奥斯特发现电流的磁效应

合集下载

电流的磁效应PPT教学课件

电流的磁效应PPT教学课件

3 重心 重心的高低与稳度1
3 重心
3 重心
不倒翁
不倒翁的构造
重心的高低与稳度2
4 摩擦力
摩擦使足球停止运动
摩擦使小孩推不动木块
摩擦可使筷子提米
摩擦使被推动的木块停止
4 摩擦力
摩擦力 摩 擦 力 作 用
摩擦力的方向大小
摩擦力的方向
摩擦力的方向
静摩擦力的方向
摩擦力的方向
滑动摩擦 滑 雪
D.断开开关, 使ab斜向后运动
aNb S
6.图是研究磁场对通电导体作用力 的实验装置,当导线ab有谋方向的 电流通过时,它受到的磁场力的方 向向上,(1)如果仅将两磁极方 向对调位置,导线ab受力方向____
(2)如果磁极位置不变,仅改变 ab中的电流方向,导线ab受力方向
电动机是根据______原理制成的, 发电机工作时将___能转化为 ______能
奥斯特实验
丹麦物理学家奥斯特 发现的电流磁效应, 是科学史上的重大发 现.
揭开了物理学史上的 一个新纪元.
奥斯特不只是一位著 名的物理学家,还是 一位优秀的教师.
(一)直线电流的磁场
奥斯特的实验 装置:
电流方向
直导线
电流方向
结论:
1. 通电导体周围存在 着磁场
2. 电流的磁场方向跟 电流方向有关
滑冰鞋
滚木
5 减小有害摩擦
流线型高速列车








5 减小有害摩擦
5 减小有害摩擦
6 弹力 撑 杆 跳
利用弹性跳水 拍球
6 弹力
射 箭
利用弹性跳水
6 弹力
弹 簧

法拉第电磁感应定律(2)

法拉第电磁感应定律(2)

电源
B
在电源内把单位正电荷从负极 移到正极的过程中非静电力所作的 功。 设在电源内把正电荷dq从负极移 设在电源内把正电荷 从负极移 到正极的过程中非静电力所作的功dA。 到正极的过程中非静电力所作的功 。
5
dA 电源电动势 ε = dq
单位:伏特。 单位:伏特。
它描写了电源将其它形式能量转变成电能的能力。 它描写了电源将其它形式能量转变成电能的能力。 利用场的观点, 利用场的观点,可以把非静电力的作用看成是一 种非静电力场的作用,并把这种场称为外来场。 E 种非静电力场的作用,并把这种场称为外来场。以K 来表示外来场的强度。 来表示外来场的强度。 外来场对电荷dq的非静电力就是:FK = E K dq 外来场对电荷 的非静电力就是: 的非静电力就是 在电源内,电荷 由负极移到正 在电源内 电荷dq由负极移到正极时非静电力所作的 电荷 由负极移到正极 + + + 功为: 功为:
L
x
11
dϕ m d µ0 LI 0 cos ωt b + vt εi = − =− ln dt dt 2π a + vt v µ0 I 0 L b + vt v − = [ω sin(ωt ) ln − cos ωt 2π a + vt b + vt a + vt dI 匝线圈, 例2:长直螺线管绕有 匝线圈,通有电流I 且 = C :长直螺线管绕有N匝线圈 dt C为常数且大于零),求感应电动势 为常数且大于零),求感应电动势。 (C为常数且大于零),求感应电动势。
{
8
d(ϕ1 +ϕ2 +ϕ3 +⋯ = − dφ ) ε =− dt dt dφ dϕ 若每匝磁通量相同: 若每匝磁通量相同: = − ε = −N dϕ m dt dt ε = − 2.感应电流 感应电流、 2.感应电流、感应电量 dt εi 1 dϕ m

人教版2023初中物理九年级物理全册第二十章电与磁重点归纳笔记

人教版2023初中物理九年级物理全册第二十章电与磁重点归纳笔记

人教版2023初中物理九年级物理全册第二十章电与磁重点归纳笔记单选题1、电流的磁效应被发现后,科学家笃信自然力的统一,以逆向的思想,开始在磁生电的研究中进行艰辛的探索。

下列科学家与其重要发现对应正确的是()A.法拉第——电磁感应现象B.奥斯特——电流的热效应C.安培——通电导体周围存在磁场D.焦耳——磁场对通电导体的作用答案:AA.1831年,一位叫迈克尔·法拉第的科学家发现了磁与电之间的相互联系和转化关系。

闭合电路的部分导体在磁场中做切割磁感线运动,闭合电路中就会产生感应电流。

这种利用磁场产生电流的现象称为电磁感应,故A正确;B.焦耳发现了通过电阻时,电流做功而消耗电能,产生了热量,这种现象叫做电流的热效应,故B错误;C.1820年,丹麦物理学家奥斯特发现了电流的磁效应,即通电导线周围存在磁场,故C错误;D.安培发现了磁场对通电导体的作用,故D错误。

故选A。

2、“探究电磁铁磁性强弱与哪些因素有关”实验时,实验装置如图所示,下列说法错误的是()A.当滑动变阻器滑片向左移动时,电磁铁甲、乙吸引大头针的个数增加,电磁铁磁性增强B.电磁铁吸引的大头针下端分散的原因是同名磁极相互排斥C.根据图示的情景可知,电流一定时,线圈匝数越多,电磁铁的磁性越强D.电磁铁在生活中的其中一个应用是电磁继电器,电磁继电器磁性强弱与电流方向有关答案:D知道,电路中的电流A.当滑动变阻器滑片向左移动时,滑动变阻器接入电路的电阻变小,总电阻变小,由I=UR变大,电磁铁磁性增强,电磁铁甲、乙吸引大头针的个数增加,故A正确;B.实验发现被电磁铁吸引的大头针下端是分散的,其原因是大头针被磁化后同名磁极互相排斥,故B正确;C.由图示的情景知道,两个电磁铁串联接入电路中,通过的电流是相同的,线圈匝数越多,吸引的大头针的个数越多,电磁铁的磁性越强,故C正确;D.电磁继电器磁性强弱与电流方向无关,与电流大小、线圈的匝数的多少有关,故D错误。

