振动之弹簧振子的能量
大学物理——第4章-振动和波

合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω
简谐运动及其旋转矢量表示法简谐运动的能量

1 Hz , 2 6
T 2 1 6s, /4
(2)势能 总能
Epkx2/2, EkA 2/2
由题意, k2 x/2k2 A /4, xA/ 24.2 41 02m
(3)从平衡位置运动到 xA/ 2
的最短时间为 T / 8。
即为 6/80.75s
) )
O
A/2
x
(B)
A/2
O
x
A
x 10-2cos( t /3 - /4),(SI)
五、两个同频率简谐运动的相位关系
x 10-2cos( t /3 - /4),(SI)
x2 比 x1 超前
简谐运动及其旋转矢量表示法简谐运动的能量
五、两个同频率简谐运动的相位关系
(或 x1 比 x2 落后 ) 的最短时间为 T / 8。
x Acos( t )
半径
圆周运动小球 角速度
振幅
角频率 简谐振动物体
角坐标
相位
例:一物体做谐振动,振幅为 A,在起始
时刻质点的位移为 A/2 且向 x 轴的正方向
运动,代表此谐振动的旋转矢量图为:
质点运动的周期和振幅。
五、两个同频率简谐运动的相位关系
= 2 v = 2 /T
质点运动的周期和振幅。
A
,振幅A=1 cm. t=0时,速度具有负最O大值,求振动表达式.
(C ) x A/2
(D)
A/2
O
x
A
[D]
四、简谐运动的能量
1. 动能
Ek
1 mv 2
2
1 kA2 sin 2( t )
2
掌握
Ek max
机械振动习题详解

习题四一、选择题1.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为1cos()x A t ωα=+。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为 [ ] (A ))π21cos(2++=αωt A x ; (B ))π21cos(2-+=αωt A x ; (C ))π23cos(2-+=αωt A x ; (D ))cos(2π++=αωt A x 。
答案:B解:由题意,第二个质点相位落后第一个质点相位π/2,因此,第二个质点的初相位为π21-α,所以答案应选取B 。
2.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为[](A )21212)(2k k k k m T +π=;(B ))(221k k mT +π=;(C )2121)(2k k k k m T +=π;(D )2122k k mT +π=。
答案:C解:两根弹簧串联,其总劲度系数2121k k k k k +=,根椐弹簧振子周期公式,k mT π2=,代入2121k k k k k +=可得答案为C 。
3.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为[] (A )g l π2;(B )g l 22π;(C )g l 322π;(D )gl 3π。
答案:C解:由于是复摆,其振动的周期公式为glmgl J T 322222πππ===ω,所以答案为C 。
4.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[] 答案:B解:根椐题意,此简谐振动的初相位为3π-,或35π,所以答案为B 。
5.一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为[](A )1:4;(B )1:2;(C )1:1;(D )2:1。
弹性势能与弹簧振子

弹性势能与弹簧振子弹簧振子是物理中常见的一个实验模型,用于研究弹性势能的性质和振动运动。
弹簧振子由一个固定在一端的弹簧和一个可振动的质点组成,质点在受力的作用下做简谐振动。
本文将介绍弹性势能的概念、弹簧振子的运动方程以及相关实验原理。
一、弹性势能的定义和性质弹性势能是指弹性系统由于形变而存储的势能,当形变取消时会释放这些储存的能量。
弹性势能与形变的大小成正比,当形变增大时,弹性势能也相应增大。
弹性势能的计算公式为:U = (1/2)kx²其中,U表示弹性势能,k表示弹簧的劲度系数,x表示弹簧的形变量。
根据公式可以看出,弹性势能与劲度系数和形变量的平方成正比。
弹性势能的性质包括:1. 弹性势能只与劲度系数和形变量有关,与质量和振动频率无关。
2. 弹性势能的单位是焦耳(J)。
二、弹簧振子的运动方程弹簧振子是一种具有简谐振动特性的物理系统,它的振动由一个弹簧和一个质点组成。
当质点距离平衡位置产生位移时,弹簧受力并产生形变,形成弹性势能。
根据胡克定律,弹簧受力与形变的关系可以表示为:F = -kx,其中F为弹簧受到的力,k为弹簧的劲度系数,x为形变量,负号表示力的方向与位移方向相反。
根据牛顿第二定律,弹簧振子的质点所受合外力为弹性力以及其他可能存在的自由力之和,可以表示为:F = -kx + f(t),其中f(t)表示可能存在的自由力,t表示时间。
根据以上两个方程,可以得到弹簧振子的运动方程:m(d²x/dt²) + kx = f(t)其中m为质点的质量,x为位移,t为时间。
这是一个二阶线性常微分方程。
三、弹簧振子的实验原理为了研究弹性势能和弹簧振子的性质,可以通过实验来进行验证。
实验中通常使用弹簧振子和一些测量装置,例如振幅计、计时器等。
实验步骤如下:1. 将弹簧振子固定在一个支架上,并确保弹簧垂直于水平方向。
2. 将一个质点连接到弹簧的自由端,并使其达到平衡位置。
3. 给质点一个初始位移,并释放质点。
《力学》机械振动

