457+> ,754-<∴4,5,7能组成三角形,故C 符合题意;336+= ,∴3,3,6不能组成三角形,故D 不符合题意,故选:C .5.【答案】A【解析】解:∵科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,∴121400000000000 1.410⨯=,故选:A .6.【答案】C【解析】解:如图所示,∵直线m ∥直线n ,∴2180CAD ∠+∠=︒,∴12180BAC ∠+∠+∠=︒∵AC AB ⊥,∴90BAC ∠=︒,∵140∠=︒,∴40902180∠︒+︒+=︒,∴250∠=︒,故选:C .7.【答案】B【解析】解:A 选项,由纵坐标看出,这一天中最高气温是32℃,说法正确,故A 不符合题意;B 选项,这组数据的中位数是27,原说法错误,故B 符合题意;C 选项,这组数据的众数是24,说法正确,故C 不符合题意;D 选项,周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32248-=(℃),说法正确,故D 不符合题意;故选:B .8.【答案】A【解析】解:由240x +>得2x >-,由10x -≤得1x ≤,解集在数轴上表示为:,则不等式组的解集为21x -<≤.故选:A .9.【答案】D【解析】解:由一次函数、正比例函数增减性知,x 系数小于0时,y 随x 的增大而减小,1y x =-+,10-<故只有D 符合题意,故选:D .二、填空题(本大题共6个小题,每小题3分,共18分)10.【答案】(n -10)(n +10)【解析】解:n 2-100=n 2-102=(n -10)(n +10).故答案为:(n -10)(n +10).11.【答案】9【解析】解:()109108859++++÷=(小时).即该学生这5天的平均睡眠时间是9小时.故答案为:9.12.【答案】65【解析】解:根据题意可得:BD BE =,∴BDE BED ∠=∠,∵18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,,∴65BDE BED ∠=∠=︒.故答案为:65.13.【答案】196##136【解析】解:AOB 的面积为||192212k k ==,所以k =196.故答案为:196.14.【答案】1【解析】解:如图,连接OB ,∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵OD AB ⊥,∴ AD BD=,90OEA ∠=︒,∴1602AOD BOD AOB ∠=∠=∠=︒,∴906030OAE ∠=︒-︒=︒,∴112122OE OA ==⨯=,故答案为:1.15.【答案】4【解析】解:设地球的半径为r 万里,则2π8r =,解得4πr =,∴火星的半径为2π万里,∴经过火星球心的截面的圆的周长大约为2π⨯2π4(=万里).故答案为:4.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)16.【答案】1-【解析】解:原式1222=+-⨯-12=+--1=-.17.【答案】46a -,6【解析】解:()()()222233a a a a a -+-++,2224263a a a a =---+,46a =-;当13a =-时,原式1464263⎛⎫=-⨯-=+= ⎪⎝⎭.18.【答案】(1)4km (2)飞船从A 处到B 处的平均速度约为0.3km /s【解析】(1)解:在Rt AOC 中,90AOC ∠=︒ ,30ACO ∠=︒,8km AC =,AO ∴=12AC =1842⨯=()km ,(2)在Rt AOC 中,90AOC ∠=︒ ,30ACO ∠=︒,8km AC =,OC ∴=24AC =()km ,在Rt BOC 中,90BOC ∠=︒ ,45BCO ∠=︒,45BCO OBC ∠∠∴==︒,4OB OC ∴==km ,(4AB OB OA ∴=-=4)km ,∴飞船从A 处到B 处的平均速度=410()0.3km /s ≈.19.【答案】(1)150,36;(2)见解析(3)144(4)估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数有480人【解析】(1)6040%150n =¸=,∵54%100%36%150m =⨯=,∴36m =;故答案为:150,36;(2)D 等级学生有:150********---=(人),补全的频数分布直方图,如图所示:(3)扇形统计图中B 等级所在扇形的圆心角度数为36040%144⨯︒=︒;故答案为:144;(4)300016%480´=(人),答:估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数有480人.20.【答案】(1)见解析(2)4BD =【解析】(1)证明:CD AB ⊥ ,BE AC ⊥,90AEB ADC ∴∠=∠=︒,在ABE 和ACD 中,AEB ADC BAE CAD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE ACD ∴ ≌;(2)解:ABE ACD ≌,6AD AE ∴==,在Rt ACD中,AC ==,10AB AC == ,1064BD AB AD ∴=-=-=.21.【答案】(1)该班级胜负场数分别是13场和2场;(2)该班级这场比赛中至少投中了4个3分球.【解析】(1)解:设胜了x 场,负了y 场,根据题意得:15341x y x y +=⎧⎨+=⎩,解得132x y =⎧⎨=⎩,答:该班级胜负场数分别是13场和2场;(2)设班级这场比赛中投中了m 个3分球,则投中了()26m -个2分球,根据题意得:()322656m m +-≥,解得4m ≥,答:该班级这场比赛中至少投中了4个3分球.22.【答案】(1)见解析(2)3BF =;ADF △的面积为【解析】(1)证明:在ABCD Y 中,∴AB CD ∥,∴CDE F ∠=∠,∵DF 平分ADC ∠,∴ADE CDE ∠=∠,∴F ADF ∠=∠,∴AD AF =.