奥斯特实验说明了什么-奥斯特实验原理

奥斯特实验说明了什么-奥斯特实验原理

奥斯特实验说明了什么?奥斯特实验原理奥斯特实验1820年4月的一天,丹麦科学家奥斯特在上课时,无意中让通电的导线靠近指南针,他突然发现了一个现象。

这个现象并没有引起在场其他人的注意,而奥斯特却是个有心人,他非常兴奋,紧紧抓住这个现象,接连三个月深入地研究,反复做了几十次实验。

通过实验,奥斯特发现通电导线周围存在着磁场的实验。

如果在直导线附近(导线需要南北放置),放置一枚小磁针,则当导线中有电流通过时,磁针将发生偏转。

在此基础上,通过了解环形电流、通电螺线管磁场的磁感线,以及条形磁体和马蹄形磁体磁场的磁感线,进一步认识磁场的方向性。

在奥斯特实验中,当电路闭合时,电路中有电流,导线下边的小磁针发生偏转,受到磁场作用。

电路断开时,电路中无电流,小磁针不发生偏转。

所以得到的结论是:电流周围存在磁场。

同时,电路中电流方向相反时,小磁针偏转方向发生也相反,说明小磁针受到的磁场作用相反。

所以得到的结论是:磁场方向跟电流的方向有关。

奥斯特实验的两个典型结论就是:电流周围存在磁场;磁场方向跟电流的方向有关。

奥斯特研究电流磁效应的过程丹麦物理学家汉斯·奥斯特(H.C.Oersted,1777-1851)是康德哲学思想的信奉者,深受康德等人关于各种自然力相互转化的哲学思想的影响,奥斯特坚信客观世界的各种力具有统一性,并开始对电、磁的统一性的研究。

1751年富兰克林用莱顿瓶放电的办法使钢针磁化的发现对奥斯特启发很大,他认识到电向磁转化不是可能不可能的问题,而是如何实现的问题,电与磁转化的条件才是问题的关键。

开始奥斯特根据电流通过直径较小的导线会发热的现象推测:如果通电导线的直径进一步缩小那么导线就会发光如果直径进一步缩小到一定程度,就会产生磁效应。

但奥斯特沿着这条路子并未能发现电向磁的转化现象。

奥斯特没有因此灰心,仍在不断实验,不断思索,他分析了以往实验都是在电流方向上寻找电流的磁效应,结果都失效了,莫非电流对磁体的作用根本不是纵向的,而是一种横向力,于是奥斯特继续进行新的探索。

高考物理物理学史知识点经典测试题含答案解析(1)

高考物理物理学史知识点经典测试题含答案解析(1)

高考物理物理学史知识点经典测试题含答案解析(1)一、选择题1.在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。

下列叙述符合历史事实的是()A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电与磁之间存在必然的联系B.安培在实验中观察到导线静止,通有恒定电流,在其附近的固定导线线圈中,会出现感应电流C.库仑发现通电导线在磁场中会受到力的作用D.法拉第在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化2.下列说法正确的是()A.开普勒行星运动定律只适用于行星绕太阳的运动,不适用于卫星绕行星的运动B.牛顿提出了万有引力定律,并测定了引力常量的数值C.万有引力的发现,揭示了自然界一种基本相互作用的规律D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的3.下列有关物理学家的成就正确的是()A.法拉第发现了电流的磁效应B.安培提出了分子电流假说C.楞次发现了电磁感应定律D.奥斯特发现了判断感应电流方向的规律4.今年是爱因斯坦发表广义相对论100 周年。

引力波是爱因斯坦在广义相对论中预言的,即任何物体加速运动时给宇宙时空带来的扰动,可以把它想象成水面上物体运动时产生的水波。

引力波在空间传播的方式与电磁波类似,以光速传播,携带有一定能量,并有两个独立的偏振态。

引力波探测是难度最大的尖端技术之一,因为只有质量非常大的天体加速运动时才会产生较容易探测的引力波。

2016 年2 月11 日,美国激光干涉引力波天文台宣布探测到了引力波,该引力波是由距离地球13 亿光年之外的两个黑洞合并时产生的。

探测装置受引力波影响,激光干涉条纹发生相应的变化,从而间接探测到引力波。

下列说法正确的是A.引力波是横波B.引力波是电磁波C.只有质量非常大的天体加速运动时才能产生引力波D.爱因斯坦由于预言了引力波的存在而获得诺贝尔物理学奖5.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程.以下有关物理学史的说法中正确的是 ( )A.伽利略总结并得出了惯性定律B.地心说的代表人物是哥白尼,日心说的代表人物是托勒密C.出色的天文观测家第谷通过观测积累的大量资料,为开普勒的研究及开普勒最终得到行星运动的三大定律提供了坚实的基础D.英国物理学家牛顿发现了万有引力定律并通过实验的方法测出万有引力常量G的值6.物理学推动了科学技术的创新和革命,促进了人类文明的进步,关于物理学发展过程的认识,下列说法中正确的是A.牛顿应用“理想斜面实验”推翻亚里士多德的“力是维持物体运动的原因”的观点B.卢瑟福通过对α粒子散射实验结果的分析,提出了原子核是由质子和中子组成的C.牛顿在发现万有引力定律的过程中应用了牛顿第三定律D.英国科学家法拉第心系“磁生电”思想是受到了安培发现电流的磁效应的启发7.许多科学家对物理学的发展做出了巨大贡献,下列选项中说法全部正确的是( )①牛顿发现了万有引力定律,他被誉为第一个“称出”地球质量的人②富兰克林通过油滴实验比较精确地测定了电荷量e的数值③法拉第提出了场的概念并用电场线形象地描述电场④麦克斯韦从理论上预言了电磁波的存在⑤汤姆孙根据α粒子散射实验现象提出了原子的核式结构模型⑥库仑利用扭秤测出了静电力常量k的数值A.①③④ B.②③⑥ C.④⑤⑥ D.③④⑥8.下列叙述错误的是()A.亚里士多德认为维持物体的运动需要力B.牛顿通过观察苹果落地得出了万有引力定律C.奥斯特发现电流的磁效应,揭示了电现象和磁现象之间的联系D.卡文迪许通过扭秤实验测出了引力常量的数值,从而验证了万有引力定律9.关于伽利略对物理问题的研究,下列说法中正确的是()A.伽利略认为,在同一地点重的物体和轻的物体下落快慢不同B.若使用气垫导轨进行理想斜面实验,就能使实验成功C.理想斜面实验虽然是想象中的实验,但它是建立在可靠的事实基础上的D.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证10.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。

