预应力管桩施工断桩原因和预防措施

合集下载

预应力管桩常见质量问题、原因与预防措施

预应力管桩常见质量问题、原因与预防措施

预应力管桩常见质量问题、原因与预防措施1、桩身断裂(1)现象:在开展压桩工序时,桩身如果突然倾斜错位,而桩尖处土质无特殊变化,贯入度却突然加大,施压油缸的油压表计显示突然下降,机台晃动亚种,这时可能就发生桩身断裂的质量问题。

(2)原因:①桩身加工的弯曲度超过规范规定,桩尖偏离桩的纵轴线较过大,压桩过程中桩体倾斜或弯曲;②桩入土后,遇到坚硬障碍物(岩石、旧埋设物),把桩尖挤到一侧;③插桩本身不垂直,在压入某深度后,用移机方法来纠正,使桩体产生弯折;④多段桩施工时,相连接的两段桩不在同轴线位置上,焊接后产生弯曲;⑤桩材混凝土强度不达标,在堆放、吊运准备工作中已经产生裂纹或断裂而没被发现。

(3)预防措施:施工前应该清理干净桩位下的障碍物,必要时应该对每个桩位用针探检查;②加强桩材检查,如果桩身弯曲超过规定(L/1000且<20mm)或者桩尖不在桩纵轴线上不能使用;③在插桩施工中已经发现桩身不垂直就立即纠正,桩压入一定深度后若发生严重倾斜。

不能采用移机方法处理。

接桩时要保证上下两段桩在同轴线上。

端面间隙应该加垫铁片并塞牢;④桩的堆放和吊运应严格执行规范规定,若桩身出现裂缝且超过验收标准必须严禁使用。

2、桩顶损坏(1)现象:在沉桩过程中,桩顶出现损坏。

(2)原因:①桩材混凝土配合比不好,施工中控制不严格,养护做的不好;②桩顶端面不平整,导致桩顶端面与桩轴线之间不垂直;③桩顶与送桩杆的接触部位不整齐,送桩时导致桩顶端面局部应力集中而损坏。

(3)预防措施:①制作桩体时,离心要均匀,桩顶加密箍筋要确保位置准确,并按规范养护;②沉桩前必须检查桩顶是否有凹凸的现象,保证端面垂直于轴线,桩尖不得偏斜,若不符合规范要求严禁使用,或经过必要修补处理合格后才能使用;③检查送桩杆与桩身的接触面平整度,如不平整必须开展相关处理才能使用。

3、桩位偏移(1)现象:在静力压桩过程中,相邻桩身产生横向位移过大或桩身上浮。

(2)原因:①桩进入土层后,可能遇到大块坚硬的岩石,将桩尖挤到一侧;②多段桩施工时,相接的两段桩轴线不一致,焊接后管桩整体弯曲;⑧桩基数量过多且桩距不大,静力压桩时土层被挤压到极限后必然向上隆起,相邻的桩被拔起;④在软土地基场地中施压密集群桩时。

浅析预应力管桩断桩原因及处理-预防措施

浅析预应力管桩断桩原因及处理-预防措施

浅析预应力管桩断桩原因及处理\预防措施摘要:预应力管桩可分为后张法预应力管桩和先张法预应力管桩。

因其造价低,施工速度快,可以节约施工周期,加快项目的建设等优点,被广泛应用于工业、房建、高速铁路、高速公路和民用设施工程中。

本文在对预应力管桩断桩事故类型的分析基础上,提出了改善和预防预应力管桩断桩的一些可行性建议,具有一定的参考实践价值。

关键词:预应力管桩,断桩,地质,焊接质量,土方回填Abstract: prestressed pipe pile can be divided into this method prestressed pipe pile and first prestressed pipe pile of law. Because of its low cost, and construction speed is quick, can save the construction period, speed up the construction of the project etc, and is widely used in industry, high speed railway, endowed, highway and civil infrastructure. In this paper the breaking pile prestressed pipe pile are based on the analysis of the accident type, and put forward the improvement and prevent prestressed pipe pile of pile breaking some feasible Suggestions to have the certain reference value of practice.Keywords: prestressed pipe pile, breaking pile, geology, and the quality of welding, turkmen backfilling1、预应力管桩断桩事故类型造成预应力管桩断桩的原因是非常多而复杂的,主要有地质因素、开挖和机械的碾压因素、堆土所产生的挤压力因素和焊接质量因素等等,下文将对预应力管桩在施工中的典型断桩成因进行详细分析。

预应力静压管桩断桩事故分析和处理办法

预应力静压管桩断桩事故分析和处理办法

预应力静压管桩断桩事故分析和处理办法通过工程实例,分析预应力静压管桩的断桩问题,提出相应的处理办法,以供借鉴。

静压管桩;断桩;桩基事故处理1 工程概况1.1 设计情况南宁市青秀山旁某工程为商品房住宅小区,其第一期由4栋6.5层框剪结构住宅楼组成,总建筑面积30698m2。

其中C栋建筑面积5274m2,采用静压高强预应力管桩基础,共布桩179根,设计桩长为12m~15m(分2段接长),桩内径160mm,外径300mm。

设计单桩竖向抗压极限承载力为850kN,桩身混凝土强度等级为C80。

根据地质勘察报告,该施工场地各岩土层的分布和性质自上而下描述如下:(1)耕土层:土质松散,强度低,高压缩性,厚度为0.3m~2.0m。

(2)黏土层:硬塑状,强度高,中~低压缩性,厚度约为13.3m。

工程技术2013.09-121(3)粉质黏土层:可塑状,中等压缩性,厚度为0.5m~5.9m。

(4)粉土层:湿~饱和,稍密状态,强度低,压缩性偏高,厚度为1.5m~13.5m。

(5)粉质黏土层:上部黏粒含量较高,下部含砂量大,很湿,软塑状态,压缩性高,厚度为0.4m~6.3m。

(6)圆砾层:含砾为50%~70%,饱和,中密~稍密状态,埋藏深强度高,层厚8.5m~15.1m,为该工程的设计持力层。

1.2 施工情况施工单位静压桩工程队在对C栋25轴和C2轴交点承台下的桩基施工中,在同一承台内,编号为122号和120号的桩身分别在1600km和1440km的压力下出现桩身断裂的现象。