(2)解:∵63AD AF AB ===,,∴3BF AF AB =-=;过D 作DH AF ⊥交FA 的延长线于H ,∵120BAD ∠=︒,∴60DAH ∠=︒,∴30ADH ∠=︒,∴132AH AD ==,∴2233D H A D A H =-=∴ADF △的面积1163922AF DH =⋅=⨯⨯=.23.【答案】(1)BD 是O 的切线,证明见解析(2)152+(3)()01y x x =<≤【解析】(1)解:BD 是O 的切线.证明:如图,在ABC 中,222AB BC AC =+,∴90ACB ∠=︒.又点A ,B ,C 在O 上,∴AB 是O 的直径.∵90ACB ∠=︒,∴90CAB ABC ∠+∠=︒.又DBC CAB ∠=∠,∴90DBC ABC ∠+∠=︒.∴90ABD Ð=°.∴BD 是O 的切线.(2)由题意得,12112122S BC CD S BC AC S AD BC ⋅⋅===⋅,,.∵()212S S S ⋅=,∴2112122BC CD AD BC BC AC =⎛⎫⋅⋅⋅⋅ ⎪⎝⎭.∴2•CD AD AC =.∴()2CD CD AC AC +=.又∵9090D DBC ABC A DBC A ∠+∠=︒∠+∠=︒∠=∠,,,∴D ABC ∠=∠.∴tan tan BC AC D ABC CD BC∠==∠=.∴2BC CD AC=.又()2CD CD AC AC +=,∴4222BC BC AC AC+=.∴4224BC AC BC AC +⋅=.∴241AC AC BC BC ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.由题意,设()2tan D m =,∴2AC m BC ⎛⎫= ⎪⎝⎭.∴21m m +=.∴12m =.∵0m >,∴12m =.∴()22t an 1D =.(3)设A α∠=,∵90A ABC ABC DBC ABC N ∠+∠=∠+∠=∠+∠=︒,∴A DBC N α∠=∠=∠=.如图,连接OM .∴在Rt OFM △中,OF ==∴1BF BO OF =+=1AF OA OF =-=∴在Rt AFE 中,(tan 1tan EF AF αα=⋅=-⋅,1cos cos AF AE αα==.在Rt ABC △中,sin 2sin BC AB αα=⋅=.(∵1r =,∴2AB =)cos 2cos AC AB αα=⋅=.在Rt BFN △中,11sin sin BF BN αα+==,11tan tan BF FN αα+==.∴y FE FN =⋅2x =2x =2x =21x x =⋅x =.即y x =.∵FM AB ⊥,∴FM 最大值为F 与O 重合时,即为1.∴01x <≤.综上,()01y x x =<≤.24.【答案】(1)k 的值为1-,m 的值为3,n 的值为2;(2)①函数y 2的图像的对称轴为13x =-;②函数2y 的图像过两个定点()01,,2,13⎛⎫- ⎪⎝⎭,理由见解析;(3)能构成正方形,此时2S >.【解析】(1)解:由题意可知:2212120a c a c b b ===-≠,,,∴321m n k ===-,,.答:k 的值为1-,m 的值为3,n 的值为2.(2)解:①∵点()P r t ,与点()()Q s t r s ≠,始终在关于x 的函数212y x rx s =++的图像上运动,∴对称轴为222r s r x +==-,∴3s r =-,∴2221y sx xx =-+,∴对称轴为2123r r x s s -=-==-.答:函数2y 的图像的对称轴为13x =-.②()222321321y rx rx x x r =--+=-++,令2320x x +=,解得1220,3x x ==-,∴过定点()01,,2,13⎛⎫- ⎪⎝⎭.答:函数y 2的图像过定点()01,,2,13⎛⎫-⎪⎝⎭.(3)解:由题意可知21y ax bx c =++,22y cx bx a =-+,∴224,,2,4244b ac b b ac b A B aa c c ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,∴CD a =,11EF =-,∵CD EF =且240b ac ->,∴a c =;①若a c =-,则2212,y ax bx a y ax bx a =+-=--+,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则CAD CBD ,为等腰直角三角形,∴2A CD y =,∴2242||||4a b a a--=⋅,∴224b a =+,∴2244b a +=,∴2222222114142222b ac b a S CD a a a-+==⋅=⋅=正,∵22440b a =->,∴201a <<,∴2S >正;②若a c =,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A ,B ,C ,D 为顶点的四边形能构成正方形,此时2S >.。
2022年湖南省长沙市中考数学试卷及答案解析
2022年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣6的相反数是()A.﹣B.﹣6C.D.62.(3分)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.3.(3分)下列说法中,正确的是()A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.(3分)下列计算正确的是()A.a7÷a5=a2B.5a﹣4a=1C.3a2•2a3=6a6D.(a﹣b)2=a2﹣b25.(3分)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(3分)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是()A.3,4B.4,3C.3,3D.4,47.