浙江省绍兴市上虞市2018年中考数学一模试卷(带解析)

合集下载

2018年浙江省绍兴市中考数学试卷及答案解析版

2018年浙江省绍兴市中考数学试卷及答案解析版

=2πr,
解得:n=180. 故选 D. 点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的 母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
8.(4 分)(2018•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶 壁内画有刻度,人们根据壶中水面的位置计时,用 x 表示时间,y 表示壶底到水面的高度,则 y 与 x 的函数关 系式的图象是( )
9.(4 分)(2018•绍兴)小敏在作⊙O 的内接正五边形时,先做了如下几个步骤: (1)作⊙O 的两条互相垂直的直径,再作 OA 的垂直平分线交 OA 于点 M,如图 1; (2)以 M 为圆心,BM 长为半径作圆弧,交 CA 于点 D,连结 BD,如图 2.若⊙O 的半径为 1,则由以上作 图得到的关于正五边形边长 BD 的等式是( )
浙江省绍兴市 2018 年中考数学试卷
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分,请选出每小题中一个最符合题意的选项,不选、多选、
错选,均不得分)
1.(4 分)(2018•绍兴)﹣2 的绝对值是( )
A.2
B.﹣2
C.0
D.
考点:绝对值. 3718684
分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答 案.
完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
A.
B.
C.
D.
考点:概率公式. 3718684
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的 比值就是其发生的概率,即可求出答案.
解答:解:根据题意可得:袋子中有 3 个白球,2 个黄球和 1 个红球,共 6 个, 从袋子中随机摸出一个球,它是黄球的概率 2÷6= .

2018年浙江省绍兴市上虞市中考数学一模试卷-普通用卷

2018年浙江省绍兴市上虞市中考数学一模试卷-普通用卷

201808261154副标题一、单选题(本大题共18小题,共36.0分)1.下列常见的交通警示语中,与惯性无关的是A. 请靠右行驶B. 请系好安全带C. 请保持车距D. 连续弯道,请减速慢行2.在如图所示的事例中,属于减小压强的是A. 宽大的履带B. 锋利的斧刃C. 尖细的针头D. 窄薄的冰刀3.下列属于利用连通器原理工作的是A. 密度计B. 船闸C. 活塞式抽水机D. U型管气压计4.如图所示,生活中的杠杆属于费力杠杆的是A. 筷子B. 瓶起子C. 羊角锤D. 独轮车5.中国高铁已成为我国一张靓丽的名片。

这种列车进站速度要比普通列车大一些,为避免候车乘客被“吸”向火车的事故发生,站台上的安全线与列车的距离也要更大些。

这是因为列车进站时,车体附近的气体A. 流速大,压强大B. 流速大,压强小C. 流速小,压强大D. 流速小,压强小6.如图所示的四种情景,没有受到浮力的物体是A. 遨游太空的“天宫二号”B. 海试中的“山东号”航母C. 下潜中的“蛟龙”号D. 飘在空中的热气球7.如图所示的四种情景中,人对物体做功的是A. 举着杠铃不动B. 将货物从地面搬到车上C. 大力士支撑着大轮胎静止不动D. 小静背着书包在等车8.下列现象中,物体动能转化为势能的是A. 秋千由最高处向最低处荡去B. 张开的弓把箭水平射出去C. 骑自行车匀速上坡D. 腾空上升的礼花弹9.下列事例中,利用大气压作用的是A. 风吹动风车转动B. 医生用针筒把药水推入病人肌肉中C. 用吸管吸饮料D. 旅客在火车进站时站在安全黄线外10.教室里,带磁性的粉笔刷可吸在黑板上不掉下来。

如图所示,下列属于平衡力的是A. 黑板对板擦的吸引力与板擦对黑板的吸引力B. 黑板对板擦的吸引力与黑板对板擦的摩擦力C. 板擦对黑板的吸引力与板擦的重力D. 板擦的重力与黑板对板擦的摩擦力11.2018年5月28号凌晨1:50分,吉林省松原市发生地震。

下列对医务人员在赈灾救援工作的描述,正确的是A. 夹取消毒棉的镊子是省力杠杆B. 举高药瓶输液是为了增大药液的压强C. 病房里闻到消毒液的气味,这是因为分子间存在斥力D. 针筒抽取药液时,药液受到活塞的吸引力作用而被吸入针筒12.关于如图所示的各种情景,下列说法错误的是A. 如图:因液体压强随深度的增加而增大,故水坝筑成上窄下宽的形状B. 如图:人推木箱向前运动的过程中,人对木箱的推力对木箱做功C. 如图:蓄水槽中装水至虚线处后打开阀门,A、B和C三管水面相平D. 如图:金鱼吐出的气泡在水中上升的过程中,受到水的浮力变大13.下列关于功、功率和效率的说法正确的是A. 功率大的机器做功快B. 效率高的机器做功快C. 做功多的机器功率大D. 做功快的机器效率高14.随着山东号国产航母顺利试航成功,中国即将进入双航母时代。

浙江绍兴上虞市 九年级数学 下册(期末考试)教学质量检测监测调研 统联考真题(中考模拟卷)(答案解析版)

浙江绍兴上虞市 九年级数学 下册(期末考试)教学质量检测监测调研 统联考真题(中考模拟卷)(答案解析版)

浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)1.﹣5的相反数是()A.B.5 C.﹣D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH 的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD ∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相③如图3,利用面积差求得:S△CFG似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,矩形一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还要满足AC⊥BD时,四边形MNPQ是正方形.(2)如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是3+2;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC⊥BD时,四边形MNPQ是正方形,首先证明四边形MNPQ是菱形,再证明有一个角是直角即可;=S△ADE+S梯形DEBC计算,求(2)①如图2中,作DE⊥AB于E.根据S四边形ABCD出相关线段即可;②如图3中,设AE与BD相交于点Q,连接CE,只要证明当AC⊥BD且A、C、E共线时,四边形ABED的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中,∵矩形的对角线相等,∴矩形一定是等角线四边形,故答案为矩形.②当AC⊥BD时,四边形MNPQ是正方形.理由:如图1中,∵M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,∴PQ=MN=AC,PN=QM=BD,PQ∥AC,MQ∥BD,∵AC=BD,∴MN=NP=PQ=QM,∴四边形MNPQ是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ是正方形.故答案为AC⊥BD.(2)①如图2中,作DE⊥AB于E.在Rt△ABC中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD,DE⊥AB,∴AE=BE=2,∵四边形ABCD是等角线四边形,∴BD=AC=AD=5,在Rt△BDE中,DE==,=S△ADE+S梯形DEBC∴S四边形ABCD=•AE•DE+•(DE+BC)•BE=×+(+3)×2=3+2.故答案为3+2.②如图3中,设AE与BD相交于点Q,连接CE,作DH⊥AE于H,BG⊥AE于G.则DH≤DQ,BG≤BQ,∵四边形ABED是等角线四边形,∴AE=BD,=S△ABE+S△ADE=•AE•DH+•AE•BG=•AE•(GB+DH)≤•AE•∵S四边形ABED(BQ+QD),≤AE•BD,即S四边形ABED∴当G、H重合时,即BD⊥AE时,等号成立,∵AE=BD,≤AE2,∴S四边形ABED即线段AE最大时,四边形ABED的面积最大,∵AE≤AC+CE,∴AE≤5+1,∴AE≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P 也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;(4)当点Q在线段OA上时,S=S△CPQ;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM=S矩形OABC ﹣S△COQ﹣S△AMQ,可求得S与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示出BM,S=S△CBM,可求得答案.【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×∴S=S四边形BCQM=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。

2018年浙江省绍兴市中考数学试卷及答案解析(可编辑修改word版)

2018年浙江省绍兴市中考数学试卷及答案解析(可编辑修改word版)