具体过程如下:(1)当122号桩压入土15.70m时,压力突然从1600kN降至800kN,压桩队立即停止施工(地面标高为75.564m,实际施工桩顶高程为74.864m)。

(2)当120号桩压入土15.40m时,压力突然从1440kN骤降至500kN,再压桩至15.50m 时,压力未有回升,停止施压(当时地面标高为75.462m,实际施工桩顶标高为74.962m)。

预应力管桩施工事故原因分析及对策

预应力管桩施工事故原因分析及对策

预应力管桩施工事故原因分析及对策摘要:在建筑施工当中,预应力混凝土管桩得到了越来越广泛的应用,但是,通常都会受到地质条件、挤土效应以及收锤标准控制不当等等这一系列的影响而造成很多的质量问题,那么,本文就这一系列的问题来进行分析,分析其产生的原因,并提出了具体的应对措施,具有一定的现实意义。

关键词:预应力;管桩;施工事故;原因;对策一、易导致预应力管桩施工事故的因素(一)地质条件预应力管桩由于具有质量可靠、承载力较高、无污染、综合造价低等优点,近几年得到了广泛应用。

虽然预应力管得到了十分广泛的应用,预应力管桩的持力层可以选择强风化岩层、坚硬的黏土层、密实的砂层以及密实的碎石层等等,通常情况下,通常情况下它能够打入强风化岩层的厚度为1米至3米,但是是不能够打入到中风化岩以及微风化岩当中。

也就是说,如果在中风化岩或者是微风化岩当中,在这种情况下,岩基上部的强风化层十分的薄,甚至是没有强风化层,如果在这种地层当中施打预应力管桩,那么,必定是十分容易损坏的。

(二)挤土效应在具体的沉桩过程当中,会有和桩的体积相当的土体会向四周排挤,从而使得周围的土遭受到严重的扰动,其最主要的表现就是径向位移,桩尖以及桩周围的很大范围之内都会受到不排水剪切以及水平挤压,这样,桩周土体就十分类似于非压缩性,从而就有很大的剪切变形产生出来,这就形成了具有很高的孔隙水压力的扰动重塑区域,使得土的不排水抗剪强度大大降低,进而使得桩周围的土体由于不排水剪切而造成破坏,那么,在这种情况之下,和桩的体积等量的一些土体就会在具体的沉桩过程当中,朝着桩周围产生范围比较大的侧向位移以及隆起。

在地面附近的土体变得向上隆起,但是对于在地面以下比较深的土体来讲,会因为受到上面覆盖土层的压力作用而不能够向上隆起,而是朝着水平的方向挤压。

那么,在裙桩施工过程当中,就会由于跌加作用而使得已经打入进土层的桩和与之向邻近的管线产生比较大的侧向位移,并且这一产生的侧向位移和桩群的密度成正比,通常情况之下,地面的隆起能够高达50厘米至60厘米,有时候甚至还会达到70厘米至80厘米。

管桩断裂原因分析及处理方法

管桩断裂原因分析及处理方法

高强预应力空心管桩断裂原因分析及处理方法辽宁省营口市紧邻渤海,属辽河冲积平原,地下水位较浅,挖深0.9m即遇到丰富地下富存水。

地表以下12m深度范围内的土质均是粉质粘土(淤泥),土体渗透系数低,土方开挖前需提前两周采取轻型井点降水才能使拟开挖基坑具备开挖条件。

若场地条件具备,土方开挖一般均按1:1.5进行自然放坡。

超过5层的建筑物,其基础形式基本上都是采用高强混凝土预应力空心管桩(PHC),有效桩长一般则在12~18m之间(太和小区、欢心小区),局部地区有效桩长能达到30m(营东大厦)。

高强混凝土预应力空心管桩(PHC)静压施工完成后,须进行低应变动测检验其桩身完整性;检测合格时,始准施工进行下一道工序。

通常情况下,在低应变动测检验时其桩身接桩部位能测出存在质量缺陷,这一表象无妨。

用肉眼尚不能识别的微裂缝在低应变动测时亦能测出缺陷存在,但裂缝宽度小于0.2mm的裂缝不会影响到桩体质量及结构安全。

这种裂缝一般都分布在桩长中间1/3区段;这是由于桩节过长,若吊点选择不当或运输过程中受到较大震动而因自身重量过大导致的。

现就我单位在施的部分工程管桩经低应变动测时检查出的质量问题及处理思路作以简要总结:一、管桩断裂的原因分析及预防措施1、预制管桩断裂的原因分析(1)、堆放方式不合理导致断桩在预制厂,从蒸养室出来的管桩需在堆放区实施分类堆放,若堆放支承点选择的不合理就极易导致管桩的桩身出现微裂缝。