A1 A2
x1
T
o
- A2 -A1
t x2
2 1
注意
2
即x2比x1超前
2
22
领先、落后以< 的相位角来判断
同相和反相
当 = 2k , ( k =0,1,2,…), 两振动步调相同,称同相
x
A1
x2
当 = (2k+1) , ( k =0,1,2,…), 两振动步调相反,称反相
a > 0
减速
a > 0
加速
9
四、 描述简谐振动的特征量--周期、振幅、相位
1、周期T: 物体完成一次全振动所需时间。
频率f:
物体在单位时间内完成振动的次数。 1 f T
2 2f T
2
角频率:
k 对弹簧振子: m
T 2
m k
1 f 2
k m
2. 振幅 A: 谐振动物体离开平衡位置的最大位移的 10 绝对值。
加速度
2
d x 2 a 2 A cos( t ) dt
也是简谐振动
8
2
a(t ) A cos( t )
x.v.a.
A A A
2
a
o
x
T t
A A 2A
> 0
< 0
< 0
> 0
a < 0
减速
a < 0
加速
谐振动频率相同 X 2
= ( t + 2)- ( t + 1) = 2- 1
A 初相差 (1) (2)
0
-A/2 -A/2 -A
简谐振动的能量

对应不同相位差的合运动轨迹
ϕ2 −ϕ1 = 0
π
4
Байду номын сангаас
π
2
3π
4
ϕ2 −ϕ1 = π
5π
4
3π
2
7π
4
五、两个相互垂直的不同频宰的简谐运动的合成
讨论:相互垂 直、频率成简 单整数比 合运动具有稳 定封闭的轨迹 李萨如图形
作业:习题 P39 14-22 14-27
∠OPQ = N∆ϕ
在三角形 OPQ 中,OQ 的长度就是和振动位移矢量的 位移,角度 ∠QOX 就是和振动的初相,得:
N∆ϕ A = 2Rsin( ) 2
∆ϕ A0 = 2Rsin( ) 2
N∆ϕ ∆ϕ A = A0 sin( ) sin( ) 2 2
ϕ = ∠QOB = ∠POB −∠POQ
当 ∆ϕ = 0 时(同相合成),有
ω2 +ω1
2
t)
ν2 −ν1 ν2 +ν1 x = 2A cos2π t ⋅ cos2π t 1 2 2
因ω1
~ ω2 , ω2 − ω1 << ω1 或 ω2 , 有
ω2 + ω1
≈ ω1 ≈ ω2
2 在两个简谐振动的位移合成表达式中,第一项随时 间作缓慢变化, 第二项是角频率近于 ω1或ω2 的简谐 函数。合振动可视为是角频率为 (ω1 + ω2 ) 2、振幅为 2Acos (ω2 − ω1)t 2的简谐振动。
§14-3 简谐振动的能量
以水平弹簧振子为例讨论简谐振动系统的能量。 动能
势能
系统总的机械能:
简谐振动的能量要点