2018 年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10 小题,每小题4 分,共40 分)1.(4 分)如果向东走2m 记为+2m,则向西走3m 可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(4 分)绿水青ft就是金ft银ft,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116 000 000 方,数字116 000 000 用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4 分)有6 个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.4.(4 分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2 的概率是()A.B.C.D.5.(4 分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③D.④6.(4 分)如图,一个函数的图象由射线BA、线段BC、射线CD 组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1 时,y 随x 的增大而增大B.当x<1 时,y 随x 的增大而减小C.当x>1 时,y 随x 的增大而增大D.当x>1 时,y 随x 的增大而减小7.(4 分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C 端应下降的垂直距离CD 为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4 分)利用如图1 的二维码可以进行身份识别.某校建立了一个身份识别系统,图2 是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2 第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5 班学生.表示6 班学生的识别图案是()A.B.C.D.9.(4 分)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2 个单位,再向下平移3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4 分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9 枚图钉将4 张作品钉在墙上,如图)若有34 枚图钉可供选用,则最多可以展示绘画作品()A.16 张B.18 张C.20 张D.21 张二、填空题(本题包括6 小题,每小题5 分,共30 分)11.(5 分)因式分解:4x2﹣y2=.12.(5 分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1 托为5 尺,那么索长为尺,竿子长为尺.13.(5 分)如图,公园内有一个半径为20 米的圆形草坪,A,B 是圆上的点,O为圆心,∠AOB=120°,从A 到B 只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B 走了步(假设1 步为0.5 米,结果保留整数).(参考数据:≈1.732,π取3.142)14.(5 分)等腰三角形ABC 中,顶角A 为40°,点P 在以A 为圆心,BC 长为半径的圆上,且BP=BA,则∠PBC 的度数为.15.(5 分)过双曲线y= (k>0)上的动点A 作AB⊥x 轴于点B,P 是直线AB上的点,且满足AP=2AB,过点P 作x 轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k 的值是.16.(5 分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm 时,x,y 满足的关系式是.三、填空题(本题包括8 小题,第17-20 题每小题8 分,第21 小题10 分,第22、23小题每小题8 分,第24 题14 分,共80 分)17.(8 分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.18.(8 分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016 年机动车的拥有量,分别计算2010 年~2017 年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8 分)一辆汽车行驶时的耗油量为0.1 升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400 千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5 升时,已行驶的路程.20.(8 分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).21.(10 分)如图1,窗框和窗扇用“滑块铰链”连接,图3 是图2 中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B,C,D 始终在一直线上,延长DE 交MN 于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB 的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B 之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)22.(12 分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A=110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A=40°,求∠B 的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC 中,∠A=80°,求∠B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B 有三个不同的度数时,请你探索x 的取值范围.23.(12 分)小敏思考解决如下问题:原题:如图1,点P,Q 分别在菱形ABCD 的边BC,CD 上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q 的位置特殊化;把∠PAQ 绕点A 旋转得到∠EAF,使AE⊥BC,点E,F 分别在边BC,CD 上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14 分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5 千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车,第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10 分钟分别在A,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30 千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式;(3)一乘客前往A 站办事,他在B,C 两站间的P 处(不含B,C 站),刚好遇到上行车,BP=x 千米,此时,接到通知,必须在35 分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5 千米/小时,求x 满足的条件.2018 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10 小题,每小题4 分,共40 分)1.(4 分)如果向东走2m 记为+2m,则向西走3m 可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m 记作+2m,则向西走3m 记作﹣3m,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.(4 分)绿水青ft就是金ft银ft,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约116 000 000 方,数字116 000 000 用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:116000000=1.16×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4 分)有6 个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4 分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2 的概率是()A.B.C.D.【分析】让向上一面的数字是 2 的情况数除以总情况数 6 即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6 的骰子有6 种结果,其中朝上一面的数字为2 的只有1 种,∴朝上一面的数字为2 的概率为,故选:A.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4 分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.① B.② C.③D.④【分析】直接利用完全平方公式以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:①(a+b)2=a2+2ab+b2,故此选项错误;②(﹣2a2)2=4a4,故此选项错误;③a5÷a3=a2,正确;④a3•a4=a7,故此选项错误.故选:C.【点评】此题主要考查了完全平方公式以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.(4 分)如图,一个函数的图象由射线BA、线段BC、射线CD 组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1 时,y 随x 的增大而增大B.当x<1 时,y 随x 的增大而减小C.当x>1 时,y 随x 的增大而增大D.当x>1 时,y 随x 的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1 时,y 随x 的增大而增大,故选项 A 正确,选项 B 错误,当1<x<2 时,y 随x 的增大而减小,当x>2 时,y 随x 的增大而增大,故选项C、D 错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(4 分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C 端应下降的垂直距离CD 为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD 知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.8.(4 分)利用如图1 的二维码可以进行身份识别.某校建立了一个身份识别系统,图2 是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2 第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5 班学生.表示6 班学生的识别图案是()A.B.C.D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0 ×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查数字的变化类,解题的关键是根据题意弄清题干规定的运算规则.9.(4 分)若抛物线y=x2+ax+b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2 个单位,再向下平移3 个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2 个单位,再向下平移3 个单位,得到新抛物线的解析式为y= (x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3 时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.10.(4 分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9 枚图钉将4 张作品钉在墙上,如图)若有34 枚图钉可供选用,则最多可以展示绘画作品()A.16 张B.18 张C.20 张D.21 张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34 枚图钉最多可以展示16 张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11﹣1=10(张),2×10=20(张),∴34 枚图钉最多可以展示20 张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34 枚图钉最多可以展示21 张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34 枚图钉最多可以展示20 张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34 枚图钉最多可以展示20 张画.综上所述:34 枚图钉最多可以展示21 张画.故选:D.【点评】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题(本题包括6 小题,每小题5 分,共30 分)11.(5 分)因式分解:4x2﹣y2=(2x+y)(2x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(5 分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1 托为5 尺,那么索长为20 尺,竿子长为15 尺.【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设索长为x 尺,竿子长为y 尺,根据题意得:,解得:.答:索长为20 尺,竿子长为15 尺.故答案为:20;15.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.(5 分)如图,公园内有一个半径为20 米的圆形草坪,A,B 是圆上的点,O为圆心,∠AOB=120°,从A 到B 只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B 走了 15 步(假设1 步为0.5 米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB 于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB 于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B= (180°﹣∠AOB)= (180°﹣120°)=30°,在Rt△AOC 中,OC=OA=10,AC= OC=10 ,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB 的长多15 步.所以这些市民其实仅仅少 B 走了15步.故答案为15.【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14.(5 分)等腰三角形ABC 中,顶角A 为40°,点P 在以A 为圆心,BC 长为半径的圆上,且BP=BA,则∠PBC 的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P 在直线AB 的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB 的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.(5 分)过双曲线y=(k>0)上的动点A 作AB⊥x 轴于点B,P 是直线AB 上的点,且满足AP=2AB,过点P 作x 轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k 的值是12 或4 .【分析】设点A 的坐标为(x,),分点P 在AB 的延长线上、点P 在BA 的延长线上两种情况,根据比例系数k 的几何意义、反比例函数图象上点的坐标特征计算.【解答】解:设点A 的坐标为(x,),当点P 在AB 的延长线上时,∵AP=2AB,∴AB=AP,∵PC∥x 轴,∴点C 的坐标为(﹣x,﹣),由题意得,×2x×=8,解得,k=4,当点P 在BA 的延长线上时,∵AP=2AB,PC∥x 轴,∴点C 的坐标为(x,),∴P′C′=x,由题意得,×x×=8,解得,k=12,当点P 在第三象限时,情况相同,故答案为:12 或4.【点评】本题考查的是比例系数k 的几何意义、反比例函数图象上点的坐标特征,根据坐标表示出线段的长度是解题的关键.16.(5 分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm 时,x,y 满足的关系式是 y= (0<x≤)或y= (6≤x<8).【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm 和ycm 的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y= ,∵y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm 和10cm 的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.三、填空题(本题包括8 小题,第17-20 题每小题8 分,第21 小题10 分,第22、23 小题每小题8 分,第24 题14 分,共80 分)17.(8 分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算△,然后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2 ﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x= ==1 ,则x1=1+,x2=1﹣.【点评】此题主要考查了实数的运算和一元二次方程的解法,关键是熟练掌握特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.18.(8 分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010 年~2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016 年机动车的拥有量,分别计算2010 年~2017 年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【分析】(1)根据统计图中的数据可以解答本题;(2)根据统计图中的数据,结合生活实际,进行说明即可,本题答案不唯一,只要合情合理即可.【解答】解:(1)由图可得,2016 年机动车的拥有量为3.40 万辆,==120(次),==100(次)即;2010 年~2017 年在人民路路口和学校门口堵车次数的平均数分别是120 次、100 次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.【点评】本题考查折线统计图、条形统计图、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8 分)一辆汽车行驶时的耗油量为0.1 升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400 千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5 升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400 千米,剩余油量30 升,行驶时的耗油量为0.1 升/千米,则汽车行驶400 千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70 升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400 千米,剩余油量30 升,∵行驶时的耗油量为0.1 升/千米,则汽车行驶400 千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70 升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650 千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.20.(8 分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).【分析】(1)根据图 2 判断出绘制直线,根据两点间的距离公式可得答案;(2)根据图 2 判断出绘制抛物线,利用待定系数法求解可得.【解答】解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y= x(x﹣4)= x2﹣2x.【点评】本题主要考查二次函数的应用,解题的关键是看图2 的判断条件及待定系数法求函数解析式.21.(10 分)如图1,窗框和窗扇用“滑块铰链”连接,图3 是图2 中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B,C,D 始终在一直线上,延长DE 交MN 于点F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB 的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B 之间的距离(精确到0.1cm).(参考数据:≈1.732,≈2.449)【分析】(1)根据平行四边形的判定和性质可以解答本题;(2)根据锐角三角函数和题意可以求得AB 的长,从而可以解答本题.【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形ACDE 是平行四边形,∴AC∥DE,∴∠DFB=∠CAB,∵∠CAB=85°,∴∠DFB=85°;(2)作CG⊥AB 于点G,∵AC=20,∠CGA=90°,∠CAB=60°,∴CG= ,AG=10,∵BD=40,CD=10,∴CB=30,∴BG= = ,∴AB=AG+BG=10+10 ≈10+10×2.449=34.49≈34.5cm,即A、B 之间的距离为34.5cm.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(12 分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A=110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A=40°,求∠B 的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC 中,∠A=80°,求∠B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B 有三个不同的度数时,请你探索x 的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A 为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A 为底角,∠B 为顶角,则∠B=180°﹣2×80°=20°;若∠A 为底角,∠B 为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180 时,∠A 只能为顶角,∴∠B 的度数只有一个;②当0<x<90 时,若∠A 为顶角,则∠B=()°;若∠A 为底角,∠B 为顶角,则∠B=(180﹣2x)°;若∠A 为底角,∠B 为底角,则∠B=x°.当≠180﹣2x 且180﹣2x≠x 且≠x,即x≠60 时,∠B 有三个不同的度数.综上所述,可知当0<x<90 且x≠60 时,∠B 有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解。