电磁感应定律

电磁感应定律

B
B
v
S N
I
I
N
S
v
8
三 法拉第电磁感应定律 当穿过闭合回路的磁通量发生变化时,回 路中产生的感应电动势正比于磁通量对时间的 变化率,即:
dΦ ε k dt
国际单位制中
k 1
dΦ ε dt
说明: 1)负号表示感应电动势的方向,即感应电 动势总是与回路内磁通量随时间变化率的 正负相反。
B
26
A 负载 电源电动势 q 利用场的观点,可以把非 静电力的作用看成是一种非 EK 静电力场的作用,并把这种 B 场称为非静电场。以 E K来表 A 电源 示非静电场的场强。 非静电场对电荷 的非静电力就是: q FK EK q 在电源内,电荷 dq 由负极移到正极时非静电力 所作的功为: A Fk dl ( Ek q) dl q EK dl 27
N

o' en B
ω o
i
R
19
已知
S , N ,ω

ε
N

en 与 B 同向 , 则 θ ωt
ψ NΦ NBS cosωt dψ ε NBS ω sin ωt ω dt

解: 设 t 0
时,
o' en B
i
εm NBSω
R
o
20
则 ε εm sin ωt
3
12.1电磁感应定律
一 电磁感应现象
4
不论何种原因使 通过闭合回路所围面 积的磁通量发生变化 时,回路中就会出现 电流。这种现象叫做 电磁感应现象。 回路中的电流叫感应 电流,引起感应电流的 电动势叫感应电动势。

2020年高三二轮复习强基础专题十五:物理学史及研究方法(解析版)

2020年高三二轮复习强基础专题十五:物理学史及研究方法(解析版)

强基础专题十五:物理学史及研究方法1.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是A. 奥斯特发现了电流的磁效应,并总结出了右手定则B. 牛顿提出了万有引力定律,并通过实验测出了万有引力恒量C. 伽利略通过理想斜面实验,提出了力是维持物体运动状态的原因D. 库仑在前人的基础上,通过实验得到真空中点电荷相互作用规律2.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程。

在对以下几位物理学家的叙述中,符合历史的说法是A. 牛顿发现了万有引力定律B. 在对自由落体运动的研究中,伽利略猜想运动速度与下落时间成正比,并直接用实验进行验证C. 牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”的观点D. 亚里士多德最早指出了“力不是维持物体运动的原因”3.关于物理学研究方法和物理学史,下列说法正确的是A. 在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法B. 根据速度定义式,当△t非常非常小时,就可以表示物体在t时刻的瞬时速度,该定义应用了微元法C. 亚里士多德认为自由落体运动就是物体在倾角为90°的斜面上的运动,再根据铜球在斜面上的运动规律得出自由落体的运动规律,这是采用了实验和逻辑推理相结合的方法D. 牛顿在伽利略等前辈研究的基础上,通过实验验证得出了牛顿第一定律4.在物理学发展上许许多多科学家做出了巨大贡献。

下列符合物理史实的是A. 牛顿提出了万有引力定律并利用扭秤实验装置测量出万有引力常量B. 法拉第通过精心设计的实验,发现了电磁感应现象C. 卡尔最先把科学实验和逻辑推理方法相结合,否认了力是维持物体运动状态的原因D. 第谷用了20年时间观测记录行星的运动,发现了行星运动的三大定律5.下列说法中正确的是A. 伽利略设计的斜面实验巧妙地借用了“冲淡”重力的方法,通过实验现象推翻了亚里士多德的“物体运动需要力来维持”的错误结论。

电生磁的发现

电生磁的发现

电生磁的发现电生磁是谁发现的?电生磁是奥斯特发现的。

磁生电是英国科学家法拉第发现的。

1、电生磁原理:通电导体周围存在磁场。

可以判定磁场方向和电流的关系。

电和磁是不可分割的,它们始终交织在一起。

简单地说,就是电生磁、磁生电。

2、磁生电原理是闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。

发电机便是依据此原理制成。

3、因磁通量变化产生感应电动势的现象,闭合电路的一部份导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。

闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。

这种现象叫电磁感应现象。

产生的电流称为感应电流。

扩展资料感应电流的条件:产生感应电流的条件是:①一部分导体在磁场中做切割磁感线运动.即导体在磁场中的运动方向和磁感线的方向不平行;②电路闭合.在磁场中做切割磁感线运动的导体两端产生感应电压,是一个电源。

若电路闭合,电路中就会产生感应电流.若电路不闭合,电路两端有感应电压,但电路中没有感应电流。

磁生电是英国科学家法拉第发现的。

磁生电原理是闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流,发电机便是依据此原理制成。

发现过程:1831年电学大师法拉第发现了磁能够生电。

他找来两根长约62米的铜导线和一根粗长木棍,分别把两根铜导线缠绕在木棍上,铜导线的两端分别与电流计电源相联。

然后他把电源开关合上,这时,他似乎感到电流计指针跳动了一下,然后指又回到0点,难道在开关合的瞬时产生了感应电流?法拉第把开关拉掉,准备重复合后再看一次,当开关刚拉开时,他又看到指针跳荡了一下,然后回到0点。

他反复把开关拉开、合上,都发现了相同的结果。

根据这个实验,法拉第总结出电磁感应的规律:当穿过感应回路中的磁通量发生变化时,回路中就会产生感应电流,感应电流方向总是阻碍回路中磁通量的变化,大小与单位时间内的磁通量变化成正比。