简谐振动的能量要点简谐振动是物体在一些平衡位置附近以固定频率来回振动的运动方式。
它是一种理想化的振动模型,常用于描述弹簧和摆钟等物理系统的振动特性。
在简谐振动中,振动物体的能量一直保持着恒定。
以下是关于简谐振动能量的几个重要要点:1.势能和动能之间的转换:在简谐振动中,振动物体的能量主要由势能和动能组成。
当物体从平衡位置偏离时,会产生弹性势能。
随着物体向平衡位置回归,弹性势能转变为动能。
两种能量形式之间的转换是周期性的,能量在势能和动能之间交替转换,始终保持总能量不变。
2.势能的表达式:简谐振动的势能可以用一个二次函数来表达。
对于弹簧振子,势能与物体偏离平衡位置的平方成正比。
势能函数可以表示为U(x) = (1/2) kx²,其中k是弹簧劲度系数,x是物体离开平衡位置的位移量。
3.动能的表达式:振动物体的动能取决于物体的质量和速度。
动能可以表示为K = (1/2) mv²,其中m是物体的质量,v是物体的速度。
由于简谐振动中物体的运动速度是周期性变化的,动能的最大值等于势能的最大值。
4.总能量的守恒:在简谐振动中,总能量一直保持恒定。
振动物体的总能量可以表示为E=U+K,其中U是势能,K是动能。
由于振动物体在势能和动能之间交换能量,总能量以恒定的方式改变,但总能量的值始终保持不变。
5.振幅和能量关系:振动物体的振幅是指物体离开平衡位置的最大位移量。
振幅越大,物体在振动过程中的最大速度和最大加速度也会增大。
根据动能的表达式K = (1/2) mv²可以看出,振幅的增加会导致动能的增加,从而增加振动物体的总能量。
6.能量的周期性变化:简谐振动的能量以周期性的方式变化。
在振动周期的不同阶段,势能和动能的值会交替变化。
具体来说,在最大位移点,势能达到最大值而动能为零;在通过平衡位置时,势能为最小值而动能最大。
这种能量的周期性变化特性与简谐振动的周期性变化是紧密相关的。
江苏科技大学大学物理习题之-机械振动习题详解

一、选择题1.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为1cos()x A t ωα=+。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为 [ ](A ))π21cos(2++=αωt A x ; (B ))π21cos(2-+=αωt A x ;(C ))π23cos(2-+=αωt A x ; (D ))cos(2π++=αωt A x 。
答案:B解:由题意,第二个质点相位落后第一个质点相位π/2,因此,第二个质点的初相位为π21-α,所以答案应选取B 。
2.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 [ ](A )21212)(2k k k k m T +π=; (B ))(221k k mT +π= ;(C ) 2121)(2k k k k m T +=π; (D )2122k k mT +π=。
答案:C解:两根弹簧串联,其总劲度系数2121k k k k k +=,根椐弹簧振子周期公式,k mT π2=,代入2121k k k k k +=可得答案为C 。
3.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 [ ] (A )g l π2; (B )g l 22π; (C )g l 322π; (D )gl 3π。
答案:C解:由于是复摆,其振动的周期公式为glmgl J T 322222πππ===ω,所以答案为C 。
4.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ ] 答案:B解:根椐题意,此简谐振动的初相位为3π-,或35π,所以答案为B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取初相位为零,位移随 时间按余弦规律变化, 速度按正弦规律变化。
动能和势能则分别按正弦平方和 余弦平方的规律变化,其周期只 有位移和速度周期的一半, 这是因 为在一 个周期 之内, 动能和 势能两 次取得 极大值 或极小 值。
总机械能保持不变。
T0 0
2T0
0
2T0 0 2
1
kA2[t
1
T0
sin 2(t )]
4T0
2均势能为
V
1 T0
T0
Vdt
0
1 2T0
T0
kA2
0
cos2 (t
)dt
1 2T0
T0
kA2
0
1 [1 cos 2(t
2
)]dt
即 V 1 kA2 4
可知:系统的平均动能等于平均 势能,等于总的机械能的一半。
{范例5.4} 弹簧振子的能量
弹簧振子的质量为m,劲度系数为k,振幅为A,求弹簧 振子的动能和平均势能、势能和平均势能以及机械能。
由于系统的动能和势能是周期性变化的, 只需要考虑一个周期内的平均值就行了。
平均动能为
T
1
T0
Tdt
1
T0
m2 A2 sin2 (t )dt
1
kA2T0 1 [1 cos 2(t )]dt