中考数学真题及答案浙江绍兴数学(含解析)【学科网】

中考数学真题及答案浙江绍兴数学(含解析)【学科网】

2018年浙江省绍兴市中考数学试卷1 v- 3 v- 2分析:本题是对有理数的大小比较,根据有理数性质即可得出答案. 解答:解:有理数-3, 1,- 2的中,根据有理数的性质, •••- 3v- 2v 0v 1 . 故选A .点评:本题主要考查了有理数大小的判定,难度较小.22.( 4分)(2018年浙江绍兴)计算(ab )的结果是()A . 2abB .a 2b C .考点:幕的乘方与积的乘方. 计算题.根据幕的乘方法则:底数不变,指数相乘,进行计算即可. 解:原式=a 2b 2. 故选C .点评:此题考查了幕的乘方及积的乘方,属于基础题,注意掌握幕的乘方法则:底数不 变,指数相乘. 3. ( 4分)(2018年浙江绍兴)太阳的温度很高,其表面温度大概有 温度达到了 19200000 C,用科学记数法可将 19200000表示为( G~7A . 1.92 XI0B . 1.92 X 091.92 X 0考点:科学记数法一表示较大的数. 分析: 科学记数法的表示形式为a X 0n 的形式,其中 K |a v 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 解答: 解:将19200000用科学记数法表示为:1.92 X 07 . 故选B .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a X 0n 的形式,其中1 < |a | 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.( 4分)(2018年浙江绍兴)由5个相同的立方体搭成的几何体如图,则它的主视图是、选择10小题,每小题 4分,共40分) 1. ( 4分)(2018年浙江绍兴)比较-3, 1 , A . - 3v — 2V 1-2的大小,下列判断正确的是( )B . - 2 v- 3v 1C . 1 v- 2v- 3D .2 2 2 a b D . ab专题 分析 解答 6000 C ,而太阳中心的)8C . 1.92 X 0D .()考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中 解答:解:从正面看第一层是三个正方形,第二层是左边一个正方形, 故选:B .点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.( 4分)(2018年浙江绍兴)一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为() A .- B .C .D.-64 3 2考点:概率公式.分析:由一个不透明的袋子中有 2个白球,3个黄球和1个红球,这些球除颜色不同外其 他完全相同,直接 利用概率公式求解即可求得答案.解答:解:•一个不透明的袋子中有 2个白球,3个黄球和1个红球,这些球除颜色不同 外其他完全相同,•••从袋子中随机摸出一个球是白球的概率为: '=—2+3+1 3故选C .点评: 此题考查了概率公式的应用.注意用到的知识点为:概率 =所求情况数与总情况数之比.(4分)(2018年浙江绍兴)不等式3x+2 >- 1的解集是( A . x >— —B . x v —33x v — 1)C . x >— 1分析:先移项,再合并同类项,把x的系数化为1即可. 考解一兀一次不等解答:解:移项得,3x >- 1 - 2, 合并同类项得,3x >- 3, 把x 的系数化为1得,x >- 1. 故选C .点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的 关键.7.( 4分)(2018年浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90。