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元8.(3分)如图,AB∥CD,AE∥CF,∠BAE=75°,则∠DCF的度数为()A.65°B.70°C.75°D.105°9.(3分)如图,PA,PB是⊙O的切线,A、B为切点,若∠AOB=128°,则∠P的度数为()A.32°B.52°C.64°D.72°10.(3分)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若式子在实数范围内有意义,则实数x的取值范围是.13.(3分)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.14.(3分)关于x的一元二次方程x2+2x+t=0有两个相等的实数根,则实数t的值为.15.(3分)为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有名.16.(3分)当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣4|+()﹣1﹣()2+20350.19.(6分)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为20m的斜坡,坡角∠BAD=30°,BD⊥AD于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为15°.(1)求该斜坡的高度BD;(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)20.(8分)2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.成绩x/分频数频率60≤x<70150.170≤x<80a0.280≤x<9045b90≤x<10060c(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.21.(8分)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.22.(9分)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.②刘三姐的姐妹们给出的答案是唯一正确的答案.③该歌词表达的数学题的正确答案有无数多种.(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.23.(9分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.24.(10分)如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD 上,连接EF.(1)求证:△ABE∽△DCE;(2)当=,∠DFE=2∠CDB时,则﹣=;+=;+﹣=.(直接将结果填写在相应的横线上)(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.②当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE•CE.25.(10分)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.2022年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【分析】根据相反数的意义,即可解答.【解答】解:﹣6的相反数是6,故选:D.【点评】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.【分析】主视图是从前往后得到的正投影.【解答】解:根据主视图的概念,可知选B,故选:B.【点评】本题考查三视图的概念,掌握概念是解题的关键.3.【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A、调查某班45名学生的身高情况宜采用全面调查,故A符合题意;B、“太阳东升西落”是必然事件,故B不符合题意;C、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C不符合题意;D、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D不符合题意;故选:A.【点评】本题考查了概率的意义,全面调查与抽样调查,条形统计图,随机事件,熟练掌握这些数学概念是解题的关键.4.【分析】利用同底数幂的除法法则,合并同类项的法则,单项式乘以单项式的法则和完全平方公式对每个选项的结论作出判断即可得出结论.【解答】解:∵a7÷a5=a7﹣5=a2,∴A的计算正确;∵5a﹣4a=a,∴B的计算不正确;∵3a2•2a3=6a5,∴C选项的计算不正确;∵(a﹣b)2=a2﹣2ab+b2,∴D选项的计算不正确,综上,计算正确的是A,故选:A.【点评】本题主要考查了同底数幂的除法法则,合并同类项的法则,单项式乘以单项式的法则和完全平方公式,正确使用上述法则与公式进行运算是解题的关键.5.【分析】根据平面直角坐标系中任意一点(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点(5,1)关于原点O中心对称的点的坐标为(﹣5,﹣1).故选:D.【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.6.【分析】这7个数据中出现次数最多的数据为众数是3,中位数是把这组数据按从小到大的顺序排,位于中间的数据是4.【解答】解:∵这7个数据中出现次数最多的数据是3,∴这组数据的众数是3.把这组数据按从小到大顺序排为:3,3,3,4,4,5,6,位于中间的数据为4,∴这组数据的中位数为4,故选:A.