(2)、出厂强度不足造成的断裂高强预应力混凝土空心管桩(PHC)的混凝土设计强度为C80,管桩混凝土养护一般均采取蒸养方式进行。

有时候,管桩出厂时的混凝土强度会与设计强度存在些许偏差,在场内堆放、出厂运输过程中可能会因存在的震动而导致管桩桩身出现微裂缝。

(3)、吊装过程中发生断裂管桩在装卸车时需采取“二点吊法”,要求吊点距离桩端0.207L位置且吊绳与桩体的夹角不得小于45度。

为节省运输成本,虽然装卸车时采取的也是二点吊法,但吊点是选在了桩端;当单根管桩较长时,受自重较大的影响就有可能在管桩桩身的中部产生微裂缝。

预应力混凝土管桩断桩原因分析及加固处理办法

预应力混凝土管桩断桩原因分析及加固处理办法
21 0 第 5期 0年
江 苏水 利
1 工 程 概 况
层 , 云母及 腐殖 质 , 殖质 局部 富 含 腐
集 , 质 不均 , 散状 态 , 压缩 性 。 土 松 中
() 1通过查 看检测单位 提供 的检 测 资料 , 发现管桩 出现完整性破坏裂 缝 的位置在桩基 承台下 5m处 , 由勘 探报告提供 的土层变化情况知 ,该 5
②层: 粉土 , 、 黄 灰色 , , 湿 中密 , 光 无
泽, 中等摇 振 反 应 , 干强 度 , 韧 低 低
记 录 ,一些超 长桩在截桩 的时候 , 施 工单 位没有采用 割桩机作业 , 而是用
从 混凝土管桩 自身质量 、 勘探 报
性 ,a = 4 P 。③ 层 : F k 10k a 粉土 , 、 黄 灰
在地下 5m处产 生的弯矩 为 l0k 1 N, 则 只要 水平推力大 于 2 N时候 , 2k 桩 在理论上就会产生开裂现象 。 由参 ② 考 文献 [ ] 2 中公 式 ( 3 (4 可知 , 1)1 ) 当 偏心距 e ijW A - 9 =, _ / 0 12mm时 , = N 现拉应力 时 , 偏心竖 向承载力仅 为轴
呈 亚圆形及次棱 角状 ,分选性 Nhomakorabea般 ,
级 配 一 般 ,a= 5 P 。⑤ 层 : F k 10k a 粉砂 , 灰 色 , 和 , 密 , 粒 由 石 英 、 石 饱 中 颗 长
—圈冒 及 云母 片 组 成 , 粒 呈 亚 圆形 及 次 棱 桩单桩 竖向承 载特征 值预估 为 12 1O 颗
k N,混 凝土管 桩沉 桩方式 采用 静压
法。桩基础工程 于 20 0 9年 2月 初 开
桩这一环节 没有重视 , 对勘探 资料揭 示 的 内容 以及 设计 单位 提 出的 注意 点 ( 对在桩 长范 围内穿越粉砂土 ) 也 未做分析研 究 , 导致接桩 的位置没有

预应力管桩锤击法施工断桩原因个个击破

预应力管桩锤击法施工断桩原因个个击破

一、管桩的产品质量问题为叙述方便,将管桩在吊装、运输、堆放中出现的问题归入产品质量之中,同时也将桩尖质量问题一并列出:(1)端头板的设计宽度小于管桩设计壁厚。

如曾有Ф550—100管桩,端板实用宽度只有70mm。

原因:设计错误,偷工减料。

危害:无端板处的混凝土高出端板2—3mm,很难接驳,若要接驳,只能将高出部分的混凝土敲掉,不仅费时费工,而且往往将内壁混凝土敲掉桩壁变薄,使桩的传力性能减弱。

(2)端板四周的坡口不按设计要求加工,误差大,坡口尺寸偏小。

原因:加工设备和工艺落后;加工质量差;未认真检查验收;有些甚至是施工单位提出的加工要求。

危害:焊缝厚度得不到保证;有的坡口甚至塞不进焊条,接头质量差。

(3)端头板焊接性能差。

原因:不用A3或AY3钢板,而用一些如旧船板等可焊性差的钢板作端头板。

危害:焊接质量难以保证;接头极易开裂。

(4)端头板翘曲不平。

原因:加工不平整;加工好后被压弯而仍然使用。

危害:桩头处易打碎;桩身无法接长或接头质量很差。

(5)端头板微凹成盆碟状。

原因:主筋位于设计壁厚的中间或稍偏里,张拉时端板受力不匀,外侧小内侧大;施加预应力时桩身横截面受力不匀,内侧压缩量大于外侧压缩量,从而使端板内侧微凹成盆碟状;端板厚度不符合规范要求。

危害:对接不平,传力性能差;打桩时桩顶混凝土应力集中易破碎。

(6)端头板与桩身轴线不垂直,即端部倾斜。

原因:预应力钢筋长短不一;张拉力偏心;桩模端部倾斜。

危害:打桩时桩头受力不匀,应力集中易破碎;桩身接长后不是一直线而是折线状。

(7)镦头凹出端板面。

原因:端板上的镦头孔太浅;镦头形状不规则或异型。

危害:桩头接长时端面不能吻合;打桩时应力集中,桩头或桩接头很快破碎。

(8)端头板上手镦头孔底被拉脱。

原因:镦头孔钻得太深,或端板太薄,以至孔底厚度太薄,张拉时镦头将孔底拉脱穿孔而出。

危害:无法张拉,成不了预应力管桩。

(9)钢套箍凹陷。

原因:钢套箍加工质量差;成型后尚未入模时受外力撞磕而变形。

预应力混凝土管桩施工中断桩原因分析及处理

预应力混凝土管桩施工中断桩原因分析及处理

预应力混凝土管桩施工中断桩原因分析及处理本文对某建筑工程的预应力混凝土管桩施工中出现连续断桩现象进行详细分析及进行合理的处理,并提出预应力混凝土管桩施工的相关注意事项。

标签:预应力混凝土管桩;地质勘探;断桩;原因分析前言近年来,预应力混凝土管桩被广泛应用于多层、小高层民用建筑及工业厂房等建筑基础工程中,主要是由于其具有以下多个优点:(1)桩身强度高;(2)桩身质量易于保证和检查;(3)桩端进入持力层的承载力高;(4)桩的成型好;(5)桩身混凝土的密度大,抗腐蚀性强;(6)设计选用范围广;(7)施工速度快、工效高、工期短;但在一些地区的复杂地质工程中也会容易出现断桩、弯桩等质量问题。

1 工程概况广东省某小区一商住楼,13层框架、剪力墙结构,建筑面积约21000m2,桩基础采用?准400×98AB(外径+壁厚)预应力混凝土管桩基础,以强风化基岩为桩端持力层。

预计桩长16~30m,设计的单桩承载力极限值为P=1300kN,桩身混凝土设计强度等级C80,要求锤击沉桩,总桩数为396根。

施工桩机选用HD50柴油锤击桩打机,锤重40kN,锤高1.8m,最后三阵十锤,每十锤总的贯入度不大于2.0cm。

预应力混凝土管桩选用江门市某预应力混凝土管桩厂生产的管桩。

2 工程地质情况本拟建工程的场地原为耕地、渔塘,后经人工填土。

根据场地勘探深度范围内钻探地质结果得地基岩土层自上而下如为:①素填土,层厚为1.0~2.9m,土黄褐色,湿,松散,成份主要为粉质粘土,夹少量基岩碎块;②淤泥层,层厚为3.6~13.7m,深灰~赤黑色,饱和,流塑,成份主要为粘粒,富有腐植质,局部含粉砂;③1粘土层,层厚为2.5~16.1m,土黄~红褐色,成份主要为粘粒,湿,可塑,局部底部硬塑;③2中粗砂层,层厚为1.5~9.0m,灰白色,饱和、稍密~密实,成份主要为石英中粗砂,含少量粉粒;③3粉质粘土层,平均厚3.6m,暗红色~黄褐色,成份主要为粉粒及粘粒,湿,硬塑;③4中粗砂层,平均厚10.2m,灰白色,饱和、稍密~密实,成份主要为石英中粗砂,局部含砾;④1粉质粘土层,层厚为1.5~14.85m,棕红色~黄褐色,成份主要为粉粒及粘粉,很湿,可塑;④2粉质粘土层,层厚为1.2~14.5m,棕红色~黄褐色,成份主要为粉粒及粘粉,湿,硬塑;⑤1全风化泥质粉砂岩层,层厚为1.0~11.0m,棕红色~杂色,稍湿,坚硬,岩心呈土状,原岩已完全高岭土化、褐铁矿化,局部残留泥质粉砂结构。