2018年浙江省绍兴市中考数学试卷试题及答案

2018年浙江省绍兴市中考数学试卷试题及答案

2018年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)(2018•绍兴)如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -2.(4分)(2018•绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯3.(4分)(2018•绍兴)有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.(4分)(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .565.(4分)(2018•绍兴)下面是一位同学做的四道题:①222()a b a b +=+,②224(2)4a a -=-,③532a a a ÷=,④3412a a a =.其中做对的一道题的序号是( )A .①B .②C .③D .④6.(4分)(2018•绍兴)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小 7.(4分)(2018•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =,1.6AB m =,1CO m =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m8.(4分)(2019•沙坪坝区)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.(4分)(2018•绍兴)若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--10.(4分)(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)(2018•绍兴)因式分解:224x y -= .12.(5分)(2018•绍兴)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺,竿子长为 尺.13.(5分)(2018•绍兴)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数). 1.732,π取3.142)14.(5分)(2018•绍兴)等腰三角形ABC 中,顶角A 为40︒,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 .15.(5分)(2018•绍兴)过双曲线(0)k y k x=>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 .16.(5分)(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm ,10cm ,y (15)cm y …,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 .三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(2018•绍兴)(1)计算:0112tan 602)()3-︒+. (2)解方程:2210x x --=.18.(8分)(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8分)(2018•绍兴)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.(8分)(2018•绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P,2(0,0)P,3(6,6)P;(2)1(0,0)P,2(4,0)P,3(6,6)P.21.(10分)(2018•绍兴)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知20AC DE cm==,10AE CD cm==,40BD cm=.(1)窗扇完全打开,张角85CAB∠=︒,求此时窗扇与窗框的夹角DFB∠的度数;(2)窗扇部分打开,张角60CAB∠=︒,求此时点A,B之间的距离(精确到0.1)cm.1.732≈ 2.449)≈22.(12分)(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,110A∠=︒,求B∠的度数.(答案:35)︒例2等腰三角形ABC中,40A∠=︒,求B∠的度数,(答案:40︒或70︒或100)︒张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,80A∠=︒,求B∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A∠的度数不同,得到B∠的度数的个数也可能不同,如果在等腰三角形ABC中,设A x∠=︒,当B∠有三个不同的度数时,请你探索x的取值范围.23.(12分)(2018•绍兴)小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,PAQ B∠=∠,求证:AP AQ=.(1)小敏进行探索,若将点P,Q的位置特殊化;把PAQ∠绕点A旋转得到EAF∠,使=,请你证明.AE BC⊥,点E,F分别在边BC,CD上,如图2.此时她证明了AE AF(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC⊥,垂⊥,AF CD 足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:4AB=,60B∠=︒,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).24.(14分)(2018•绍兴)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,=千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站BP x乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.2018年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【解答】解:若向东走2m 记作2m +,则向西走3m 记作3m -,故选:C .2.(4分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为( )A .91.1610⨯B .81.1610⨯C .71.1610⨯D .90.11610⨯【解答】解:8116000000 1.1610=⨯,故选:B .3.(4分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形, 故选:D .4.(4分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .56【解答】解:抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为16, 故选:A .5.(4分)下面是一位同学做的四道题:①222()a b a b +=+,②224(2)4a a -=-,③532a a a ÷=,④3412a a a =.其中做对的一道题的序号是( )A .①B .②C .③D .④【解答】解:①222()2a b a ab b +=++,故此选项错误;②224(2)4a a -=,故此选项错误;③532a a a ÷=,正确;④347a a a =,故此选项错误.故选:C .6.(4分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小 【解答】解:由函数图象可得,当1x <时,y 随x 的增大而增大,故选项A 正确,选项B 错误,当12x <<时,y 随x 的增大而减小,当2x >时,y 随x 的增大而增大,故选项C 、D 错误, 故选:A . 7.(4分)学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4AO m =, 1.6AB m =,1CO m=,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m 【解答】解:AB BD⊥,CD BD⊥,90ABO CDO∴∠=∠=︒,又AOB COD∠=∠,ABO CDO∴∆∆∽,则AO ABCO CD=,4AO m=, 1.6AB m=,1CO m=,∴4 1.61CD =,解得:0.4CD=,故选:C.8.(4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为32102222a b c d⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A.B.C .D .【解答】解:A 、第一行数字从左到右依次为1、0、1、0,序号为32101202120210⨯+⨯+⨯+⨯=,不符合题意;B 、第一行数字从左到右依次为0,1,1,0,序号为3210021212026⨯+⨯+⨯+⨯=,符合题意;C 、第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,不符合题意;D 、第一行数字从左到右依次为0,1,1,1,序号为3210021212127⨯+⨯+⨯+⨯=,不符合题意;故选:B .9.(4分)若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(3,6)--B .(3,0)-C .(3,5)--D .(3,1)--【解答】解:某定弦抛物线的对称轴为直线1x =,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为22(2)2(1)1y x x x x x =-=-=--.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为22(12)13(1)4y x x =-+--=+-.当3x =-时,2(1)40y x =+-=,∴得到的新抛物线过点(3,0)-.故选:B .10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有34枚图钉可供选用,则最多可以展示绘画作品( )A .16张B .18张C .20张D .21张【解答】解:①如果所有的画展示成一行,34(11)116÷+-=(张),34∴枚图钉最多可以展示16张画;②如果所有的画展示成两行,34(21)11÷+=(枚)1⋯⋯(枚),11110-=(张),21020⨯=(张),34∴枚图钉最多可以展示20张画;③如果所有的画展示成三行,34(31)8÷+=(枚)2⋯⋯(枚),817-=(张),3721⨯=(张),34∴枚图钉最多可以展示21张画;④如果所有的画展示成四行,34(41)6÷+=(枚)4⋯⋯(枚),615-=(张),4520⨯=(张),34∴枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34(51)5÷+=(枚)4⋯⋯(枚),514-=(张),5420⨯=(张),34∴枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D .二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)因式分解:224x y -= (2)(2)x y x y +- .【解答】解:原式(2)(2)x y x y =+-,故答案为:(2)(2)x y x y +-12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 20 尺,竿子长为 尺.【解答】解:设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y y x -=⎧⎪⎨-=⎪⎩, 解得:2015x y =⎧⎨=⎩. 答:索长为20尺,竿子长为15尺.故答案为:20;15.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了 15 步(假设1步为0.5米,结果保留整数).1.732,π取3.142)【解答】解:作OC AB ⊥于C ,如图,则AC BC =,OA OB =,11(180)(180120)3022A B AOB ∴∠=∠=︒-∠=︒-︒=︒, 在Rt AOC ∆中,1102OC OA ==,AC ==,269AB AC ∴==(步);而AB 的长1202084180π=≈(步), AB 的长与AB 的长多15步.所以这些市民其实仅仅少走了 15步.故答案为15.14.(5分)等腰三角形ABC 中,顶角A 为40︒,点P 在以A 为圆心,BC 长为半径的圆上,且BP BA =,则PBC ∠的度数为 30︒或110︒ .【解答】解:如图,当点P 在直线AB 的右侧时.连接AP .AB AC =,40BAC ∠=︒,70ABC C ∴∠=∠=︒,AB AB =,AC PB =,BC PA =,ABC BAP ∴∆≅∆,40ABP BAC ∴∠=∠=︒,30PBC ABC ABP ∴∠=∠-∠=︒,当点P '在AB 的左侧时,同法可得40ABP ∠'=︒,4070110P BC ∴∠'=︒+︒=︒,故答案为30︒或110︒.15.(5分)过双曲线(0)k y k x=>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC ∆的面积为8,则k 的值是 12或4 .【解答】解:设点A 的坐标为(,)k x x, 当点P 在AB 的延长线上时,2AP AB =,AB AP ∴=,//PC x 轴,∴点C 的坐标为(,)k x x--, 由题意得,12282k x x⨯⨯=, 解得,4k =,当点P 在BA 的延长线上时,2AP AB =,//PC x 轴,∴点C 的坐标为1(3x ,3)k x, 23P C x ∴''=, 由题意得,122823k x x ⨯⨯=, 解得,12k =,当点P 在第三象限时,情况相同,故答案为:12或4.16.(5分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm ,底面的长是30cm ,宽是20cm ,容器内的水深为x cm .现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A 的三条棱的长分别10cm ,10cm ,y (15)cm y …,当铁块的顶部高出水面2cm 时,x ,y 满足的关系式是 61065(0)56x y x +=<…或12015(68)2x y x -=<… .【解答】解:①当长方体实心铁块的棱长为10cm 和ycm 的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm ,此时,水位上升了(8)(8)x cm x -<,铁块浸在水中的体积为310880y ycm ⨯⨯=,803020(8)y x ∴=⨯⨯-,120152x y -∴=, 15y …,6x ∴…, 即:12015(68)2x y x -=<…, ②当长方体实心铁块的棱长为10cm 和10cm 的那一面平放在长方体的容器底面时, 同①的方法得,61065(0)56x y x +=<…, 故答案为:61065(0)56x y x +=<…或12015(68)2x y x -=<… 三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(1)计算:0112tan 602)()3-︒+. (2)解方程:2210x x --=.【解答】解:(1)原式132=+=;(2)1a =,2b =-,1c =-,△244480b ac =-=+=>,方程有两个不相等的实数根,1x ===±,则11x =21x =-.18.(8分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.【解答】解:(1)由图可得,2016年机动车的拥有量为3.40万辆,548286981241561961641208x +++++++==人民路口(次), 658512114412810877721008x +++++++==学校路口(次) 即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油4000.140⨯=(升)∴加满油时油箱的油量是403070+=升.(2)设(0)y kx b k =+≠,把(0,70),(400,30)坐标代入可得:0.1k =-,70b =0.170y x ∴=-+,当5y = 时,650x =即已行驶的路程的为650千米.20.(8分)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P ;(2)1(0,0)P ,2(4,0)P ,3(6,6)P .【解答】解:(1)1(4,0)P ,2(0,0)P ,4040-=>,∴绘制线段12P P ,124PP =;(2)1(0,0)P ,000-=,∴绘制抛物线,设(4)y ax x =-,把(6,6)代入得:612a =, 解得:12a =, 211(4)222y x x x x ∴=-=-. 21.(10分)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F .已知20AC DE cm ==,10AE CD cm ==,40BD cm =.(1)窗扇完全打开,张角85CAB ∠=︒,求此时窗扇与窗框的夹角DFB ∠的度数;(2)窗扇部分打开,张角60CAB ∠=︒,求此时点A ,B 之间的距离(精确到0.1)cm .1.732≈2.449)≈【解答】解:(1)20AC DE cm ==,10AE CD cm ==,∴四边形ACDE 是平行四边形,//AC DE ∴,DFB CAB ∴∠=∠,85CAB ∠=︒,85DFB ∴∠=︒;(2)作CG AB ⊥于点G ,20AC =,90CGA ∠=︒,60CAB ∠=︒,CG ∴=,10AG =,40BD =,10CD =,30CB ∴=,BG ∴101010 2.44934.4934.5AB AG BG cm ∴=+=+≈+⨯=≈, 即A 、B 之间的距离为34.5cm .22.(12分)数学课上,张老师举了下面的例题: 例1 等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒ 例2 等腰三角形ABC 中,40A ∠=︒,求B ∠的度数,(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,80A ∠=︒,求B ∠的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同,如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠有三个不同的度数时,请你探索x 的取值范围.【解答】解:(1)若A ∠为顶角,则(180)250B A ∠=︒-∠÷=︒; 若A ∠为底角,B ∠为顶角,则18028020B ∠=︒-⨯︒=︒; 若A ∠为底角,B ∠为底角,则80B ∠=︒;故50B ∠=︒或20︒或80︒;(2)分两种情况:①当90180x <…时,A ∠只能为顶角,B ∴∠的度数只有一个;②当090x <<时,若A ∠为顶角,则180()2x B -∠=︒; 若A ∠为底角,B ∠为顶角,则(1802)B x ∠=-︒; 若A ∠为底角,B ∠为底角,则B x ∠=︒. 当18018022x x -≠-且1802x x -≠且1802x x -≠,即60x ≠时,B ∠有三个不同的度数.综上所述,可知当090x <<且60x ≠时,B ∠有三个不同的度数.23.(12分)小敏思考解决如下问题:原题:如图1,点P ,Q 分别在菱形ABCD 的边BC ,CD 上,PAQ B ∠=∠,求证:AP AQ =.(1)小敏进行探索,若将点P ,Q 的位置特殊化;把PAQ ∠绕点A 旋转得到EAF ∠,使AE BC ⊥,点E ,F 分别在边BC ,CD 上,如图2.此时她证明了AE AF =,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE BC ⊥,AF CD ⊥,垂足分别为E ,F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=︒,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【解答】(1)证明:四边形ABCD 是菱形,180B C ∴∠+∠=︒,B D ∠=∠,AB AD =,EAF B ∠=∠,180EAF C ∴∠+∠=︒,180AEC AFC ∴∠+∠=︒,AE BC ⊥,AF CD ∴⊥,在AEB ∆和AFD ∆中,AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEB AFD ∴∆≅∆,AE AF ∴=;(2)证明:由(1)得,PAQ EAF B ∠=∠=∠,AE AF =,EAP FAQ ∴∠=∠,在AEP ∆和AFQ ∆中,90AEP AFQ AE AFEAP FAQ ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, AEP AFQ ∴∆≅∆,AP AQ ∴=;(3)解:已知:4AB =,60B ∠=︒,求四边形APCQ 的面积,解:连接AC 、BD 交于O ,60ABC ∠=︒,BA BC =,ABC ∴∆为等边三角形,AE BC ⊥,BE EC ∴=,同理,CF FD =,∴四边形AECF 的面积12=⨯四边形ABCD 的面积, 由(2)得,四边形APCQ 的面积=四边形AECF 的面积,122OA AB ==,OB = ∴四边形ABCD的面积1242=⨯⨯=, ∴四边形APCQ的面积=24.(14分)如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车,第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式;(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP x =千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.【解答】解:(1)第一班上行车到B 站用时51306=小时, 第一班下行车到C 站分别用时51306=小时;(2)当104t剟时,1560s t =-, 当1142t <…时,6015s t =-;(3)由(2)可知同时出发的一对上、下行车的位置关于BC 中点对称,设乘客到达A 站总时间为t 分钟,①当 2.5x =时,往B 站用时30分钟,还需要再等下行车5分钟,3051045t =++=,不合题意; ②当 2.5x <时,只能往B 站乘下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5)x -千米, 如果能乘上右侧的第一辆下行车,则5530x x -…,解得:57x …, 507x ∴<…, 418207t <…, 507x ∴<…符合题意; 如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,57x >, 10530x x -…,解得:107x …,∴51077x <…,14222877t <…, ∴51077x <…符合题意; 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,107x >, 15530x x -…,解得:157x …, ∴101577x <…,51353777t <…,不合题意, ∴综上,得1007x <…; ③当 2.5x >时,乘客需往C 站乘坐下行车.离他左边最近的下行车离B 站是(5)x -千米,离他右边最近的下行车离C 站也是(5)x -千米. 如果乘上右侧第一辆下行车,则55530x x --…,解得:5x …,不合题意. 5x ∴…,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,5x <, 510530x x --…,解得4x …, 45x ∴<…,3032t <…,45x ∴<…符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,4x <, 515530x x --…,解得3x …, 34x ∴<…,4244t <…,34x ∴<…不合题意.综上,得45x <…. 综上所述,1007x <…或45x <….。

【全国市级联考】浙江省绍兴市2018届九年级中考数学一模试卷(解析版)

【全国市级联考】浙江省绍兴市2018届九年级中考数学一模试卷(解析版)