【点评】本题主要考查众数的定义:一组数据中出现次数最多的数据就是这组数据的众数,中位数是指将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数这这组数据的中位数.7.【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:C.【点评】此题主要考查了列代数式,正确表示出乙的本数是解题关键.8.【分析】根据平行线性质,可得∠DGE=∠BAE=∠DCF=75°.【解答】解:如图:∵AB∥CD,∴∠DGE=∠BAE=75°,∵AE∥CF,∴∠DCF=∠DGE=75°,故选:C.【点评】本题考查平行线的性质,解题的关键是掌握两直线平行,同位角相等.9.【分析】利用切线的性质可得∠OAP=∠OBP=90°,然后利用四边形内角和是360°,进行计算即可解答.【解答】解:∵PA,PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°,∵∠AOB=128°,∴∠P=360°﹣∠OAP﹣∠OBP﹣∠AOB=52°,故选:B.【点评】本题考查了切线的性质,熟练掌握切线的性质是解题的关键.10.【分析】证明△AMB是等腰直角三角形,即可得到答案.【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.【点评】本题考查尺规作图中的相关计算问题,解题的关键是根据作图证明△AMB是等腰直角三角形.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据二次根式(a≥0),可得x﹣19≥0,然后进行计算即可解答.【解答】解:由题意得:x﹣19≥0,解得:x≥19,故答案为:x≥19.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.12.【分析】观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.【点评】此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.【分析】根据已知条件证得△AOD≌△BCD(SAS),则BC=OA=7.【解答】解:∵OA=OC=7,且D为OC的中点,∴OD=CD,∵OC⊥AB,∴∠ODA=∠CDB=90°,AD=BD,在△AOD和△BCD中,∴△AOD≌△BCD(SAS),∴BC=OA=7.故答案为:7.【点评】本题主要考查垂径定理和全等三角形的判定与性质,解题关键是熟知垂径定理内容.14.【分析】根据一元二次方程根的判别式可得Δ=22﹣4×1×t=0,然后解方程求出m的取值即可.【解答】解:∵关于x的一元二次方程x2+2x+t=0有两个相等的实数根,∴Δ=0,即22﹣4×1×t=0,解得t=1,故答案为:t=1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.15.【分析】用总人数乘以样本中知晓“强省会战略”的人数所占比例即可得.【解答】解:估计该校全体学生中知晓湖南省“强省会战略”的学生有:1000×=950(名).故答案为:950.【点评】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.16.【分析】由乘方的定义可知,2200就是200个2相乘,2002是2个200相乘;通过计算可得2n的尾数2,4,8,6循环,由循环规律可确定2200的个位数字是6;由积的乘方运算可得2200=(210)20=(1024)20,1060=(103)20=100020,由此可得2200>1060,从而可求解.【解答】解:(1)∵2200就是200个2相乘,∴YYDS(永远的神)的说法正确;∵2200就是200个2相乘,2002是2个200相乘,∴2200不等于2002,∴DDDD(懂的都懂)说法不正确;∵21=2,22=4,23=8,24=16,25=32,…,∴2n的尾数2,4,8,6循环,∵200÷4=50,∴2200的个位数字是6,∴JXND(觉醒年代)说法正确;∵210=1024,103=1000,∴2200=(210)20=(1024)20,1060=(103)20=100020,∵1024>1000,∴2200>1060,∴QGYW(强国有我)说法正确;故答案为:DDDD.【点评】本题考查实数的运算,熟练掌握乘方的性质,积的乘方运算法则,尾数的循环规律是解题的关键.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣4|+()﹣1﹣()2+20350=4+3﹣2+1=6.【点评】本题考查了零指数幂,负整数指数幂,绝对值,实数的运算,准确熟练地化简各式是解题的关键.18.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤4,∴原不等式组的解集为:﹣2<x≤4.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组是解题的关键.19.【分析】(1)根据30°角所对的直角边等于斜边的一半即可求解;(2)在△ACD中,根据∠CBD=30°,∠CAB=15°,求出AC=AB,从而得出AC的长.【解答】解:(1)在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,BA=20m,∴BD=BA=10(m),答:该斜坡的高度BD为10m;(2)在△ACB中,∠BAD=30°,∠BCA=15°,∴∠CBA=15°,∴AB=AC=20(m),答:斜坡新起点C与原起点A之间的距离为20m.【点评】本题主要考查坡度坡角的定义及解直角三角形,得到AB=AC是解题的关键.20.【分析】(1)由抽取的人数减去其它三个组的频数得出a的值,再由频率的定义求出b、c即可;(2)由(1)中a的值,补全频数分布直方图即可;(3)画树状图,共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,再由概率公式求解即可.