高三一轮复习万有引力与航天教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科老师个性化教案
教师学生姓名上课日期10-28 学科物理年级高三教材版本人教版
学案主题万有引力
课时数量
(全程或具体时间)
第(5)课时授课时段19-21
教学目标
教学内容
万有引力和航天
个性化学习问
题解决
结合孩子的进度设计
教学重点、
难点
高考重难点
教学过程
万有引力与航天知识点总结
一、人类认识天体运动的历史
1、“地心说”的内容及代表人物:
托勒密(欧多克斯、亚里士多德)
内容;地心说认为地球是宇宙的中心,是静止不动的,太阳,月亮以及其他行星都绕地球运动。
2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略)
内容;日心说认为太阳是静止不动的,地球和其他行星都绕太阳运动。
二、开普勒行星运动定律的内容
开普勒第二定律:
v v
远
近
开普勒第三定律:K—与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:
33
3
222
===......
a a
a
T T T
水
火
地
地水
火
三、万有引力定律
1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
K
T R =2
3 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝
' 2r Mm F ∝ 2r Mm
G F =
2、表达式:2
2
1r m m G
F = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。 4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。 ④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。
6、推导:2224mM G m R R T π= ⇒ 322
4R GM
T π
= 四、万有引力定律的两个重要推论
1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。 五、黄金代换
若已知星球表面的重力加速度g 和星球半径R ,忽略自转的影响,则星球对物体的万有引力等于物
体的重力,有2Mm
G mg R
=所以2gR M G =
其中2
GM gR =是在有关计算中常用到的一个替换关系,被称为黄金替换。
导出:对于同一中心天体附近空间内有22
11
22GM g R g R ==,即:2
12221
g R g R =
环绕星体做圆周运动的向心加速度就是该点的重力加速度。
六;双星系统
两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:
M 1:
22
12111112
1
M M v G M M r L r ω== M 2:
22
1222222
22
M M v G M M r L r ω== M 1 M 2
ω1 ω2
L r 1
r 2
轨道半径之比与双星质量之比相反:
12
21
r m r m = 线速度之比与质量比相反:
12
21
v m v m = 七、宇宙航行:
1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……
3、卫星轨道:可以是圆轨道,也可以是椭圆轨道。地球对卫星的万有引力提供向心力,所以圆轨道圆心或椭圆轨道焦点是地心。分为赤道轨道、极地轨道、一般轨道。 二、1、三个宇宙速度: 第一宇宙速度(发射速度):7.9km/s 。最小的发射速度,最大的环绕速度。 第二宇宙速度(脱离速度):11.2km/s 。物体挣脱地球引力束缚,成为绕太阳运行的小行星或飞到其他行星上去的最小发射速度。 第三宇宙速度(逃逸速度):16.7km/s 。物体挣脱太阳引力束缚、飞到太阳系以外的宇宙空间去的最小发射速度。
7.9km/s <v <11.2km/s 时,卫星绕地球旋转,其轨道是椭圆,地球位于一个焦点上。 11.2km/s <v <16.7 km/s 时,卫星脱离地球束缚,成为太阳系的一颗小行星。
2、(1)人造卫星的线速度、角速度、周期表达式:将不同轨道上的卫星绕地球运动都看成是匀速圆周运动,则有
222
224Mm v G m m r m r r r T πω=== 可得:GM v r = 3
GM r ω= 32r T GM
π= 同一中心天体的环绕星体(靠万有引力提供向心力的环绕星体,必须是“飘”起来的,赤道上的物体跟同
步卫星比较不可以用此结论) R↑T↑a↓v↓ω↓
(2)超重与失重:人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动。两个过程加速度方向均向上,因为都是超重状态。人造卫星在沿圆轨道运行时,万有引力提供向心力,所以处于完全失重状态。
三、典型卫星:
1、近地卫星:通常把高度在500千米以下的航天器轨道称为低轨道,500千米~2000千米高的轨道称为中轨道。中、低轨道合称为近地轨道。
在高中物理中,近地卫星环绕半径R≈R 地 =6400Km ,7.9/()v gR km s =
=所有卫星中最大速度
3
285min()R T GM
π==所有卫星中最小周期
2、同步卫星:相对地面静止且与地球自转具有相同周期的卫星叫地球同步卫星,又叫通讯卫星。 特点:
(1) 运行方向与地球自转方向一致(自西向东)。 (2) 周期与地球自转周期相同,T=24小时。 (3) 角速度等于地球自转角速度。
(4) 所有卫星都在赤道正上方,轨道平面与赤道平面共面。
(5) 高度固定不变,离地面高度h=36000km 。 (6) 三颗同步卫星作为通讯卫星,则可覆盖全球(两级有部分盲区) (7) 地球所有同步卫星,T 、ω、v 、h 、均相同,m 可以不同。