2018年浙江省绍兴市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 二次函数y=(x﹣1)2+2的最小值是()A. ﹣2B. 2C. ﹣1D. 1【答案】B【解析】试题分析:抛物线y=(x-1)2+2开口向上,有最小值,顶点坐标为(1,2),顶点的纵坐标2即为函数的最小值.根据二次函数的性质,当x=1时,二次函数y=(x-1)2+2的最小值是2.故选B.考点:本题考查二次函数的最值点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.2. 已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断【答案】A【解析】解:r=5×=2.5,OP>r=2.5,P在圆外.故选C.点睛:本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r 时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.3. 已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A. 180°B. 120°C. 90°D. 60°【答案】C【解析】根据题意得,,解得:n=90,故选:C.4. 如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=,则的值为()A. 135°B. 100°C. 110°D. 120°【答案】D【解析】∵∠ACB=∴优弧所对的圆心角为2∴2+=360°∴=120°.故选:D.5. 如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.【答案】D【解析】连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sin A=。

★试卷3套精选★绍兴市2018年中考一模数学试题

★试卷3套精选★绍兴市2018年中考一模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.2.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小【答案】B【解析】根据倒数的定义解答即可.【详解】A 、只有0没有倒数,该项错误;B 、﹣1的倒数是﹣1,该项正确;C 、0没有倒数,该项错误;D 、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.3.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125°,则∠DBC 的度数为( )A .125°B .75°C .65°D .55°【答案】D 【解析】延长CB ,根据平行线的性质求得∠1的度数,则∠DBC 即可求得.【详解】延长CB ,延长CB ,∵AD ∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.4.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个【答案】C 【解析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难. 5.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 【答案】A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=33.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,33).故选A .6.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道【答案】C【解析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.7.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .ADAEDB EC = B .ABACAD AE = C .AC ECAB DB = D .AD DEDB BC =【答案】D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC ECAB DB =,故A ,B ,C 正确;D 错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.8.下列二次根式,最简二次根式是( )A B C D【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角【答案】C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.10.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩【答案】C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.二、填空题(本题包括8个小题)11.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.【答案】6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:60r=2 180ππ,解得:r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.12.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.【答案】13【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC13,∴这圈金属丝的周长最小为2AC=213cm.故答案为213.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】2 3【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.14.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.【答案】25【解析】∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为:25.15.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.【答案】8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.17.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.关于x的一元二次方程2kx x+1=0-有两个不相等的实数根,则k的取值范围是▲.【答案】k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.三、解答题(本题包括8个小题)19.现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.【答案】1 3【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2得,原式=1 3【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.21.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?【答案】(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.22.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.23.计算:﹣14﹣2×(﹣3)2+327÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.【答案】(1)﹣10;(2)∠EFC=72°.【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12 x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F 分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.【答案】解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF ∽△CBA .26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】 (1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4【答案】D【解析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.2.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=【答案】B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A .(3,2)B .(3,1)C .(2,2)D .(4,2)【答案】A 【解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG=6,∴AD=BC=2,∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .4.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .519273 ) A .﹣2和﹣1B .﹣3和﹣2C .﹣4和﹣3D .﹣5和﹣4 【答案】C 192733﹣3﹣3算,由3<3<4可知﹣34和﹣3之间.故选C .点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩【答案】C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.7.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123=205.故选B.9.30cos︒的值是()A.22B.3C.12D.3【答案】D【解析】根据特殊角三角函数值,可得答案.【详解】解:330cos︒=,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( ) A .2017年第二季度环比有所提高 B .2017年第三季度环比有所提高 C .2018年第一季度同比有所提高 D .2018年第四季度同比有所提高 【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A 正确; 2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B 正确; 2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C 错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确; 故选C . 【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键. 二、填空题(本题包括8个小题)11.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.【答案】4cm【解析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:∵CD 是ABC ∆的高线, ∴90BDC ∠=︒, ∵30B ∠=︒,2CD =, ∴24BC CD cm ==. 故答案为:4cm. 【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.12.如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接。

18年浙江省绍兴市初中数学中考试题及答案

18年浙江省绍兴市初中数学中考试题及答案

2018年浙江省绍兴市初中数学中考试题及答案2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ一、选择题1.如果向东走2m记为?2m,则向西走3m 可记为A.?3m B.?2m C.?3m D.?2m 2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为A.?10 B.?10C.?10D.?10 3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是9879 A.B.C.D. 4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是A.1115 B.C.D.63265322222245.下面是一位同学做的四道题:①(a?b)?a?b.②(?2a)??4a.③a?a?a.④a?a?a.其中做对的一道题的序号是A.①B.②C.③D.④6.如图,一个函数的图象射线BA、线段BC、射线CD组成,其中点A(?1,2),B(1,3),3412C(2,1),D(6,5),则此函数A.当x?1时,y随x的增大而增大B.当x?1时,y随x的增大而减小C.当x?1时,y随x的增大而增大D.当x?1时,y随x的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC 位置,已知AB?BD,CD?BD,垂足分别为B,D,AO?4m,AB?,CO?1m,则栏杆C端应下降的垂直距离CD 为A.B.C.D.8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a?23?b?22?c?21?d?20.如图2第一行数字从左到右依次为0,1,0,1,序号为0?2?1?2?0?2?1?2?5,表示该生为5班学生.表示6班学生的识别图案是3210A.B.C.D.9.若抛物线y?x2?ax?b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x?1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点A.(?3,?6)B.(?3,0)C.(?3,?5) D.(?3,?1) 10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形.现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉.若有34枚图钉可供选用,则最多可以展示绘画作品A.16张B.18张C.20张D.21张卷Ⅱ二、填空题11.因式分解:4x?y?.12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,22?AOB?120,从A到B只有路AB,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步.14.等腰三角形ABC中,顶角A为40,点P在以A为圆心,BC 长为半径的圆上,且BP?BA,则?PBC的度数为.15.过双曲线y?k(k?0)的动点A作AB?x轴于点B,P是直线AB上的点,且满足xAP?2AB,过点P作x轴的平行线交此双曲线于点C.如果?APC的面积为8,则k的值是.16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块,过顶点A的三条棱的长分别是10cm,10cm,ycm(y?15),当铁块的顶部高出水面2cm 时,x,y满足的关系式是.三、解答题17.计算:2tan60?12?(3?2)?(). 解方程:x?2x?1?0. 18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:2013?1 根据统计图,回答下列问题:写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数. 根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为升/千米,如图是油箱剩余油量y关于加满油后已行驶的路程x的函数图象. 根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. 求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 20.学校拓展小组研制了绘图智能机器人,顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式. P1(4,0),P3(6,6). 2(0,0),PP1(0,0),P3(6,6). 2(4,0),P21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC?DE?20cm,AE?CD?10cm,BD?40cm. 窗扇完全打开,张角?CAB?85,求此时窗扇与窗框的夹角?DFB的度数. 窗扇部分打开,张角?CAB?60,求此时点A,B 之间的距离. 22.数学课上,张老师举了下面的例题:例 1 等腰三角形ABC中,?A?110,求?B的度数. 例2 等腰三角形ABC中,?A?40,求?B 的度数. 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,?A?80,求?B的度数. 请你解答以上的变式题. 解后,小敏发现,?A的度数不同,得到?B的度数的个数也可能不同.如果在等腰三角形ABC 中,设?A?x,当?B有三个不同的度数时,请你探索x的取值范围. 23.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD 上,?PAQ??B,求证:AP?AQ. 小敏进行探索,若将点P,Q的位置特殊化:把?PAQ绕点A旋转得到?EAF,使AE?BC,点E,F分别在边BC,CD上,如图2,此时她证明了AE?AF.请你证明. 受以上的启发,在原题中,添加辅助线:如图3,作AE?BC,AF?CD,垂足分别为E,F.请你继续完成原题的证明. 如果在原题中添加条件:AB?4,?B?60,如图 1.请你编制一个计算题,并直接给出答案. 24.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车,上行车、下行车的速度均为30千米/小时. 问第一班上行车到B站、第一班下行车到C站分别用时多少?若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式. 一乘客前往A站办事,他在B,C两站间的P处,刚好遇到上行车,BP?x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件. 浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC6-10: ACBBD 二、填空题11. (2x?y)(2x?y)12. 20,1513. 15 14. 30或11015. 12或 4 16. y?6x?1065120?15x(0?x?)或y?(6?x?8) 562三、解答题17.解:原式?23?23?1?3?2. x?2?22,2x1?1?2,x2?1?2. 18.解:万辆. 人民路路口的堵车次数平均数为120. 学校门口的堵车次数平均数为100. 不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,于进行了交通综合治理,人民路路口堵车次数反而降低. 19.解:汽车行驶400千米,剩余油量30升,加满油时,油量为70升. 设y?kx?b(k?0),把点(0,70),(400,30)坐标分别代入得b?70,k??,∴y???70,当y?5时,x?650,即已行驶的路程为650千米. 4?0?4?0,20.解:∵P1(4,0),P2(0,0),∴绘制线段PP12,PP12?4. ∵P1(0,0),P3(6,6),0?0?0,2(4,0),P ∴绘制抛物线,设y?ax(x?4),把点(6,6)坐标代入得a?∴y?1,211x(x?4),即y?x2?2x. 2221.解:∵AC?DE,AE?CD,∴四边形ACDE是平行四边形,∴CA//DE,∴?DFB??CAB?85. 如图,过点C作CG?AB于点G,∵?CAB?60,∴AG?20cos60?10,CG?20sin60?103,∵BD?40,CD?10,∴BC?30,在Rt?BCG中,BG?106,∴AB?AG?BG?10?106?22.解:当?A为顶角,则?B?50,当?A 为底角,若?B为顶角,则?B?20,若?B 为底角,则?B?80,∴?B?50或20或80. 分两种情况:①当90?x?180时,?A 只能为顶角,∴?B的度数只有一个. ②当0?x?90时,若?A为顶角,则?B???180?x??,?2?若?A为底角,则?B?x或?B?(180?2x),当180?x180?x?180?2x且?x且180?2x?x,即x?60时,22?B有三个不同的度数. 综上①②,当0?x?90且x?60,?B有三个不同的度数. 23.解:如图1,在菱形ABCD中,?B??C?180,?B??D,AB?AD,∵?EAF??B,∴?C??EAF?180,∴?AEC??AFC?180,∵AE?BC,∴?AEB??AEC?90,∴?AFC?90,?AFD?90,∴?AEB??AFD,∴AE?AF. 如图2,,∵?PAQ??EAF??B,∴?EAP??EAF??PAF??PAQ??PAF??FAQ ,∵AE?BC,AF?CD,∴?AEP??AFQ?90,∵AE?AF,∴?AEP??AFQ,∴AP?AQ. 不唯一,举例如下:层次1:①求?D 的度数.答案:?D?60. ②分别求?BAD,?BCD的度数.答案:?BAD??BCD?120. ③求菱形ABCD的周长.答案:16. ④分别求BC,CD,AD的长.答案:4,4,4. 层次2:①求PC?CQ的值.答案:4. ②求BP?QD 的值.答案:4. ③求?APC??AQC的值.答案:180. 层次3:①求四边形APCQ 的面积.答案:43. ②求?ABP与?AQD的面积和.答案:43. ③求四边形APCQ周长的最小值.答案:4?43. ④求PQ中点运动的路径长.答案:23. 24.解:第一班上行车到B站用时第一班下行车到C站用时51?小时. 30651?小时. 306当0?t?当1时,s?15?60t. 411?t?时,s?60t?15. 42知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,当x?时,往B站用时30分钟,还需再等下行车5分钟,t?30?5?10?45,不合题意. 当x?时,只能往B站坐下行车,他离B站x千米,则离他右边最近的下行车离C站也是x 千米,这辆下行车离B站(5?x)千米. 如果能乘上右侧第一辆下行车,x5?x55?,x?,∴0?x?,53077418?t?20,75∴0?x?符合题意. 7如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,7x10?x10?,x?,530751014∴?x?,27?t?28,7777510∴?x?符合题意. 77如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?10,7x15?x15?,x?,5307101551?x?,35?t?37,不合题意. ∴777710∴综上,得0?x?.7当x?时,乘客需往C站乘坐下行车,离他左边最近的下行车离B站是(5?x)千米,离他右边最近的下行车离C 站也是(5?x)千米,如果乘上右侧第一辆下行车,∴x?5,不合题意. 5?x5?x?,530如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,5?x10?x?,x?4,∴4?x?5,30?t?32,530∴4?x?5符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?4,5?x15?x?,3?x?4,42?t?44,530∴3?x?4不合题意. ∴综上,得4?x?5.综上所述,0?x?10或4?x?5. 7。