电磁感应现象的发现感应电流产生的条件

电磁感应现象的发现感应电流产生的条件

答案 (1)1.256×10-4 Wb 1.256×10-4 Wb (2)8.4×10-6 Wb 借题发挥 磁通量是指穿过某一面积的磁感线的条数,与线圈匝数无关.若线圈所围面 积大于磁场面积,则以磁场区域面积为准.本题中B线圈与A线圈中的磁通量始终一样,故它们 的改变量也一样.
20
【变式1】面积为S的矩形线框abcd处在磁感应强度为B的均强磁场中,磁场方向与线框 面成θ角,如图1-1、2-9所示,当线框以ab为轴顺时针转90°时,穿过abcd面的磁通量的变化 量ΔΦ=________.
图 1-1、2-6
图 1-1、2-7
17
【典例1】有一个垂直纸面向里的匀强磁场,如图1-1、2-8所示,磁感应强度B=0.8 T, 磁场有明显的圆形边界,圆心为O,半径为1 cm.现在纸面内先后放上圆线圈,圆心均在O处,A 线圈半径为1 cm,10匝;B线圈半径为2 cm,1匝;C线圈半径为0.5 cm,1匝.问:
1
1 电磁感应现象的发现 2 感应电流产生的条件
2
1.了解电磁感应现象的发现过程,知道电和磁的联系. 2.通过实验探究归纳感应电流的产生条件.(重点) 3.能运用感应电流的产生条件判断回路中是否有感应电流产生.(重点+难点) 4.体会科学家对待科学的严谨态度和非凡意志力.
3
一、奥斯特实验的启迪 1.电流的磁效应 1820 年,丹麦物理学家奥斯特 发现载流导线能使小磁针发生 偏转,我们把这种现象称为电流的磁效应. 2.意义 电流磁效应的发现证实了 电和磁 存在着必然的联系,突破了 人类对电与磁认识的局限性,掀起了一场研究电与磁关系的革命.
27
【典例3】如图1-1、2-12所示,把一条大约10 m长电线的两端连在一个灵敏电流表的 两个接线柱上,形成闭合电路.两个同学迅速摇动这条电线,可以发电吗?简述你的理由.

电流的磁效应

电流的磁效应

电流的磁效应电流与磁场是密切相关的两个物理现象,它们之间存在着一种相互作用关系,即电流产生磁场,而磁场也可以影响电流。

这种相互作用的现象被称为电流的磁效应。

本文将探讨电流的磁效应的原理、应用和实验。

一、电流产生磁场的原理根据奥斯特定律(Ampère's circuital law),通过直导线产生的磁场可以用公式B=μ_0*I/(2π*r)来描述,其中B为磁感应强度,μ_0为真空磁导率,I为电流强度,r为距离直导线的距离。

在一条直导线中,电子流以一定的速度向正方向流动,正电流则以相同的速度向反方向流动。

当电流通过导线时,电子的运动会产生一个由圆心指向导线的方向的磁场,该磁场形成了一种闭合的磁力线。

根据右手定则,可以确定这些磁力线的方向。

二、电流的磁效应的应用1. 电磁感应:电流的磁效应是电磁感应现象的基础。

根据法拉第电磁感应定律,磁场的变化可以导致感生电动势产生,从而产生感应电流。

这一原理被广泛应用于变压器、发电机等电磁设备中。

2. 电磁铁:电流通过线圈时,产生的磁场可以使铁芯具有磁性,形成强大的吸引力。

这种由电流产生的磁性效应被应用于电磁铁,用于各种机械和电子设备中,如电磁锁、电磁驱动器等。

3. 电流表和电磁泵:电流的磁效应也被应用于电流表和电磁泵中。

电流表是用来测量电流强度的仪器,利用电流通过线圈时产生的磁场来感应转动指针,从而测量电流的大小。

电磁泵则利用电流通过线圈时的磁场产生的力来推动液体流动,广泛应用于工业领域。

三、电流的磁效应的实验为了验证电流的磁效应,我们可以进行如下实验:1. 安培环路定理实验:将一段直导线固定成一个闭合的环形,通过闭合回路的电流通量可以放大磁场的效应。

2. 李银河实验:将一条长直导线放置于一块磁铁上,通过测量导线两侧的磁感应强度的变化来推断磁场的存在。

3. 洛伦兹力实验:将一条直导线通过电流,并将其放置于一个磁场中,即可观察到导线会受到一个力的作用,这一力称为洛伦兹力。

电磁感应的发现历程

电磁感应的发现历程
详细描述
麦克斯韦通过数学方法将电磁感应现象进行了统一描述,将电场、磁场和电荷分布之间的关系进行了系统化。这一理论框架为后来的电磁波研究奠定了基础。
03
电磁感应的应用
交流电机的发明是电磁感应理论的重要应用,它实现了电能与机械能的相互转换,为现代工业、交通和日常生活提供了动力。
总结词
19世纪中叶,科学家们发现了电磁感应现象,即变化的磁场会在其周围产生电场。基于这一原理,交流电机应运而生。交流电机内部有两个磁场,一个固定磁场,一个旋转磁场。当交流电通过定子绕组时,产生变化的磁场,该磁场与转子绕组中的磁场相互作用,从而驱动转子旋转。交流电机的发明极大地推动了工业自动化和现代化进程,成为现代工业不可或缺的重要设备。
超导体的研究与应用
05
电磁感应的未来发展
利用量子力学原理进行信息处理的新型计算机,具有超强的计算能力和数据处理能力,有望解决传统计算机无法处理的复杂问题。
在密码学、化学模拟、优化问题等领域具有广泛的应用前景,为人工智能、大数据等领域提供强大的计算支持。
量子计算机的研究
量子计算机的应用
量子计算机
新能源技术的应用
在电力、交通、建筑等领域得到广泛应用,有助于减少化石能源的消耗和温室气体的排放,促进可持续发展。
新能源技术
新能源技术的研究与应用
THANKS FOR
感谢您的观看
WATCHING
变压器的应用
无线电通讯的发展
总结词:无线电通讯的发展是电磁感应理论在信息传输领域的重要应用,它实现了远距离信息的快速传递。
04
电磁感应在现代科技中的应用
磁悬浮列车是一种利用磁感应原理实现列车悬浮和导向的交通工具。通过强大的电磁场产生斥力,使列车与轨道之间保持一定的间隙,从而实现列车的高速无接触运行。