预应力混凝土管桩施工中常出现的质量问题分析及预防措施 冯远山

预应力混凝土管桩施工中常出现的质量问题分析及预防措施 冯远山

预应力混凝土管桩施工中常出现的质量问题分析及预防措施冯远山摘要:预应力混凝土管桩施工质量关系着整个项目施工水平的高低,因此,施工单位应将质量管控环节纳入到检测工作范围当中,以提高施工人员质量管控意识,并促使其在实际施工过程中能规范自身操作行为,避免不正当行为的发生。

关键词:预应力混凝土;管桩施工;质量问题;预防措施1预应力混凝土管桩施工中的质量问题1.1桩身断裂桩身断裂是预应力混凝土管桩施工中常见的质量问题,而造成此现象的原因主要表现在:第一,在实际工作开展过程中,相关工作人员未根据《先张法预应力高强混凝土管桩基础技术规程》来检查桩身混凝土强度及其管壁薄厚度,最终在实际施工的过程中出现了桩身弯曲及断裂的现象。

第二,由于地勘只是以点代面的方式进行勘探,难免在实际压桩过程中遇到地质深层的孤石情况,从而出现了桩身断裂的现象。

例如,在厦门市集美区杏林湾“英村市场、住宅小区工程”1#楼162#和2#楼114#、116#桩均在入土8-12米左右时,压力产生突降,桩身并伴有异响,且压力无法上升。

4#楼803#、825#、849#、853#桩均在入土7—15米左右时,压力产生突升。

以上桩号与同承台及周边承台的桩长和地勘报告相差较大,最终出现了质量问题判断为断桩或以遇孤石,而后采取补桩的方式对其问题展开了补救行为。

此外,部分施工单位在实际施工过程中忽视对管桩原材料质量检测,继而导致无法及时发现桩吊运过程中出现的断裂现象。

1.2桩身垂直度偏差不符合要求如果管桩桩身的垂直度存在不合理的偏差,则会直接影响管桩的施工质量,其原因主要有:第一,管桩桩头不平整,桩身弯曲度不符合规定要求,桩尖与桩纵轴线偏离过大而影响桩身垂直度偏差的合理性;第二,压桩时,桩身存在不垂直的现象;第三,管桩进入土层后,在障碍物的阻挡下会导致桩尖偏向一边,影响垂直度;第四,在两节或两节以上管桩施工过程中,管桩不处于相同轴线水平上,呈现弯曲现象,影响桩身垂直度;第五,管桩的数量过多,如果上部是深软弱土层,在管桩间距比较小的情况下,进行沉桩施工时,就很容易产生挤土效应,导致相邻的管桩之间存在桩体偏位问题,致使其桩身垂直度偏差不合理;第六,通常,静压桩机自重和配重的重量较大,在沉桩施工中很容易出现机架不均匀沉降现象,又或者在静压桩机移动的过程中挤压了软弱地基,就会使得相邻的管桩桩体出现倾斜偏位问题;第七,如果土方开挖过程中不注意控制深度,就会使得桩身在较大土压力下出现弯曲变形而影响垂直度偏差值。

预应力管桩断桩原因分析报告

预应力管桩断桩原因分析报告

管桩断桩原因分析一、管桩的产品质量问题为叙述方便,将管桩在吊装、运输、堆放中出现的问题归入产品质量之中,同时也将桩尖质量问题一并列出:(1)端头板的设计宽度小于管桩设计壁厚。

如曾有Ф550—100管桩,端板实用宽度只有70mm。

原因:设计错误,偷工减料。

危害:无端板处的混凝土高出端板2—3mm,很难接驳,若要接驳,只能将高出部分的混凝土敲掉,不仅费时费工,而且往往将内壁混凝土敲掉桩壁变薄,使桩的传力性能减弱。

(2)端板四周的坡口不按设计要求加工,误差大,坡口尺寸偏小。

原因:加工设备和工艺落后;加工质量差;未认真检查验收;有些甚至是施工单位提出的加工要求。

危害:焊缝厚度得不到保证;有的坡口甚至塞不进焊条,接头质量差。

(3)端头板焊接性能差。

原因:不用A3或AY3钢板,而用一些如旧船板等可焊性差的钢板作端头板。

危害:焊接质量难以保证;接头极易开裂。

(4)端头板翘曲不平。

原因:加工不平整;加工好后被压弯而仍然使用。

危害:桩头处易打碎;桩身无法接长或接头质量很差。

(5)端头板微凹成盆碟状。

原因:主筋位于设计壁厚的中间或稍偏里,张拉时端板受力不匀,外侧小内侧大;施加预应力时桩身横截面受力不匀,内侧压缩量大于外侧压缩量,从而使端板内侧微凹成盆碟状;端板厚度不符合规范要求。