最新冀教版九年级数学下册 2018年浙江省绍兴市上虞市中考模拟卷(四)

最新冀教版九年级数学下册 2018年浙江省绍兴市上虞市中考模拟卷(四)

浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O 出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB 边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三③如图3,利用面积差求得:S△CFG角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,矩形一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还要满足AC⊥BD时,四边形MNPQ是正方形.(2)如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是3+2;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC⊥BD时,四边形MNPQ是正方形,首先证明四边形MNPQ是菱形,再证明有一个角是直角即可;=S△ADE+S梯形DEBC计算,求出相(2)①如图2中,作DE⊥AB于E.根据S四边形ABCD关线段即可;②如图3中,设AE与BD相交于点Q,连接CE,只要证明当AC⊥BD且A、C、E 共线时,四边形ABED的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中,∵矩形的对角线相等,∴矩形一定是等角线四边形,故答案为矩形.②当AC⊥BD时,四边形MNPQ是正方形.理由:如图1中,∵M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,∴PQ=MN=AC,PN=QM=BD,PQ∥AC,MQ∥BD,∵AC=BD,∴MN=NP=PQ=QM,∴四边形MNPQ是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ是正方形.故答案为AC⊥BD.(2)①如图2中,作DE⊥AB于E.在Rt△ABC中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD,DE⊥AB,∴AE=BE=2,∵四边形ABCD是等角线四边形,∴BD=AC=AD=5,在Rt△BDE中,DE==,=S△ADE+S梯形DEBC∴S四边形ABCD=•AE•DE+•(DE+BC)•BE=×+(+3)×2=3+2.故答案为3+2.②如图3中,设AE与BD相交于点Q,连接CE,作DH⊥AE于H,BG⊥AE于G.则DH≤DQ,BG≤BQ,∵四边形ABED是等角线四边形,∴AE=BD,=S△ABE+S△ADE=•AE•DH+•AE•BG=•AE•(GB+DH)≤•AE•(BQ+QD),∵S四边形ABED≤AE•BD,即S四边形ABED∴当G、H重合时,即BD⊥AE时,等号成立,∵AE=BD,≤AE2,∴S四边形ABED即线段AE最大时,四边形ABED的面积最大,∵AE≤AC+CE,∴AE≤5+1,∴AE≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC 上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;(4)当点Q在线段OA上时,S=S△CPQ;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM=S矩形OABC ﹣S△COQ﹣S△AMQ,可求得S与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示出BM,S=S△CBM,可求得答案.【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ=×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。

浙江省绍兴市中考数学试卷及解析

浙江省绍兴市中考数学试卷及解析

2018年浙江省绍兴市中考数学试卷一.选择题(共10小题)1.(2018绍兴)3的相反数是( ) A . 3B . 3-C .13D . 13-考点:相反数。

解答:解:根据相反数的概念及意义可知:3的相反数是﹣3。

故选B 。

2.(2018绍兴)下列运算正确的是( ) A . 2x x x +=B . 623x x x ÷=C . 34x x x ⋅=D . 235(2)6x x =考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

解答:解:A 、x+x=2x ,此选项错误;B 、x 6÷x 2=x 4,此选项错误;C 、x •x 3=x 4,此选项正确;D 、(2x 2)3=8x 6,此选项错误。

故选C 。

3.(2018绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( )A . 4.6×108B . 46×108C . 4.6×109D . 0.46×1010考点:科学记数法—表示较大的数。

解答:解:4 600 000 000用科学记数法表示为:4.6×109。

故选:C 。

4.(2018绍兴)如图所示的几何体,其主视图是( )A .B .C .D .考点:简单组合体的三视图。

解答:解:从物体正面看,看到的是一个等腰梯形。

故选C 。

5.(2018绍兴)化简111x x --可得( ) A .21x x- B . 21x x--C .221x x x+- D .221x x x-- 考点:分式的加减法。