奥斯特发现电流磁效应的故事

奥斯特发现电流磁效应的故事

奥斯特发现电流磁效应的故事
你知道奥斯特发现电流磁效应那事儿吗?可老有意思了。

奥斯特啊,他就是个特别爱琢磨的科学家。

那时候,大家都知道电是电,磁是磁,就像两条平行线,谁也没觉得这俩能有啥特殊关系。

有一天呢,奥斯特在做实验。

他就把一根导线连在电池上,想看看电流在导线里流的时候会发生啥好玩的事儿。

本来啊,他可能也就是随便捣鼓捣鼓,没抱太大希望。

结果,你猜怎么着?当他把这个通电的导线靠近一个小磁针的时候,神奇的一幕发生了!那个小磁针就像突然被什么东西拉了一下,开始微微转动起来了。

奥斯特当时就愣住了,眼睛瞪得老大,心里肯定在想:“哎呀妈呀,这是咋回事儿呢?”
他一开始还不敢相信呢,就又做了几次实验,每次只要导线一通上电,小磁针就像被施了魔法一样,总会动一动。

这可不得了啊,这就意味着电流周围存在着磁场,电和磁原来不是井水不犯河水的,而是有着密切的联系呢。

这个发现就像一颗炸弹,在科学界“轰”地一声炸开了。

之前大家都觉得风马牛不相及的两件事,就这么被奥斯特给联系起来了。

这一发现可给后来的电磁学发展奠定了超级重要的基础,就像打开了一扇通往新世界的大门,从那以后,科学家们就像发现了宝藏一样,顺着这个思路不断探索,才有了我们现在这么多跟电磁有关的高科技玩意儿呢。

奥斯特

奥斯特

奥斯特∙ 1 生平简介∙ 2 科学成就∙ 3 趣闻轶事∙ 4 奥斯特生日LOGO汉斯·克里斯蒂安·奥斯特(Hans Christian Oersted,1777~1851年),丹麦物理学家、化学家。