危害:对接不平,传力性能差;打桩时桩顶混凝土应力集中易破碎。

(6)端头板与桩身轴线不垂直,即端部倾斜。

原因:预应力钢筋长短不一;张拉力偏心;桩模端部倾斜。

危害:打桩时桩头受力不匀,应力集中易破碎;桩身接长后不是一直线而是折线状。

(7)镦头凹出端板面。

原因:端板上的镦头孔太浅;镦头形状不规则或异型。

危害:桩头接长时端面不能吻合;打桩时应力集中,桩头或桩接头很快破碎。

(8)端头板上手镦头孔底被拉脱。

原因:镦头孔钻得太深,或端板太薄,以至孔底厚度太薄,张拉时镦头将孔底拉脱穿孔而出。

危害:无法张拉,成不了预应力管桩。

(9)钢套箍凹陷。

原因:钢套箍加工质量差;成型后尚未入模时受外力撞磕而变形。

预应力管桩断桩原因及防治的探讨

预应力管桩断桩原因及防治的探讨

第 1期 (总第 201期 )
翘楚建.前
地基工程■
从地勘 资料 上看 ,一般来说 ,选择 回填砂坑 的方案后 ,由 于砂石 具有 相对 比较好的保水性 ,水分相对 比较 不易蒸发 , 虽然此 事例 工程 回填砂坑 的深度达 到了 2m,但依 旧不 能忽 视 ,回填砂 石下 面的淤泥较 多 ,厚度 也 比较偏 高 ,最厚 达 7.6m,由于 淤泥层具有 流塑 的特 性 ,很容易 对建筑 工程造 成 影 响 ,甚至 出现塌方 等严 重事故 。而此事例中 ,根据专家 的勘 测 数据可 以发现 ,首先是 由于流砂 、淤泥等流 塑性相 比较强 的物质 推倒 了已经建好的支护桩根基 ,部分的断桩柱位 置相 对 比较集 中 ,并集 中在淤 泥层与 卵石层 的相 交的位置 ,造 成 了大面积 的挤 淤 出现 ,导致 了塌方事 故 的发 生 ,从而 出现 了 最后所看到 的断桩现象的出现。
1断桩原 因 的检 测分 析
卣‘先 ,如 果 建 设 工 程 项 目山 现 了断 桩 事 故 ,就 应 该 严 格 对现场践行勘测与地 质环境分析等。比如我 国沿海某城市的 某小区建筑 [程 ,e}}、钟楼 的建筑层共计 28层 ,包 括地 下 1 层到地上 27层 ,建筑总面积达到 了 33758m 。建筑工程施工 开始后 ,由于某些原因 ,在工程最基础的开挖过程中 ,e#、f# 楼 都 出现 了严 重 的断桩情况 ,其 中 e#楼 的断 桩率 大约 为 22%,另一栋 f#楼 出现的断桩数量 更加的多 ,占总管桩 数量 的 55%左右 。此外 ,与此楼相近 的另外两栋楼也 }II现 了小部 分的断桩现象。根据专家人员 的现场勘测发现 ,此 工程出现 断桩现状的位置不但具有一致性 的特点 ,而且断桩的区域也 相对 比较集 中 ,具体如图 1所示。

预应力混凝土管桩接头断裂的原因分析及处理措施

预应力混凝土管桩接头断裂的原因分析及处理措施

预应力混凝土管桩接头断裂的原因分析及处理措施摘要:预应力混凝土管桩以其各种优势备受青睐,应用广泛,但受存放、吊装、运输和沉桩机械等条件的限制,单节预应力混凝土管桩长度不能太长,长桩需要接桩,接桩处是桩身的薄弱环节,施工方法不当时,可能造成桩身接头处断裂的工程事故。

本文以某住宅小区预应力混凝土管桩基础为例,对预应力混凝土管桩接头断裂的原因进行分析,探讨处理预应力混凝土管桩接头断裂的方法,以降低工程事故影响,保障工程安全。

关键词:预应力混凝土管桩;完整性;接头;断裂;填芯插筋1 引言预应力混凝土管桩是由混凝土、骨架、钢结构(端板、桩套箍)三部分组成。

因其强度高、工程造价低、施工速度快、设计选用范围广、沉桩质量可控性强、节能环保等诸多优点广泛应用于工业与民用建筑行业,是一种比较成熟的桩型。

但受存放、吊装、运输和沉桩机械等条件的限制,单节预应力混凝土管桩长度不能太长,长桩需要接桩,接桩处是桩身的薄弱环节,施工方法不当时,可能造成桩身接头处断裂的工程事故,不妥善处理,则会给工程安全带来隐患,本文以某住宅小区预应力混凝土管桩基础为例,对预应力混凝土管桩接头断裂的原因进行分析,提出解决预应力混凝土管桩接头断裂的方法,以降低工程事故影响,保障工程安全。

2 预应力混凝土管桩接头断裂事故概况2.1工程地质概况和设计概况根据拟建场地的岩土工程勘察报告,场地内地形较平坦,自上而下的地层顺序为:①层耕土:灰黄色,松散。

②层粉土:灰黄色,饱和,松散。

③层淤泥质粉质粘土:灰黑色,饱和,流塑~软塑,局部夹薄层淤泥质粉土或粉砂。

③-1层淤泥质粉土:灰黑色,饱和,松散。

④-1层粉砂:灰黑色,饱和,中密。

④层粉质粘土:灰黑色~灰色,湿,软塑~可塑,韧性低,干强度低,夹贝壳,局部夹薄层粉土或粉砂。

⑤层粉质粘土:灰黄色~黄褐色夹灰色,湿,可塑~硬塑,韧性中等,干强度中等,含铁锰结核,偶见贝壳,局部夹薄层粉土或粉砂。

⑥层细砂:灰黑色~灰色,饱和,中密~密实,夹贝壳,局部夹薄层粉质粘土或粉土。

预应力管桩断桩原因及防治的探讨 叶建禹

预应力管桩断桩原因及防治的探讨  叶建禹

预应力管桩断桩原因及防治的探讨叶建禹摘要:桩基是建筑工程的最重要组成部分,其质量问题给结构造成的问题是巨大的甚至是致命的,因此有效的预防断桩问题,避免工程损失已成为业界的讨论关注问题,本文以沿海某城市断桩实例,结合工程实际,从断桩原因分析,防治,断桩处理三方面做了些探讨,以供借鉴。

关键词:预应力管桩;断桩;防治前言:预应力管桩生产、施工技术自从上世纪70年代进入国内以来,得到迅猛发展,特别是在长江三角洲和珠江三角洲地区,由于地质条件适合管桩施工的使用特点,在工业与民用建筑中得到广泛应用。

在预应力管桩施工技术飞速发展的同时,其伴随而来的质量问题特别是断桩问题屡有发生,造成工期、成本的极大损失。

1 断桩原因分析:该沿海城市小区e#、f#楼地下室一层,地上二十七层,总建筑面积33759平米,在基础施工开挖中出现断桩情况,其中e#楼主楼172根桩,断桩37根,断桩率22%,f#楼主楼141桩,断桩77根,断桩率高达55%,其邻近的g#、h#楼也出现小部分断桩。