【解答】解:(1)由题意得:a=150﹣15﹣45﹣60=30,b=45÷150=0.3,c=60÷150=0.4,故答案为:30,0.3,0.4;(2)补全频数分布直方图如下:(3)画树状图如下:共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,∴选出的2名学生恰好为一名男生、一名女生的概率为=.【点评】此题考查的是用树状图法求概率以及频数分布表和频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B =90°=∠D,用AAS可得△ABC≌△ADC;=S△ADC,求出S△ABC=AB•BC (2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,=S△ADC,∴BC=CD=3,S△ABC=AB•BC=×4×3=6,∴S△ABC=6,∴S△ADC=S△ABC+S△ADC=12,∴S四边形ABCD答:四边形ABCD的面积是12.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定定理.22.【分析】(1)设“三多“的每群狗有x条,则“一少“的狗有(300﹣3x)条,可得75<x<100,又x为奇数,即知x可取77,79,81......99,共12个,从而可判断①正确,②③错误;(2)设“三多“的每群狗有m条,“一少“的狗有n条,可得:,即可解得“三多“的每群狗有85条,“一少“的狗有45条.【解答】解:(1)设“三多“的每群狗有x条,则“一少“的狗有(300﹣3x)条,根据题意得:,解得75<x<100,∵x为奇数,∴x可取77,79,81......99,共12个,∴①正确,②③错误,故答案为:√,×,×;(2)设“三多“的每群狗有m条,“一少“的狗有n条,根据题意得:,解得,答:“三多“的每群狗有85条,“一少“的狗有45条.【点评】本题考查不等式组及二元一次方程组的应用,解题的关键是读懂题意,列出不等式组和方程组.23.【分析】(1)由菱形的判定得▱ABCD是菱形,再由菱形的性质即可得出结论;(2)由三角形中位线定理得OD=2EF=3,再由菱形的性质得AB=BC=CD=AD,AC ⊥BD,BD=2OD=6,然后由勾股定理得AD=,即可求出菱形ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD===,∴菱形ABCD的周长=4AD=4.【点评】本题考查了平行四边形的性质、菱形的判定与性质、三角形中位线定理以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.24.【分析】(1)根据同弧所对的圆周角相等,对顶角相等,即可得证;(2)由(1)的结论,根据相似三角形的性质可得AE•CE=BE•DE,即可得出﹣=0,根据已知条件可得EF∥AB,FA=FE,即可得出△DFE∽△DAB,根据相似三角形的性质可得=,根据恒等式变形,进而即可求解;(3)①记△ADE、△EBC的面积为S3,S4,则S=S1+S2+S3+S4,S1S2=S3S4,根据已知条件可得S3=S4,进而可得S△ABD=S△ADC,得出CD∥AB,结合同弧所对的圆周角相等即可证明△ABE、△DCE是等腰三角形;②证明△DAC∽△EAB,△DCE∽△ACD,根据相似三角形的性质,得出EA•AC+CE•AC=AC2=mn+p2则AC=,.EC==,AE=AC﹣CE=,计算AE•CE即可求解.【解答】(1)证明:∵,∴∠ACD=∠ABD,即∠ABE=∠DCE,又∵∠DEC=∠AEB,∴△ABE∽△DCE;(2)解:∵△ABE∽△DCE,∴==,∴AE•CE=BE•DE,∴﹣==0,∵∠CDB+∠CBD=180°﹣∠BCD=∠DAB=2∠CDB,又∵∠DFE=2∠CDB,∴∠DFE=∠DAB,∴EF∥AB,∴∠FEA=∠EAB,∵=,∴∠DAC=∠BAC,∴∠FAE=∠FEA,∴FA=FE,∵EF∥AB,∴△DFE∽△DAB,∴=,∴====1,∵+==1,∴+=1,∴=0,故答案为:0,1,0;(3)解:①△ABE,△DCE都为等腰三角形,理由:记△ADE、△EBC的面积为S3、S4,则S=S1+S₂+S3+S4,∵==,∴S1S2=S3S4①,∵,即S=S1+S2+2,∴S3+S4=2②,由①②可得,即(﹣)2=0,∴S3=S4,+S△ADE=S△ABE+S△EBC,∴S△ABE=S△ADC,即S△ABD∴CD∥AB,∴∠ACD=∠BAC,∠CDB=∠DBA,∵∠ACD=∠ABD,∠CDB=∠CAB,∴∠EDC=∠ECD=∠EBA=∠EAB,∴△ABE,△DCE都为等腰三角形;②∵=,∴∠DAC=∠EAB,∵∠DCA=∠EBA,∴△DAC∽△EAB,∴=,∵AB=m,AD=n,CD=p,∴EA•AC=DA×AB=mn,∵∠BDC=∠BAC=∠DAC,∴∠CDE=∠CAD,又∠ECD=∠DCA,∴△DCE∽△ACD,∴=,∴EA•AC+CE•AC=AC2=mn+p2,则AC=,.EC==,∴AE=AC﹣CE=,∴AE•CE=.【点评】本题考查了圆周角定理,相似三角形的性质与判定,对于相似恒等式的推导是解题的关键.25.【分析】(1)①由题意求出M=6066,N=2022,再由定义可求h的值;②分两种情况讨论:②当k>0时,M=kt+k+b,N=kt﹣k+b,h=k;当k<0时,M=kt﹣k+b,有N=kt+k+b,h=﹣k;(2)由题意t﹣≥1,M=,N=,则h=,所以h有最大值;(3)分四种情况讨论:①当2≤t﹣时,M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,h=t﹣2;②当t+≤2时,N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,h=2﹣t,;③当t﹣≤2≤t,即2≤t≤,N=﹣(t+﹣2)2+4+k,M=4+k,h=(t ﹣)2;④当t<2≤t+,N=﹣(t﹣﹣2)2+4+k,M=4+k,h=(t﹣)2,画出h的函数图象,结合图象可得=4+k,解得k=﹣.