1777年8月14日生于丹麦的兰格朗岛鲁德乔宾一个药剂师家庭。

12岁开始帮助父亲在药房里干活,同时坚持学习化学。

由于刻苦攻读,17岁以优异的成绩考取了哥本哈根大学的免费生,学习医学和自然科学。

他一边当家庭教师,一边在学校学习药物学、天文、数学、物理、化学等。

1799年获得博士学位。

1801—1803年他旅游德国、法国等地,于1804年回国。

1806年被聘为哥本哈根大学物理、化学教授,研究电流和声等课题。

1815年起任丹麦皇家学会常务秘书。

1820年因电流磁效应这一杰出发现获英国皇家学会科普利奖章。

1824年倡仪成立丹麦自然科学促进会,1829年出任哥本哈根理工学院院长,直到1851年3月9日在哥本哈根逝世。

终年74岁。

1.1820年发现电流的磁效应自从库仑提出电和磁有本质上的区别以来,很少有人再会去考虑它们之间的联系。

而安培和毕奥等物理学家认为电和磁不会有任何联系。

可是奥斯特一直相信电、磁、光、热等现象相互存在内在的联系,尤其是富兰克林曾经发现莱顿瓶放电能使钢针磁化,更坚定了他的观点。

当时,有些人做过实验,寻求电和磁的联系,结果都失败了。

奥斯特分析这些实验后认为:在电流方向上去找效应,看来是不可能的,那么磁效应的作用会不会是横向的?在1820年4月,有一次晚上讲座,奥斯特演示了电流磁效应的实验。

当伽伐尼电池与铂丝相连时,靠近铂丝的小磁针摆动了。

这一不显眼的现象没有引起听众的注意,而奥斯特非常兴奋,他接连三个月深入地研究,在1820年7月21日,他宣布了实验情况。

奥斯特将导线的一端和伽伐尼电池正极连接,导线沿南北方向平行地放在小磁针的上方,当导线另一端连到负极时,磁针立即指向东西方向。

易错点20 磁场的描述 安培力(原卷版) -备战2023年高考物理考试易错题

易错点20 磁场的描述 安培力(原卷版) -备战2023年高考物理考试易错题

易错点20磁场的描述安培力例题1.(多选)(2022·湖北·高考真题)如图所示,两平行导轨在同一水平面内。

一导体棒垂直放在导轨上,棒与导轨间的动摩擦因数恒定。

整个装置置于匀强磁场中,磁感应强度大小恒定,方向与金属棒垂直、与水平向右方向的夹角θ可调。

导体棒沿导轨向右运动,现给导体棒通以图示方向的恒定电流,适当调整磁场方向,可以使导体棒沿导轨做匀加速运动或匀减速运动。

已知导体棒加速时,加速度的最大值为3g;减速时,加速度的最大值为3g,其中g为重力加速度大小。

下列说法正确的是()3A.棒与导轨间的动摩擦因数为36B.棒与导轨间的动摩擦因数为33C.加速阶段加速度大小最大时,磁场方向斜向下,θ=60°D.减速阶段加速度大小最大时,磁场方向斜向上,θ=150°例题2. (多选)在倾角θ=37°的光滑导体滑轨的上端接入一个电动势E=3 V,内阻r=0.5 Ω的电源,滑轨间距L=50 cm,将一个质量m=40 g,电阻R=1 Ω的金属棒水平放置在滑轨上.若滑轨所在空间加一匀强磁场,当闭合开关S后,金属棒刚好静止在滑轨上,如图所示.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)则下列说法正确的是()A.磁感应强度有最小值为0.24 T,方向垂直滑轨平面向下B.磁感应强度有最大值0.4 T,方向水平向右C.磁感应强度有可能为0.3 T,方向竖直向下D.磁感应强度有可能为0.4 T,方向水平向左一、磁场、磁感线、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用.(2)方向:小磁针的N极所受磁场力的方向.2.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟该点的磁感应强度的方向一致.3.磁体的磁场和地磁场4.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)大小:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.二、电流的磁场1.奥斯特实验:奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首次揭示了电与磁的联系.2.安培定则(1)通电直导线:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.(2)通电螺线管:让右手弯曲的四指所指的方向跟电流的方向一致,大拇指所指的方向就是环形电流中轴线上的磁感线的方向或螺线管内部磁感线的方向.三、磁通量1.概念在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.四、安培力的方向和大小1.安培力的方向(1)左手定测:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)两平行的通电直导线间的安培力:同向电流互相吸引,异向电流互相排斥.2.安培力的大小当磁感应强度B 的方向与导线方向成θ角时,F =BIL sin_θ,这是一般情况下的安培力的表达式,以下是两种特殊情况:(1)当磁场与电流垂直时,安培力最大,F max =BIL .(2)当磁场与电流平行时,安培力等于零.易混点:一、电流磁场的叠加和安培定则的应用1.直流电流或通电螺线管周围磁场磁感线的方向都可以应用安培定则判定.2.磁感应强度是矢量,叠加时符合矢量运算的平行四边形定则.二、安培力的分析和平衡问题1.安培力常用公式F =BIL ,要求两两垂直,应用时要满足(1)B 与L 垂直.(2)L 是有效长度,即垂直磁感应强度方向的长度.如弯曲导线的有效长度L 等于两端点所连直线的长度(如图),相应的电流方向沿L 由始端流向末端.因为任意形状的闭合线圈,其有效长度为零,所以闭合线圈通电后在匀强磁场中,受到的安培力的矢量和为零.2.解题步骤(1)把立体图转化为平面图.(2)根据左手定则确定安培力的方向.(3)受力分析,画出安培力和其他力.(4)根据平衡条件列出平衡方程.1. (2022·河南安阳·模拟预测)已知a b c 、、是等腰直角三角形三个顶点,d 是c ∠平分线上的一点,cd ac bc ==,在a b c d 、、、四点分别固定四条长度均为L 的通电直导线,四条直导线都垂直于三角形abc 所在平面,导线中的电流均为I ,电流方向如图所示,若导线a 在c 点产生磁场的磁感应强度大小为B ,则放在c 点导线受到的安培力大小和方向正确的是( )A .)21BIL ,沿cd 方向B .()21BIL ,沿cd 方向C .()21BIL ,沿dc 方向D .()21BIL ,沿dc 方向2. (2022·上海徐汇·三模)如图,小磁针放置在水平面内的O 点,四个距O 点相同距离的螺线管A 、B 、C 、D ,其中心轴均通过O 点,且与坐标轴的夹角均为45︒。

经典电磁场理论的建立

经典电磁场理论的建立
纽曼考虑了两个载流线圈的情况,他把其中一个叫施感线圈,另一 个叫被感线圈。当施感电流线圈运动时,两个线圈的相互作用将发生变 化,他假设被感线圈中的感应电动势与两线圈相互作用能的变化率成正 比,并根据楞次定律而加上一个负号,于是:
(1) 式中是被感电流的线元,积分沿被感电流回路进行,而矢量A定义为:
(2) 式中A是一个电流的位置函数,纽曼称之为电动力学势。
2、麦克斯韦的电磁场理论
19世纪最伟大的理论物理学家,经典电磁场论的奠基人麦克斯韦, 于1854年在英国剑桥大学毕业。起初,他研究的领域是关于色散理论; 在开尔文勋爵的影响下,麦克斯韦进入了电磁学领域,开始从事电磁场 的理论研究工作;他首先认真地通读了法拉第的三卷论文集《电学的实 验研究》,麦克斯韦继承了法拉第彻底的近距作用思想,坚定了以近距 作用的场观念来研究电磁现象的信念,并大量阅读了开尔文勋爵的工 作,以及高斯(Gauss)、格林(Green)、泊松(Poisson)、斯托克斯 (Stokes)等人的有关论述,领会了类比研究的方法,掌握了当时已有 的数学工具。对于当时已经建立的以安培、纽曼、韦伯为代表的大陆派 超距作用电磁理论,麦克斯韦一方面给予应有的肯定,同时也深刻地洞
察了其中的内在矛盾和困难。从1855年到1865年,麦克斯韦终于建立起 完整的电磁场理论,完成了毕生最重要的贡献。麦克斯韦建立电磁场理 论的工作集中反映在他的三篇著名电磁学论文中,即1855~1856年的 《论法拉第力线》,1861~1862年的《论物理力线》,以及1865年的 《电磁场的动力学理论》。
1846年,韦伯在安培定律的基础上提出了所谓的韦伯电作用定律, 为了建立超距作用的统一电磁理论,韦伯认为,运动电荷之间除了库仑 力外,还存在着由于电荷运动而产生的另一类相互作用力,后人称之为 韦伯力。韦伯根据原始的安培公式,导出两运动电荷与之间的相互作用 力为:

高中物理 第三章 第1节 磁现象和磁场学案(含解析)新人教版选修3-1-新人教版高二选修3-1物理学

高中物理 第三章 第1节 磁现象和磁场学案(含解析)新人教版选修3-1-新人教版高二选修3-1物理学

磁现象和磁场1.磁体是具有磁性的物体,磁体有N、S两个极,同名磁极相互排斥,异名磁极相互吸引。

2.奥斯特发现了电流的磁效应,首次揭示了电与磁的联系。

3.磁场是一种特殊的物质,它对放入其中的磁体、电流有力的作用。

4.地球的地理两极与地磁两极并不重合,因此,磁针并非准确地指向南北,其间有一个夹角,这就是地磁偏角,简称磁偏角。

5.火星上没有一个全球性的磁场,所以指南针在火星上不能工作。

一、磁现象及电流的磁效应1.磁现象(1)磁性:物质具有吸引铁质物体的性质叫磁性。

(2)磁体:天然磁石和人造磁铁都叫做磁体。

(3)磁极:磁体的各部分磁性强弱不同,磁性最强的区域叫磁极。

能够自由转动的磁体,静止时指南的磁极叫做南极(S极),指北的磁极叫做北极(N极)。

(4)磁极间相互作用规律:自然界中的磁体总存在着两个磁极,同名磁极相互排斥,异名磁极相互吸引。

2.电流的磁效应(1)奥斯特实验:把导线沿南北方向放置在指向南北的磁针上方,通电时磁针发生了转动。

(2)意义:奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首先揭示了电与磁的联系。

二、磁场1.磁体、电流间的相互作用(1)磁体与磁体间存在相互作用。

(2)通电导线对磁体有作用力,磁体对通电导线也有作用力。

(3)两条通电导线之间也有作用力。

2.磁场(1)定义:磁体与磁体之间,磁体与通电导线之间,以及通电导线与通电导线之间的相互作用,是通过磁场发生的,磁场是磁体或电流周围一种看不见、摸不着的特殊物质。