断桩呈现断桩位置一致、断桩区域集中的特点,如下图:该小区断桩质量事故给工程进展带来重大影响及造成重大经济损失。

经现场实际勘察,发现多因素影响造成了断桩,首先从地质条件分析:该小区e#楼、f#楼地质分布情况如下表从地勘资料上看,原地块还为自然渔塘,回填砂均达2.5m厚,回填砂具有保水性,水分不易蒸发,其下的淤泥层较厚,最厚达7.6m,且为流塑性,极易造成挤淤,塌方。

在土方开挖时,流砂、流塑性淤泥先推倒支护桩,断桩位置均集中于淤泥层与卵石层交接处,因此,流塑性淤泥太厚造成挤淤,塌方直接导致断桩。

从现场图片上看到,该项目在桩基施工时,送桩长度明显不足。

该项目桩基施工前场地平均标高为-1.8m,设计桩顶标高为-6.5m(电梯基坑为-8.5),因此送桩4.7m为理想状态(电梯基坑除外),而断桩的送桩深度为0—4m,且主要集中0—3m范围内,特别是f#楼,送桩均不到位,只为0-1.5m,因此在开挖过程中,挖机在淤泥质土中行走,土侧压力直接作用于桩身,出现第一根断桩后,就形成多米诺骨牌效应,造成大面积断桩。

管桩施工中桩身断裂的原因及预防措施.doc

管桩施工中桩身断裂的原因及预防措施.doc

管桩施工中桩身断裂的原因及预防措施
预应力管桩管壁薄,施工中不注意容易断裂,主要原因:一是桩身弯曲超过规定,桩尖偏离轴线,桩制作时混凝土强度不够,管壁厚薄不均匀,桩在堆放、吊运过程中产生裂纹或断裂未被发现,沉人过程中桩身发生倾斜或弯曲:
二是接桩焊缝不饱满,焊后自然冷却时间不够,接桩时两节桩不在同一轴线上。

产生了曲折:三是地质土层软硬变化或有坚硬障碍物时,把桩尖挤向一侧;四是施工场地不平、烂泥、积水多,造成压桩时机身不平稳。

预防措施:是对桩身质量进行全面检查,测量管桩的外径、壁厚、桩身弯曲度等有关尺寸,并详细记录,发现桩身弯曲超过规定或桩尖不在桩纵轴线上的不宜使用。

桩的堆放、吊运应严格按照有关规定执行:二是在稳桩过程中如发现桩不垂直应及时纠正,桩压人一定深度发生严重倾斜时,不宜采用移架方法来校正。

接桩时要保证上下两节桩在同一轴线上,接头处应严格按照操作规程;三是施工前应对桩位下的障碍物进行清理,必要时对每个桩位用钎探了解;四是应保证施工场地平整坚实。

有排水措施,让机台行走或施打过程机身平稳不晃动。

预应力管桩倾斜、偏位、断桩的预防和处理

预应力管桩倾斜、偏位、断桩的预防和处理

图1
地梁及承台调整图
如果桩偏位多在 500 ~600 以上桩基中心完全远离了柱中心,应进行补桩。为解决补桩 后的承台偏心问题,在承台桩偏位的另一侧补上一根或二根桩以弥补重心问题。 经过这样处 理,偏位桩集中及偏位大的承台大部分力由新补的桩来承担。
4 、断桩的原因分析、预防和处理
4. 1 断桩的原因分析 (1) 工程勘察在持力层层面高差太大,并有明显陡坡的情况下,未按规范要求进一步
预应力管桩倾斜、偏位、断桩的预防和处理
1、前言
预应力管桩基础由于其施工工期短、工程造价相对较低、单桩承载力大、施工质量容易 保证等诸多优势, 在建筑工程领域得到广泛应用。 但在软弱地基中, 打桩过程中的挤土效应、 施工过程中的端头板焊接不良、 重型施工机械的行走碾压、 基坑边坡失稳和挖土不当等原因, 使桩出现倾斜,甚至偏位以及断桩情况。此类质量问题轻则延误工期、增加工程造价,重则 会引起重大质量事故。因此,分析研究预应力管桩施工质量问题产生的原因及处理方法,具 有重要的工程意义。
2 、管桩倾斜的原因分析、预防和处理
2. 1 管桩倾斜的原因分析 (1) 预应力混凝土管桩属挤土型桩,在施打大面积密集群桩时,往往造成先打入的桩 挤土产生倾斜,管桩施工速度太快时会加剧挤土效应; (2) 施工顺序不当导致应力扩散不均匀,随着施工数量的增加,挤土效应越加明显; (3) 基坑开挖方法不当,一次性开挖深度太深,使桩的一侧承受土压力较大,桩身发 生弯曲变形; (4) 为确保桩机行走,上部填土形成硬壳,随着沉桩施工产生的挤土效应致使上部硬 壳向已施工方向移动; (5) 沉桩过程中地下遇到大块坚硬物体,把桩挤向一侧; (6) 施工过程中桩身不垂直。 2. 2 预防措施 (1) 施工过程中应根据地层情况、基础形式、布桩情况等选择合理的施工机械,并限 制打桩速率, 并优化打桩的施工方向和顺序路线, 一般宜自桩群中间向两个方向或四周对称 施工,当一侧毗邻建筑物时,可从毗邻建筑物处开始沉桩。 (2) 在打桩或挖土施工前,如果地表土层较软,或地表土层虽然较硬,但厚度相对较 薄时, 应在机械行走的位置填一定厚度的碎石或路基板, 减小机械对场地表面土体的挤压作 用。 (3) 合理选择基槽支护与开挖施工方法。施工应坚持先支护后挖土的原则。深基坑一 定要分层开挖,软土每层挖土的厚度不应超过 1.5 m,层与层之间留出一定宽度的工作面, 并根据土质情况合理放坡,严防土体滑动。深基坑在接近坑底时应采取接力开挖,前边(接 近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作用。 (4) 预钻孔沉桩,孔径应比桩径小 50 mm~100 mm,深度可根据桩距和土的密实度、 渗透性确定,一般孔深宜为桩长的 1/3~1/2,施工时随钻随打。 (5) 饱和土地基中设置袋装砂井或塑料排水板,以消除部分超孔隙水压力,减少挤土 现象。袋装砂井或塑料排水板间距 1.0 m~1.5 m,深度 10 m~12 m。 (6) 设置地面防挤沟,沟宽 0.5 m~0.8m,深度视土质情况而定,过浅则起不到隔离