【解答】解:(1)①∵t=1,∴≤x≤,∵函数y=4044x,∴函数的最大值M=6066,函数的最小值N=2022,∴h=2022;②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt ﹣k+b,∴h=k;当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N=kt+k+b,∴h=﹣k;综上所述:h=|k|;(2)t﹣≥1,即t≥,函数y=(x≥1)最大值M=,最小值N=,∴h=,当t=时,h有最大值;(3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,∴函数的对称轴为直线x=2,y的最大值为4+k,①当2≤t﹣时,即t≥,此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,∴h=t﹣2,此时h的最小值为;②当t+≤2时,即t≤,此时N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,∴h=2﹣t,此时h的最小值为;③当t﹣≤2≤t,即2≤t≤,此时N=﹣(t+﹣2)2+4+k,M=4+k,∴h=(t﹣)2,④当t<2≤t+,即≤t<2,此时N=﹣(t﹣﹣2)2+4+k,M=4+k,∴h=(t﹣)2,h的函数图象如图所示:h的最小值为,由题意可得=4+k,解得k=﹣;综上所述:k的值为﹣.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,根据定义结合所学的一次函数、反比例函数、二次函数的图象及性质综合解题,分类讨论是解题的关键.湖南省长沙市中考数学试题参考答案第15页(共15页)。
湖南省长沙市2022年中考数学真题试题(含答案)
2022年长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( )A.-2B.31C.0D.6 2.大家翘首以盼的长株潭城际铁路将于2022年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( )A .0.955×105 B. 9.55×105 C. 9.55×104 D . 9.5×1043.下列计算正确的是( )A .1052=⨯ B. x 8÷x 2=x 4 C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a6 4.六边形的内角和是( )A .︒540 B. ︒720 C. ︒900 D . ︒3605.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6 B. 3 C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( )A .(-2,-1) B. (-1,0) C. (-1,-1) D . (-2,0)9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( )A .75, 80 B. 80,85 C. 80,90 D . 80,8011.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203mC .300 mD . 1602m 12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④a b c b a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________.15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π)16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.三、解答题19.计算:4sin60°-︱- 2︳- 12+(-1)202220.先化简,再求值:b a a -(a b 11-)+ba 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2022年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年长沙市初中毕业学业水平考试试卷数学一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共10个小题,每小题3分,共30分) 1.-3相反数是()A .31B .-3C . -31D .32.下列平面图形中,既是轴对称图形,又是中心对称图形的是() A.B.C.3.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A .2甲S <2乙SB .2甲S >2乙SC .2甲S =2乙S D .不能确定4.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为() A.⎩⎨⎧≤1-2x x φ B.⎩⎨⎧1-2φπx x C.⎩⎨⎧≥1-2x x π D.⎩⎨⎧≤1-2x x π 5.下列四边形中,对角线一定不相等的是() A .正方形B .矩形C .等腰梯形D .直角梯形6.下列四个角中,最有可能与70°角互补的是( )7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m)关于时间t (min )的函数图象,那么符合小明行驶情况的大致图象是()8.且交BC 于E ,--0 - 1 2 3 4 5A B C D ACBD ts O第8第12题AD=6cm,则OE 的长为() A 、6cm B 、4cm C 、3cmD 、2cm9.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为()A.I=R2B.I=R3C.I=R 6D.I=-R610.