(2)基本性质:对放入其中的磁体或通电导线有力的作用。

三、地球的磁场1.地磁场地球本身是一个磁体,N极位于地理南极附近,S极位于地理北极附近。

自由转动的小磁针能显示出地磁场的方向,这就是指南针的原理。

2.磁偏角小磁针的指向与正南方向之间的夹角。

3.太阳、月亮、其他行星等许多天体都有磁场。

1.自主思考——判一判(1)奥斯特实验说明了磁场可以产生电流。

(×)(2)天然磁体与人造磁体都能吸引铁质物体。

知道奥斯特发现电流的磁效应的艰难过程

知道奥斯特发现电流的磁效应的艰难过程

安培力
磁场对载流导线的作用力,是电 动机、发电机等电磁设备工作的
基本原理。
霍尔效应
在通电的导体上施加一个与电流 方向垂直的磁场,会在导体两侧 产生电势差,这是磁场对电流作
用的另一种表现。
电流磁效应的应用与拓展
电磁铁
利用电流的磁效应制成的磁铁,广泛应用于电器、电机等领域。
电磁感应
当导体在磁场中运动时,会在导体中产生感应电动势,这是发电机、 变压器等电气设备的工作原理。
Part
02
奥斯特的生平与时代背景
奥斯特的生平简介
早期经历
奥斯特(Hans Christian Oersted)1777年出生于丹麦的 路克宾,早年便显露出对自然科
学的浓厚兴趣。
学术成就
他在哥本哈根大学任教期间,不仅 教授物理和化学,还进行电磁学领 域的深入研究。
电流的磁效应发现
1820年,奥斯特在一次公开演讲中 意外发现了电流的磁效应,这一发 现为电磁学的发展奠定了基础。
的精确控制和磁场的准确测量,这在当时是一项极具挑战性的任务。
02
实验条件的限制
当时的实验条件相对落后,缺乏先进的测量设备和技术支持,这使得奥
斯特在实验过程中面临诸多困难。
03
实验结果的不稳定性
在实验过程中,奥斯特发现实验结果容易受到多种因素的影响,如温度
变化、电磁干扰等,导致实验结果的稳定性和可重复性较差。
当导线中流过电流时,导线周围就会产生磁场,磁场的方向与电 流的方向有关。
电流激发磁场的本质
电流是由带电粒子定向移动形成的,这些带电粒子在移动时会产生 磁场。
毕奥-萨伐尔定律
描述电流元在空间任意点P处所激发的磁场,是确定电流激发磁场 大小和方向的基本定律。

奥斯特 电流磁效应

奥斯特 电流磁效应

奥斯特电流磁效应奥斯特电流磁效应是指当电流通过导线时,会在周围产生磁场的现象。

这一现象是由法国物理学家奥斯特于1820年发现的,因此被命名为奥斯特电流磁效应。

奥斯特电流磁效应是电磁学的基础理论之一,它揭示了电流与磁场之间的密切关系。

在奥斯特的实验中,他将导线连接到电池上,通过导线中的电流产生一个磁场。

奥斯特用指南针靠近导线,发现指南针的磁针会偏转。

这说明了通过导线的电流可以产生磁场,并且磁场的方向与电流的方向有关。

奥斯特电流磁效应可以通过右手定则来描述。

右手定则是一种用于确定电流方向与磁场方向之间关系的简单方法。

当握住导线,让拇指指向电流的方向,其他四指的弯曲方向就代表了磁场的方向。

这种定则可以帮助我们理解奥斯特电流磁效应的基本原理。

奥斯特电流磁效应的应用十分广泛。

它是电动机、发电机和变压器等电磁设备的基础原理。

电动机利用奥斯特电流磁效应将电能转化为机械能,实现了动力传输和驱动各种机械设备。

发电机则是利用机械能转化为电能,通过奥斯特电流磁效应产生电流。

变压器则利用奥斯特电流磁效应实现了电压的升降。

奥斯特电流磁效应还有其他一些重要的应用。

例如,它可以用于磁共振成像(MRI)技术,该技术利用奥斯特电流磁效应来获取人体内部的影像信息,对医学诊断起到了至关重要的作用。

另外,奥斯特电流磁效应还可以应用于传感器技术,制造各种类型的传感器,用于测量磁场的强度和方向。

奥斯特电流磁效应不仅在实际应用中发挥着重要作用,而且在理论物理学领域也有重要意义。

它是电磁学理论的基石,与法拉第电磁感应定律和库仑定律一起构成了电磁学的基本原理。

通过深入研究奥斯特电流磁效应,我们可以更好地理解电磁学的基本原理和电磁现象的本质。

奥斯特电流磁效应是电磁学中一项重要的基础理论。

它揭示了电流与磁场之间的密切关系,并且具有广泛的应用价值。

通过深入研究奥斯特电流磁效应,我们可以更好地理解和应用电磁学的知识,推动科学技术的发展。

电流的磁效应奥斯特实验

电流的磁效应奥斯特实验

电流的磁效应奥斯特实验
奥斯特实验,也称作钓铁线实验,是古典物理学中的一种重要实验,用来直接
证明存在电流的磁场作用。

这项实验是英国物理学家威廉·奥斯特在1820年进行的,因其发现要形成磁场,电流必须存在,而其中最佳的受检证例证明,故名。

实验原理是:在一细铁丝成直线的方式架设在磁铁的上端,然后按开关断开电源,当开关再次操作将细铁丝通电,由于电流通过细铁丝,通过两个电阻R1和R2,形成一个有完整匝数组成的圆弧,圆弧表现在接地芯路上,磁里约定定原理要求,发现电流感应欧斯特现象,由于细铁丝所受的磁场作用,细铁丝就会在磁场影响下,电流自上而下的抛射出去,也就是所谓的钓铁线效应。

本实验的机制是:在架设好的细铁丝上R1和R2节点,且其余部分电路与地接齐。

若将细铁丝两端的R1和R2节点断开,细铁丝的中匝段便成为断开的电流源,当细铁丝处于耦合的磁场中时,而电源分别连接在R1和R2上,当R1端先断开,
电流将从R2端开始流入R1端,在细铁丝中匝段在这个过程中,从磁场里约定原理要求,磁感效应欧斯特现象会立即发生,即按开关断开电源,电流立即抛射出去,对应的细铁丝就会受到磁场影响,也就获得动能,细铁丝也随之拉直,这就是钓铁线效应。