预应力管桩倾斜、断裂的预防和处理

预应力管桩倾斜、断裂的预防和处理
8
(1.5m)不可取,应经计算确定。 4.3.3 基本思路假定 ⑴接桩方法。将纠偏扶正的管桩中间空心部分清理干净,把绑扎 好使其造成芯桩,并且焊有托板的钢筋笼放入管桩空心内,浇筑砼, 养护 28 天后做载荷试验,如符合承载要求,则可进行下一步施工。 采取此办法接桩,则需要确定如下两个数 据。 ①接桩时芯桩在断裂缝以下锚入断裂 缝下边一段管桩内的深度;
4
3.4.2 深基坑在接近坑底时应采取接开挖,前边(接近坑底层土) 用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作 用。 3.4.3 基坑挖土不深的情况下可用长臂挖机(如 15m 长)站在远 离桩位的位置开挖。 3.4.4 挖机和运输车辆距桩位较近时加垫路基板。 3.4.5 基坑边上不应有重车行走或堆载过大,特别是放坡开挖的 无支护基坑。 3.5 合理选择基坑支护措施。基坑支护方法选择时应特注意基坑 外地下水位及是否存在给排水管道,往往由于管道年久失修渗漏,基 坑外土体富含地下水或因基坑边渗流水而引起基坑坍塌。 值得注意的是预防措施往往不是单一的一种方法, 而是选择多种 方法,综合运用。 4、预制管桩倾斜、断裂的处理 4.1 对倾斜、断裂预制桩的检查。在处理前,首先应对倾斜、断 裂的预制管桩进行检查,分别查清倾斜和断裂桩的数量、位置,倾斜 或断裂的深度,倾斜度等数据,具体可采取如下方法: 4.1.1 进行现场调查。检查倾斜、断裂桩的位置、数量。 4.1.2 采用拉线等方法标定出建筑物轴线,测量出每个桩偏移的 平面距离,标注在图纸上。应值得注意的是所侧得桩位偏移值不一定 完全是桩倾斜原因产生,也可能是打桩就位时产生的偏移,测得的数 据应与其它检测结果综合分析。
6
M k ≥P×e e=i×H 式中:M k ——管桩抗裂弯矩 P——承载力 e——桩倾斜水平距 i——桩倾斜度 H——桩倾斜深度 就某个工程而言,往往桩型是统一的,则M k 值也是固定的,单 桩设计承载力P值也是固定的,由上述公式可以看出,当桩管桩倾斜 度i一定时,随着桩倾斜深度H值的增加而出现e值增大,而使管桩安 全承载能力P值减小;而当管桩倾斜深度H一定时,随着桩倾斜度i的 增加而出现e值增大,而使管桩安全承载能力P值减小。对于不满足 M k ≥P×e的桩均应进行处理。 4.2.2 处理方法 倾桩倾斜超过倾斜级限量值的,无论其是否发生断裂,均应进行 纠偏扶正处理,将其倾斜度控制在允许的范围内。纠偏扶正根据土质 情况,采取如下方法: 1、较浅的(一般 2-3 米内)可以将桩倾斜反向土方挖除后扶正。 2、较深的可以用钻孔取土、高压水冲取土等方式将桩倾斜反向 桩一侧土取出后扶正。 3、在取土前,应在桩倾斜的反向打好地锚,用细钢丝绳、手动 葫芦将桩与地锚连接起来,取土深度需要超过桩倾斜深度 0.5-1 米左

工程地质知识:桥梁预应力砼管桩基础断桩预防的措施.doc

工程地质知识:桥梁预应力砼管桩基础断桩预防的措施.doc

工程地质知识:桥梁预应力砼管桩基础断桩预防的措施(1)选取合适的地质条件进行桥梁管桩基础设计,多参考已完成项目的成功经验。

针对不同地质情况,结合地质勘探的数据和意见,严格确定管桩的相关参数。

(2)在施工过程中严格按规范进行操作,可大幅度降低施工造成的断桩率。

(3)桩身质量因素的解决,须厂家、建设、监理、施工及检测部门等相关单位对定型产品严格把关,同时选择一个有责任、技术雄厚、质量可靠的管桩生产厂家也是很重要的。

除设计、施工、生产上都达到了要求外,资质不符合要求的监理、施工单位不得承担桥梁管桩基础工程的监理、施工任务,只有这样才能更好地降低桥梁管桩基础的断桩率。

某静压高强预应力管桩工程施工中的断桩原因分析与处理措施

某静压高强预应力管桩工程施工中的断桩原因分析与处理措施

某静压高强预应力管桩工程施工中的断桩原因分析与处理措施1.引言简要介绍静压高强预应力管桩的工程应用和发展现状,阐述断桩问题对工程质量和经济的影响及其研究意义和必要性。

2.断桩的原因分析针对静压高强预应力管桩工程施工中发生断桩现象的具体情况进行分析,从多个方面提出可能导致断桩的原因,包括土层条件、桩体结构、预应力水平、施工操作等。

3.断桩处理措施在分析断桩原因的基础上,提出多种处理和预防措施,包括加强桩身抗拔、改善土层条件、优化预应力水平、调整施工操作、设置监测预警等方法。

4.具体案例分析选取实际静压高强预应力管桩工程中出现断桩现象的案例进行详细分析,对比不同原因引发的断桩情况,查找分析其共性特点和个别差异,提出相应的解决方案。

5.结论总结研究成果,归纳断桩的原因和处理措施,强调防范和预防断桩的重要性和必要性,为提升静压高强预应力管桩工程的质量和安全提供科学依据和参考。

1. 引言随着我国城市化进程的加速推进,基础设施建设需求急剧增加,特别是城市治理和建设的快速发展,对地下空间的挖掘和利用要求越来越高,因此深基坑、地下室、城市轨道交通、道路和桥梁等工程的建设呈现了不断扩大的趋势。