解答:解:原式=211(1)x x x x x x--=---。

故选B。

6.(2018绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位考点:坐标与图形变化-平移。

中考数学真题及答案浙江绍兴数学(含解析)【学科网】

中考数学真题及答案浙江绍兴数学(含解析)【学科网】

2018 年浙江省绍兴市中考数学试卷一、选择题(本大题共 10 小题,每题 4 分,共 40 分)1.( 4 分) (2018 年浙江绍兴 )比较﹣ 3,1,﹣ 2 的大小,以下判断正确的选项是( )A . ﹣3<﹣ 2< 1B .﹣ 2<﹣ 3<1C . 1<﹣ 2<﹣ 3D . 1<﹣ 3<﹣ 2剖析: 本题是对有理数的大小比较,依占有理数性质即可得出答案.解答: 解:有理数﹣ 3, 1,﹣ 2 的中,依占有理数的性质,∴﹣ 3<﹣ 2< 0< 1.应选 A .评论: 本题主要考察了有理数大小的判断,难度较小.2.( 4 分) (2018 年浙江绍兴 )计算( ab )2的结果是()2 22A . 2abB . 2a b C .a b D . ab考点: 幂的乘方与积的乘方. 专题: 计算题.剖析: 依据幂的乘方法例:底数不变,指数相乘,进行计算即可.2 2解答: 解:原式 =a b . 应选 C .评论: 本题考察了幂的乘方及积的乘方,属于基础题,注意掌握幂的乘方法例:底数不变,指数相乘.3.( 4 分) (2018 年浙江绍兴 )太阳的温度很高,其表面温度大体有 6000℃,而太阳中心的温度达到了 19200000℃,用科学记数法可将 19200000 表示为()A .1.92 ×106 78D .9B . 1.92 ×10C . 1.92 ×101.92 ×10考点: 科学记数法 — 表示较大的数.剖析: 科学记数法的表示形式为a ×10n的形式,此中 1≤|a|< 10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数相 同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答: 解:将 19200000 用科学记数法表示为: 1.92 ×107.应选 B .a ×10n的形式,此中评论: 本题考察科学记数法的表示方法.科学记数法的表示形式为 1≤ |a|< 10, n 为整数,表示时重点要正确确立a 的值以及 n 的值.4.( 4 分) (2018 年浙江绍兴 )由 5 个同样的立方体搭成的几何体如图,则它的主视图是 ( )A.B.C.D.考点:简单组合体的三视图.剖析:找到从正面看所获得的图形即可,注意全部的看到的棱都应表此刻主视图中解答:解:从正面看第一层是三个正方形,第二层是左边一个正方形,应选: B.评论:本题考察了三视图的知识,主视图是从物体的正面看获得的视图.5.( 4 分) (2018 年浙江绍兴 )一个不透明的袋子中有 2 个白球, 3 个黄球和 1 个红球,这些球除颜色不一样外其余完整同样,则从袋子中随机摸出一个球是白球的概率为()A.B.C.D.考点:概率公式.剖析:由一个不透明的袋子中有 2 个白球, 3 个黄球和 1 个红球,这些球除颜色不一样外其余完整同样,直接利用概率公式求解即可求得答案.解答:解:∵一个不透明的袋子中有 2 个白球, 3 个黄球和 1 个红球,这些球除颜色不一样外其余完整同样,∴从袋子中随机摸出一个球是白球的概率为:=.应选 C.评论:本题考察了概率公式的应用.注意用到的知识点为:概率=所讨状况数与总状况数之比.6.( 4 分) (2018 年浙江绍兴 )不等式 3x+2>﹣ 1 的解集是()A .x>﹣B. x<﹣C. x>﹣ 1D.x<﹣ 1考点:解一元一次不等式.剖析:先移项,再归并同类项,把x 的系数化为 1 即可.解答:解:移项得,3x>﹣1﹣2,归并同类项得,3x >﹣ 3,把 x 的系数化为 1 得, x>﹣ 1.应选 C.评论:本题考察的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答本题的重点.7.( 4 分) (2018 年浙江绍兴 )如图,圆锥的侧面睁开图使半径为3,圆心角为 90°的扇形,则该圆锥的底面周长为()A .π B.πC. D .考点:圆锥的计算.剖析:依据圆锥侧面睁开扇形的弧长等于底面圆的周长,能够求出底面圆的半径,从而求得圆锥的底面周长.解答:解:设底面圆的半径为r,则:2π r==π.∴r= ,∴圆锥的底面周长为,应选 B.评论:本题考察的是弧长的计算,利用弧长公式求出弧长,而后依据扇形弧长与圆锥底面半径的关系求出底面圆的半径.8.( 4 分) (2018 年浙江绍兴 )如图 1,天平呈均衡状态,此中左边秤盘中有一袋玻璃球,右边秤盘中也有一袋玻璃球,还有 2 个各 20 克的砝码.现将左边袋中一颗玻璃球移至右边秤盘,并拿走右边秤盘的 1 个砝码后,天平仍呈均衡状态,如图2,则被挪动的玻璃球的质量为()A .10 克B.15克C.20克 D.25克考点:一元一次方程的应用.剖析:依据天平仍旧处于均衡状态列出一元一次方程求解即可.解答:解:设左、右边秤盘中一袋玻璃球的质量分别为m 克、 n 克,依据题意得: m=n+40 ;设被挪动的玻璃球的质量为x 克,依据题意得: m﹣ x=n+x+20 ,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.应选 A.评论:本题考察了一元一次方程的应用,解题的重点是找到等量关系.9.( 4 分) (2018 年浙江绍兴 )将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,而后沿③中的虚线剪去一个角,睁开摊平后的图形是()A.B.C.D.考点:剪纸问题.剖析:依据题意要求,着手操作一下,可获得正确的答案.解答:解:由题意要求知,睁开摊平后的图形是 B .应选 B.评论:本题主要考察了剪纸问题,此类问题应亲身着手折一折,剪一剪看看,能够培育空间想象能力.10.( 4 分) (2018 年浙江绍兴 )如图,汽车在东西向的公路l 上行驶,途中 A , B, C, D 四个十字路口都有红绿灯. AB 之间的距离为 800M , BC 为 1000M , CD 为 1400M ,且 l 上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间同样,红灯亮的时间与绿灯亮的时间也同样.若绿灯刚亮时,甲汽车从 A 路口以每小时30 千 M 的速度沿 l 向东行驶,同时乙汽车从 D 路口以同样的速度沿l 向西行驶,这两辆汽车经过四个路口时都没有碰到红灯,则每次绿灯亮的时间可能设置为()A .50 秒B.45秒C.40秒 D.35秒考点:推理与论证.剖析:第一求出汽车行驶各段所用的时间,从而依据红绿灯的设置,剖析每次绿灯亮的时间,得出切合题意答案.解答:解:∵甲汽车从 A 路口以每小时 30 千 M 的速度沿 l 向东行驶,同时乙汽车从 D 路口以同样的速度沿 l 向西行驶,∴两车的速度为:=(m/s),∵AB 之间的距离为800M ,BC 为 1000M ,CD 为 1400M ,∴分别经过AB , BC , CD 所用的时间为:=96 ( s),=120( s),=168(s),∵这两辆汽车经过四个路口时都没有碰到红灯,∴当每次绿灯亮的时间为50s 时,∵=1,∴甲车抵达 B 路口时碰到红灯,故 A 选项错误;∴当每次绿灯亮的时间为45s 时,∵=3,∴乙车抵达C路口时碰到红灯,故 B 选项错误;∴当每次绿灯亮的时间为40s 时,∵=5,∴甲车抵达 C 路口时碰到红灯,故 C 选项错误;∴当每次绿灯亮的时间为 35s 时,∵=2 ,=6 ,=10 ,=4,=8,∴这两辆汽车经过四个路口时都没有碰到红灯,故 D 选项正确;则每次绿灯亮的时间可能设置为:35 秒.应选: D.评论:本题主要考察了推理与论证,依据题意得出汽车行驶每段所用的时间,从而得出由选项剖析得出是解题重点.二、填空题(本大题共 6 个小题,每题 5 分,共 30 分)211.( 5 分) (2018 年浙江绍兴 )分解因式: a ﹣ a=a( a﹣ 1).考点:因式分解-提公因式法.剖析:这个多项式含有公因式a,分解因式时应先提取公因式.解答:解:a2﹣a=a(a﹣1).评论:本题考察了提公因式法分解因式,比较简单,注意不要漏项.12.( 5 分) (2018 年浙江绍兴 )把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙ O 与矩形 ABCD 的边 BC,AD 分别相切和订交( E, F 是交点),已知EF=CD=8 ,则⊙ O 的半径为5.考点:垂径定理的应用;勾股定理;切线的性质.剖析:第一由题意,⊙ O 与 BC 相切,记切点为G,作直线 OG,分别交 AD 、劣弧于点 H 、 I,再连结 OF,易求得 FH 的长,而后设求半径为r,则 OH=16 ﹣r ,而后在222Rt△ OFH 中, r ﹣( 16﹣ r) =8,解此方程即可求得答案.解答:解:由题意,⊙ O 与 BC 相切,记切点为G,作直线 OG,分别交 AD 、劣弧于点 H 、 I,再连结 OF,在矩形 ABCD 中, AD ∥ BC,而 IG ⊥BC,∴IG ⊥AD,∴在⊙ O 中, FH=EF=4 ,设求半径为 r ,则 OH=8 ﹣ r ,222在 Rt△ OFH 中, r﹣( 8﹣ r) =4 ,解得 r=5,故答案为: 5.评论:本题考察了切线的性质、垂径定理以及勾股定理.本题难度适中,注意掌握协助线的作法,注意掌握方程思想与数形联合思想的应用.13.( 5 分) (2018 年浙江绍兴 )如图的一座拱桥,当水面宽AB 为 12m 时,桥洞顶部离水面 4m,已知桥洞的拱形是抛物线,以水平方向为x 轴,成立平面直角坐标系,若选用点A为坐标原点时的抛物线解读式是y= ﹣(x﹣6)2+4,则选用点 B 为坐标原点时的抛物线解读式是y=﹣(x+6)2+4.考点:二次函数的应用.剖析:依据题意得出 A 点坐标,从而利用极点式求出函数解读式即可.解答:解:由题意可得出:y=a( x+6)2+4,2将(﹣ 12,0)代入得出,0=a(﹣ 12+6) +4 ,解得: a=﹣,∴选用点 B 为坐标原点时的抛物线解读式是:y= ﹣(x+6)2+4.故答案为: y=﹣(x+6)2+4.评论:本题主要考察了二次函数的应用,利用极点式求出函数解读式是解题重点.14.( 5 分) (2018 年浙江绍兴 )用直尺和圆规作△ABC,使BC=a,AC=b,∠ B=35°,若这样的三角形只好作一个,则a,b 间知足的关系式是sin35 °= 或 b≥a .考点:作图—复杂作图;切线的性质;解直角三角形.剖析:第一画 BC=a ,再以 B 为极点,作∠ ABC=35°,而后再以点 C 为圆心 b 为半径交 AB 于点 A ,而后连结 AC 即可,①当 AC ⊥ BC 时,②当 b≥a时三角形只好作一个.解答:解:以下图:若这样的三角形只好作一个,则a, b 间知足的关系式是:①当AC ⊥ BC 时,即sin35 =° ②当 b≥a时.