由于奥斯特实验阐明了电流的磁效应,意义重大。

首先,它表明电流可以形成
磁场,可用于制造磁场,为各种电磁仪器制造提供了基础;其次,它提供了一种理论体系,对于研究磁场的特性、运动学以及控制磁场的磁特性,都有着非常重要的意义。

物理学家奥斯特

物理学家奥斯特

物理学家奥斯特
物理学家奥斯特
丹麦物理学家,电流磁效应的发现者。

1777年8月14
日他生于丹麦鲁兹克宾城的一个药剂师家庭,1794年考入哥本哈根大学,1799年获哲学博士学位。

1801-1803年间,他先后到德国和法国游学,受到I.康德和F.谢林关于自然力统一的思想的熏陶。

1806年他担任哥本哈根大学物理学教
授,1824年倡议成立丹麦自然科学促进会,1829年出任哥本哈根理工学院院长,直到1851年3月9日在哥本哈根逝世。

奥斯特从事物理学和化学许多方面的研究,主要的贡献是发现电流的磁效应。

自从18世纪80年代末C.A.de库仑根据电荷可以传导、磁荷不能传导的事实进一步肯定电和磁是不相同的实体以后,当时的物理学家如A.M.安培和J.B.毕奥都认为电和磁不会有任何联系。

奥斯特在康德的哲学引导下,坚信电力和磁力有着共同的根源。

1820年4月他观察到通电导线扰动磁针的现象,发现了电流的磁效应,从而彻底否定
了那种不正确的观点。

论文在7月21日发表后在欧洲引起了很大反响。

奥斯特的发现促进了安培对电磁力的研究(1820~1827)。

这方面的研究工作发展迅速,同年12月就导致发现了毕奥—萨伐尔定律, 并由此导致电与磁关系的一
系列发现以及应用广泛的电磁铁的出现。

奥斯特在1825年最早提炼出铝,但纯度不高,以致这项成就在冶金史上归属于德国化学家F.维勒(1827)。

他最后一项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发现电流磁效应
——奥斯特发现电流的磁效应
电流磁效应的发现,在电学的发展史中占有重要地位。

在这项发现以前,电和磁在人们看来是截然无关的两件事。

电和磁究竟有没有联系?这是先人经常思索的问题。

“顿牟缀芥、磁石引针”说明电现象和磁现象的相似性,库仑先后建立电力和磁力的平方反比定律,说明它们有类似的规律但是相似性不等于本质上有联系。

17世纪初,吉尔伯特(W.Gilbert)就作过断言,认为两者没有关系,库仑也持同样观点。

然而,实际事例不断吸引人们的注意。

例如:1731年有一名英国商人述说,闪雷过后他的一箱新刀叉竟带上了磁性。

1751年富兰克林发现在莱顿瓶放电后,缝纫针磁化了。

电真的会产生磁吗?
这个疑问促使1774年德国有一家研究所悬奖征解,题目是:“电力和磁力是否存在着实际的和物理的相似性?”许多人纷纷做实验进行研究,但是,在伏打发明电堆以前,这类实验是很难有希望成功的,因为没有产生稳恒电流的条件。

不过,即使有了伏打电堆,也不一定能立即找到电和磁的联系。

例如1805年有两个德国人,他们把伏打电堆悬挂起来,企图观察电堆电流在地磁的作用下会不会改变取向。

这类实验当然得不到结果。

这时丹麦有一位物理学家,名叫奥斯特(H.C.Oersted),他在坚定的信念支持下,反复探索,终于揭示了自然界的这一奥秘。

奥斯特是丹麦哥本哈根大学的物理学教授。

他信奉康德的哲学思想,认为自然界各种基本力是可以相互转化的。

早在1812年,奥斯特就发表过一篇论文,论证化学力和电力的等价性,文中写道:“我们应该检验的是:究竟电是否以其最隐蔽的方式对磁体有类似的作用?”在奥斯特的头脑里,经常盘踞着这个疑问。

他深信电和磁有某种联系,只是不知道应该怎样去实现它。

当时,电流的研究早已揭示导体通过电流时会发热,甚至会发光。

他想,既然电流通过细导体会发热,通过更细的导体甚至会发光,进一步减小导体的直径,为什么不能指望激发出磁来呢?于是他拿一根细白金丝,让它接到电源上,在它前面放一根磁针,他和别人一样,企图用白金丝的尖端吸引磁针。

然而,尽管白金丝灼热了、烧红了、发光了,磁针也纹丝不动。

奥斯特没有灰心,边思考,边试验。

他从观察发热和发光的现象中想到,热和光都是向四周扩展的,会不会磁的作用也是向四周扩展的?
1820年4月的一个晚上,奥斯特正在向听众演讲有关电和磁的问题。

他准备了实物表演,一边讲,一边做。

在他做过那些磁针实验后,他说:“今天我们不妨把导线和磁针平行放置来试试看。

”他把磁针移向导线下方,正当助手接通电池的一瞬间,他看到磁针有一轻微晃动。

这正是奥斯特盼望多年的反应。

(图1、图2)
图1 奥斯特表演电流磁效应图2 奥斯特的电流磁效应实验
演讲会后奥斯特接连几个月研究这一新现象。

开始他还是用细铂丝做实验,后来他终于认识到,磁效应强的不是细金属丝,而是直径大的金属丝,
更不必用贵重的白金,任何金属都可以。

后来,他有了更强
大的伏打电池,终于查明电流的磁效应是沿着围绕导线的螺
旋方向。

1820年7月21日,奥斯特用拉丁文用4页的篇幅
简洁地报告了他六十几次实验的结果(图3)。

这一篇历史
性文献立即轰动了整个欧洲。

奥斯特发现电流的磁效应,是电学史上的新篇章,由于
他的发现,引导出电学一系列新发现,在这以后的一二十年,
成了电磁学大发展的辉煌时期。

图3奥斯特的实验记录。

相关文档
最新文档