正是由于这种情况,静压高强预应力管桩在工程应用中逐渐得到了广泛的关注和应用。

静压高强预应力管桩是指采用高效的静压法预制制成的管型混凝土桩,通过现场预应力制成剪力强度较高的管桩,它不仅在地基基础中承担重要的载荷,而且还能涵盖蒸汽/液体传输管、电线电缆或伸缩缝的需要,可以起到提升地下空间的利用效率,增强工程的整体安全性和可靠性的作用。

因此,在静压高强预应力管桩施工过程中,断桩问题是必须解决的一个关键问题,断桩现象的出现对工程的影响非常严重。

因此,本论文将分析静压高强预应力管桩工程施工中出现断桩现象的原因,并对其进行深入的研究。

通过诸如工程质量和经济影响的综合考虑和探究,本文将解决除了施工中出现断桩现象的原因,并提出预防和处理的方法,为完善静压高强预应力管桩工程的合理施工和维护提供科学的基础和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力管桩施工断桩原因和预防措施
邹泓荣
CAUSE OF PILE-BREAKAGE AND ITS PREVENTION
MEASURE OF PRESTRESSED TUBULAR PILE DURING
CONSTRVCTION
ZOU Hongrong
某粮库采用500×125 mm预应力管桩,单桩竖向承载力标准值R k=2 500 kN,以硬塑残积土为桩基持力层(或强风化层),控制贯入度为2 cm/10击。

施工断裂桩总数23根,破桩率达8%,损失30万元,其中7号、155号、156号、269号桩位分别断桩5根、3根、2根(均无一成桩)。

1断桩过多的原因
1.1地质情况比较复杂
该场地软弱土层(填土、淤泥)厚度达15 m以上,从地质剖面图看,粮库(北座)场地强风化岩面较浅,残积层较薄。

后来在ZK1和ZK7附近的补钻孔证明,该部位淤泥层直接覆盖基岩,基岩表面强风化层和中风化岩层很薄,甚至缺失(直接到微风化)。

在这种“上软下硬,软硬突变”的地质条件下打桩,管桩很快穿越软覆盖层后即遇硬层,贯入度突然变小;桩身反弹剧烈,桩身容易断裂。

从打桩记录看,212号桩仅23击就断裂;而同一承台未断桩211号桩,从1~21 m 管桩自沉,其第22 m、23 m、24 m分别为3击、16击、213击。

269号和269号补桩,分别以20击、22击断裂。

粮库(南座)场地强风化岩层较深,有明显陡坡(其偏北部位残积层较薄)。

桩尖在锤击振动下沿岩面陡坡滑移,造成桩身断裂。

1.2地质资料不够详尽
《软土地区工程地质勘察规范》(JGJ 83-91)第七章“桩基工程勘察”第7.0.3条二规定:“当相邻勘探点揭露的持力层层面高差大于2m,或土层性质变化较大时,宜适当加密,必要时尚应查明持力层厚度的变化”。

该工程地质报告在持力层层面高差太大,并有明显陡坡的情况下未按规范要求进一步加密钻孔;ZK1、ZK7钻孔强风化岩层薄且无标贯数据。

该地质报告在强风化层上做了8个标贯测试,最小N=50,最大N=82.9。

该地质报告采用“平均值”N=64.2,这样的“平均值”会误导设计和施工。

1.3设计和施工有疏忽
在地质比较复杂、地质报告不够详尽、某些剖面明显不利于采用管桩的情况下,该设计与一般情况基本无异,当桩端嵌岩很浅时,若单桩承载力取较高值,不利于桩端和桩身在受压时的稳定;无专项技术交底。

这样的设计,打桩必然会有困难。

施工前未经图纸会审,施工单位未认真熟悉地质资料和设计图纸,就开始从
地质条件较好的东部打桩,致使断桩多发区暴露较晚,后期已难以改变桩型。

若试打桩从不利的西北角开始,断桩问题会及早暴露,有利于减少损失。

2断桩预防措施
2.1使用合格的管桩
管桩的混凝土强度等级、预应力张拉值、几何尺寸偏差、不允许的外观缺陷、钢桩尖等都必须符合有关规定。

由于混凝土回弹仪仅适用于C40以下混凝土的测试,对有怀疑的管桩,可在施工现场取样进行桩身混凝土强度和管桩抗弯性能检验。

2.2管桩的长径比不宜超过100
当穿越较厚的淤泥层后即碰到硬岩层时,若管桩过于细长,易在中部折断。

2.3地质资料应能判定管桩的摽纱蛐詳
根据广东地区经验,在石灰岩地区打桩时,桩的破损率高达20%~50%;在强风化岩层较薄(或缺失)的场地打桩,当桩尖遇N>70的强风化岩或中风化岩层时,破损率高达10%~20%。

因此,在石灰岩地区或有孤石,旧建筑物基础,硬夹层,撋先硐掠病⑷碛餐槐鋽,岩面陡坡等场地,可能在锤击数不多的情况下打断桩,因而不宜采用管桩。

按广东省规定,地质勘察的标准贯入试验,遇中密~密实砂层、硬塑~坚硬粘性土层,残积土层及全风化岩层时,应每2 m左右测试一次;预计作持力层的土层,应每1 m左右测试一次。

2.4防止锤击过度
按广东地区经验,达到承载力设计值的最后贯入度为2~4 cm/10击时,选择柴油锤比较理想,此时桩的破损率不大于2%。

因此,对于PC桩,沉桩总锤击数不宜超过2 000击,最后1 m的锤击数不宜超过250击;对于PHC桩,总锤击数不宜超过2 500击,最后1 m的锤击数不宜超过300击。

2.5避免中途停歇
在较厚的粘土、粉质粘土层中,每根桩要连续施打,一气呵成。

在这类土层中打桩,桩周土体结构迅速破坏,桩贯入相当容易;一旦停歇,桩周土体会迅速固结。

停歇时间越长,土体固结越好。

若再重打此桩,将其沉至设计持力层,锤击数需增加许多,往往还因此打坏桩。

若固结后因打不动而停锤,静载试验表明,许多桩的承载力又达不到设计要求。

2.6避免盲目施工
在试打桩中采用高应变打桩分析仪配合测试,进行综合分析,定出既能达到设计承载力又不致锤击过度的停锤标准。

作者单位:邹泓荣,广东省中山市建设委员会,副总工程师,高级工程师,528403。

相关文档
最新文档