现有3㎝,4㎝,7㎝,9㎝长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A . 1个B . 2个C . 3个D .4个二、填空题(本题共8个小题,每小题3分,共24分) 11.已知函数关系式:y=,1-x 则自变量x 的取值范围是__________12.如图,在△ABC 中,∠A=45°,∠B=60°,则外角∠ACD=度.13.若实数a,b 满足:01-32=+b a ,则b a =.14.如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是15.任意抛掷一枚硬币,则“正面朝上”是事件16.在半径为1cm 的圆中,圆心角为120°的扇形的弧长是cm;17.如图,AB ∥CD ∥EF,那么∠BAC+∠ACE+∠CEF=度; 18.如图,等腰梯形ABCD 中,AD//BC ,AB=AD=2,∠B=60°,则BC 的长为;三、解答题:(本题共2个小题,每小题6分,共12分)19.(6分)计算:9-30sin 2211-。
)(+ 20.(6分)先化简,再求值:b a bb a b ab a +++2222-2-,其中a =-2,b=1; 四.解答题:(本题共2个小题,每小题8分,共16分)第9题图第17题A CB D FE 第18题21.某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题: (1)频数、频率统计表中,a =;b=; (2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少? 22.如图,A,P,B,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD ;五、解答题(本题共2个小题,每小题9分,共18分)23.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个。
(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个? (2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?分组49.5~59.559.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计频数 2 a 20 16 4 50 频率 0.04 0.16 0.40 0.32 b 1 人成绩(分) 0 12 10 8 6 4 2 100.89.79.69.59.49.20 18 16 14 第21题图AP D O C B 第22题图24.如图,已知正方形ABCD 中,BE 平分DBC ∠且交CD 边与点E ,将BCE ∆绕点C顺时针旋转到DCF ∆的位置,并延长BE 交DF 于点G (1)求证:DEG BDG ∆∆∽; (2)若EG ·BG=4,求BE 的五、解答题(本题共2个小题,每小题10分,共20分)25.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工。
已知生产这种产品的成本价为每件20元。
经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:⎩⎨⎧≤〈≤≤=35)x (305.0-2530)x (25-40x x y(年获利=年销售收入-生产成本-投资成本)(1) 当销售单价定为28元时,该产品的年销售量为多少万件?(2) 求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3) 第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款。
若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围;AB CD FG E26.如图半径分别为m,n )(n 0〈〈m 的两圆⊙O 1和⊙O 2相交于P,Q 两点,且点P (4,1),两圆同时与两坐标轴相切,⊙O 1与x 轴,y 轴分别切于点M ,点N ,⊙O 2与x 轴,y 轴分别切于点R ,点H 。
(1)求两圆的圆心O 1,O 2所在直线的解析式; (2)求两圆的圆心O 1,O 2之间的距离d ; (3)令四边形PO 1QO 2的面积为S 1,四边形RMO 1O 2的面积为S 2.试探究:是否存在一条经过P,Q 两点、开口向下,且在x 轴上截得的线段长为ds s 2-21的抛物线?若存在,亲、请求出此抛物线的解析式;若不存在,请说明理由。
2012年长沙市初中毕业学业水平考试试卷数学答案解析一、选择题1、解:﹣3相反数是3.故选D.2、解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.3、解:根据方差的意义知,射击成绩比较稳定,则方差较小,∵甲的成绩比乙的成绩稳定,∴有:S甲2<S乙2.故选A.4、解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.5、解:根据正方形、矩形、等腰梯形的性质,它们的两条对角线一定相等,只有直角梯形的对角线一定不相等.故选D.6、解:70°角的补角=180°﹣70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角.故选D.7、解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选C.8、解:∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,∵OE∥DC,∴BE=CE,∴OE=CD=3cm.故选C.9、解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.故选C.10、解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选B.二、填空题(本题共8个小题,每小题3分,共24分)11.解:由题意可得,x﹣1≥0,解得x≥1.故答案为:x≥1.12.解:∵∠A=45°,∠B=60°,∴∠ACD=∠A+∠B=45°+60°=105°.故答案为:105.13.解:根据题意得,3a﹣1=0,b=0,解得a=,b=0,a b=()0=1.故答案为:1.解:∵一次函数y=mx+3的图象经过第一、二、四象限,∴m<0.故答案为:m<0.解:抛掷1枚均匀硬币可能正面朝上,也可能反面朝上,故抛掷1枚均匀硬币正面朝上是随机事件.故答案为:随机.解:扇形的弧长L==πcm.故答案为:πcm.解:∵AB∥CD,∴∠BAC+∠ACD=180°…①,∵CD∥EF,∴∠CEF+∠ECD=180°…②,①+②得,∠BAC+∠ACD+∠CEF+∠ECD=180°+180°=360°,即∠BAC+∠ACE+∠CEF=360°.解法二:连接AE,假设AE垂直EF,那么三个角的和为180°+90°+90°=360°18.解:过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD=2,AD=EC=2,∵∠B=60°,∴BE=AB=AE=2,∴BC=BE+CE=2+2=4.三、解答题:(本题共2个小题,每小题6分,共12分)19.解:原式=2+2×﹣3=0.20.解:原式=+=+=,把a=﹣2,b=1代入得:原式==2.四.解答题:(本题共2个小题,每小题8分,共16分)解:(1)a=50﹣2﹣20﹣16﹣4=50﹣42=8,b=1﹣0.04﹣0.16﹣0.40﹣0.32=1﹣0.92=0.08;故答案为:8,0.08.(2)如图所示;(3)该同学成绩不低于80分的概率是:0.32+0.08=0.40=40%.解:(1)在△ABC中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×=4.解:(1)设境外投资合作项目个数为x个,根据题意得出:2x﹣(348﹣x)=51,解得:x=133,故省外境内投资合作项目为:348﹣133=215个.答:境外投资合作项目为133个,省外境内投资合作项目为215个.(2)∵境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,∴湖南省共引进资金:133×6+215×7.5=2410.5亿元.答:东道湖南省共引进资金2410.5亿元.24.(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBE,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF,∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG,∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG=2,∴BE=DF=2DG=4.六、解答题(本题共2个小题,每小题10分,共20分)解:(1)∵25≤28≤30,,∴把28代入y=40﹣x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,故当x=30时,W最大为﹣25,及公司最少亏损25万;②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5故当x=35时,W最大为﹣12.5,及公司最少亏损12.5万;对比1°,2°得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+59x﹣782.5令W=67.5,则﹣x2+59x﹣782.5=67.5化简得:x2﹣59x+850=0x1=25;x2=34,此时,当两年的总盈利不低于67.5万元,25≤x≤30;②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+35.5x﹣547.5,令W=67.5,则﹣x2+35.5x﹣547.5=67.5,化简得:x2﹣71x+1230=0x1=30;x2=41,此时,当两年的总盈利不低于67.5万元,30<x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是25≤x≤30或30<x≤35.26.解:(1)由题意可知O1(m,m),O2(n,n),设过点O1,O2的直线解析式为y=kx+b,则有:(0<m<n),解得,∴所求直线的解析式为:y=x.(2)由相交两圆的性质,可知P、Q点关于O1O2对称.∵P(4,1),直线O1O2解析式为y=x,∴Q(1,4).如解答图1,连接O1Q.∵Q(1,4),O1(m,m),根据两点间距离公式得到:O1Q==又O1Q为小圆半径,即QO1=m,∴=m,化简得:m2﹣10m+17=0①如解答图1,连接O2Q,同理可得:n2﹣10n+17=0②由①,②式可知,m、n是一元二次方程x2﹣10x+17=0③的两个根,解③得:x=5±,∵0<m<n,∴m=5﹣,n=5+.∵O1(m,m),O2(n,n),∴d=O1O2==8.(3)假设存在这样的抛物线,其解析式为y=ax2+bx+c,因为开口向下,所以a<0.如解答图2,连接PQ.由相交两圆性质可知,PQ⊥O1O2.∵P(4,1),Q(1,4),∴PQ==,又O1O2=8,∴S1=PQ?O1O2=××8=;又S2=(O2R+O1M)?MR=(n+m)(n﹣m)=;∴==1,即抛物线在x轴上截得的线段长为1.∵抛物线过点P(4,1),Q(1,4),∴,解得,∴抛物线解析式为:y=ax2﹣(5a+1)x+5+4a,令y=0,则有:ax2﹣(5a+1)x+5+4a=0,设两根为x1,x2,则有:x1+x2=,x1x2=,∵在x轴上截得的线段长为1,即|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,即()2﹣4()=1,化简得:8a2﹣10a+1=0,解得a=,可见a的两个根均大于0,这与抛物线开口向下(即a<0)矛盾,∴不存在这样的抛物线.。