故答案为: sin35 °= 或 b≥a.评论:本题主要考察了复杂作图,重点是掌握作一角等于已知角的方法.15.( 5 分) (2018 年浙江绍兴 )如图,边长为 n 的正方形 OABC 的边 OA , OC 在座标轴上,点 A 1, A 2 A n﹣1为 OA 的 n 均分点,点 B1, B 2 B n﹣1为 CB 的 n 均分点,连结A 1B1,A 2B2, A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,,C n﹣1.若C15B 15=16C15A 15,则 n 的值为17.(n为正整数)考点:反比率函数图象上点的坐标特色.专题:规律型.剖析:先依据正方形 OABC 的边长为 n,点 A 1, A 2 A n﹣1为 OA 的 n 均分点,点 B1,B2 B n﹣1为 CB 的 n 均分点可知 OA 15=15 ,OB 15=15 ,再依据 C15B 15=16C 15A 15表示出 C15的坐标,代入反比率函数的解读式求出n 的值即可.解答:解:∵正方形OABC 的边长为 n,点 A 1, A 2 A n﹣1为 OA 的 n 均分点,点 B1,B2 B n﹣1为 CB 的 n 均分点∴ OA 15=15, OB15=15 ,∵C15B15=16C15A 15,∴C15( 15,),∵点 C15在曲线 y=( x> 0)上,∴15× =n﹣ 2,解得 n=17.故答案为: 17.评论:本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上 k=xy 为定值是解答本题的重点.16.( 5 分) (2018 年浙江绍兴 )把标准纸一次又一次对开,能够获得均相像的“开纸”.此刻我们在长为 2 、宽为 1 的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相像,而后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是 4 +.考点:相像多边形的性质.剖析:依据相像多边形对应边的比相等的性质分别求出所剪得的两个小矩形纸片的长与8/20解答:解:∵在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相像,∴要使所剪得的两个小矩形纸片周长之和最大,则这两个小矩形纸片长与宽的和最大.∵矩形的长与宽之比为2:1,∴剪得的两个小矩形中,一个矩形的长为1,宽为=,∴此外一个矩形的长为2﹣=,宽为=,∴所剪得的两个小矩形纸片周长之和的最大值是2(1+++)=4+.故答案为4+.评论:本题考察了相像多边形的性质,分别求出所剪得的两个小矩形纸片的长与宽是解题的重点.三、解答题(本大题共 8 小题,第 17-20 小题每题 8 分,第 21 小题 10 分,第 22,23 小题每题 8 分,24 小题 14 分,共 80 分)17.( 8 分) (2018 年浙江绍兴 )( 1)计算:﹣4sin45﹣°+.(2)先化简,再求值:a( a﹣ 3b) +( a+b)2﹣ a( a﹣b),此中a=1, b=﹣.考点:实数的运算;整式的混淆运算—化简求值;零指数幂;负整数指数幂;特别角的三角函数值.剖析:(1)本题波及零指数幂、乘方、特别角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果;(2)依据去括号的法例,可去掉括号,依据归并同类项,可化简代数式,依据代数式求值,可得答案.解答:解:( 1)原式 =2﹣ 2﹣ 1+2 =1;(2)原式2222=a ﹣ 3ab+a +2ab+b﹣ a +ab22=a +b =1+=.评论:本题考察实数的综合运算能力,是各地中考题中常有的计算题型.解决此类题目的重点是熟记特别角的三角函数值,娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.( 8 分) (2018 年浙江绍兴 )已知甲、乙两地相距 90km , A , B 两人沿同一公路从甲地出发到乙地, A 骑摩托车, B 骑电动车,图中 DE , OC 分别表示 A ,B 走开甲地的行程 s(k m )与时间 t( h)的函数关系的图象,依据图象解答以下问题.(1) A 比 B 后出发几个小时? B 的速度是多少?(2)在 B 出发后几小时,两人相遇?考点:一次函数的应用.剖析:(1)依据横轴 CO 与 DE 可得出 A 比 B 后出发 1 小时;由点 C 的坐标为( 3, 60)可求出B 的速度;(2)利用待定系数法求出 OC、DE 的解读式,联立两函数解读式成立方程求解即可.解答:解:( 1)由图可知, A 比 B 后出发 1 小时;B 的速度: 60÷3=20( km/h );(2)由图可知点 D( 1, 0), C( 3, 60), E(3, 90),设 OC 的解读式为 y=kx ,则 3k=60 ,解得k=20 ,因此,y=20x ,设 DE 的解读式为 y=mx+n ,则,解得,因此, y=45x ﹣ 45,由题意得,解得,因此, B 出发小时后两人相遇.评论:本题考察利用一次函数的图象解决实质问题,正确理解函数图象横纵坐标表示的意义,正确识图并获守信息是解题的重点.19.( 8 分) (2018 年浙江绍兴 )为认识某校七,八年级学生的睡眠状况,随机抽取了该校七,八年级部分学生进行检查,已知抽取七年级与八年级的学生人数同样,利用抽样所得的数据绘制以下统计图表.组别睡眠时间 xA x≤B≤ x≤C≤ x≤D≤ x≤E x≥依据图表供给的信息,回答以下问题:(1)求统计图中的 a;(2)抽取的样本中,八年级学生睡眠时间在C 组的有多少人?(3)已知该校七年级学生有755 人,八年级学生有785 人,假如睡眠时间x(时)知足:7.5 ≤ x≤,9.称5睡眠时间合格,试预计该校七、八年级学生中睡眠时间合格的共有多少人?考点:条形统计图;用样本预计整体;频数(率)散布表;扇形统计图.专题:计算题.剖析:(1)依据扇形统计图,确立出 a 的值即可;(2)依据图 1 求出抽取的人数,乘以 C 占的百分比即可获得结果;(3)分别找出七八年级睡眠合格的人数,求出之和即可.解答:解:(1)依据题意得:a=1﹣( 35%+25%+25%+10% ) =5% ;(2)依据题意得:( 6+19+17+10+8 )×35%=21 (人),则抽取的样本中,八年级学生睡眠时间在 C 组的有 21 人;(3)依据题意得: 755×+785×( 25%+35% ) =453+471=924 (人),则该校七、八年级学生中睡眠时间合格的共有924 人.评论:本题考察了条形统计图,用样本预计整体,频数(率)散布表,以及扇形统计图,弄清题中的数据是解本题的重点.20.( 8 分) (2018 年浙江绍兴 )课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形部件,使正方形的一边在BC 上,其余两个极点分别在AB ,AC 上.问加工成的正方形部件的边长是多少 mm?小颖解得本题的答案为48mm,小颖擅长反省,她又提出了以下的问题.(1)假如原题中要加工的部件是一个矩形,且此矩形是由两个并排搁置的正方形所构成,如图 1,此时,这个矩形部件的两条边长又分别为多少mm?请你计算.(2)假如原题中所要加工的部件不过一个矩形,如图2,这样,此矩形部件的两条边长就不可以确立,但这个矩形面积有最大值,求达到这个最大值时矩形部件的两条边长.考点:相像三角形的应用;二次函数的最值.剖析:(1)设 PN=2ymm ,则 PQ=ymm ,而后依据相像三角形对应高的比等于相像比列出比率式求出即可;(2)设 PN=x ,用 PQ 表示出 AE 的长度,而后依据相像三角形对应高的比等于相像比列出比率式并用 x 表示出 PN,而后依据矩形的面积公式列式计算,再依据二次函数的最值问题解答.解答:解:(1)设矩形的边长PN=2ymm ,则 PQ=ymm ,由条件可得△APN∽△ ABC,∴= ,即=,解得 y=,∴PN=×2=(mm),答:这个矩形部件的两条边长分别为mm,mm;(2)设 PN=xmm ,由条件可得△APN ∽△ ABC ,∴ = ,即=,解得 PQ=80﹣x.∴S=PN?PQ=x( 80﹣x) =﹣2﹣2,x +80x=( x﹣ 60) +2400∴S 的最大值为2400mm 2,此时 PN=60mm , PQ=80﹣×60=40(mm).评论:本题考察了相像三角形的应用,二次函数的最值问题,依据相像三角形对应高的比等于对应边的比列式表示出正方形的边长与三角形的边与这边上的高的关系是解题的重点,本题规律性较强,是道好题.21.( 10 分) (2018 年浙江绍兴 )九( 1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了丈量.(1)如图1,第一小组用一根木条CD 斜靠在护墙上,使得 DB 与 CB 的长度相等,假如丈量获得∠ CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF 为 16M (E 为护墙上的端点),EF 的中点离地面FB 的高度为 1.9M ,请你求出 E 点离地面 FB 的高度.(3)如图3,第三小组利用第一、第二小组的结果,来丈量护墙上旗杆的高度,在点P 测得旗杆顶端 A 的仰角为 45°,向前走4M 抵达 Q 点,测得 A 的仰角为60°,求旗杆 AE 的高度(精准到0.1M ).备用数据: tan60 °, tan30 °=0.577 ,=1.732 , =1.414 .考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.剖析:(1)依据∠ α=2∠ CDB即可得出答案;(2)设 EF 的中点为M ,过 M 作 MN ⊥ BF,垂足为点N,过点 E 作 EH⊥BF ,垂足为点H,依据 EH=2MN 即可求出 E 点离地面FB 的高度;(3)延伸 AE ,交 PB 于点 C,设 AE=x ,则 AC=x+3.8 , CQ=x ﹣,依据=,得出x+3.8x ﹣ 0.2=3,求出 x 即可.解答:解:(1)∵ BD=BC,∴∠ CDB= ∠ DCB ,∴∠ α=2∠ CDB=2× 38°=76°.(2)设 EF 的中点为 M ,过 M 作 MN ⊥ BF,垂足为点 N,过点 E 作 EH⊥ BF,垂足为点 H ,∵MN ∥AH , MN=1.9 ,∴E H=2MN=3.8 ( M ),∴E 点离地面FB 的高度是 3.8M .(3)延伸 AE ,交 PB 于点 C,设 AE=x ,则 AC=x+3.8 ,∵∠ APB=45° , ∴PC=AC=x+3.8 , ∵PQ=4,∴CQ=x+3.8 ﹣4=x ﹣,∵tan ∠AQC==tan60 °= ,∴=,x= ≈,∴AE ≈( M ).答;旗杆 AE 的高度是 5.7M .评论: 本题考察认识直角三角形的应用,用到的知识点是仰角的定义,能作出协助线借助仰角结构直角三角形是本题的重点.22.( 12 分) (2018 年浙江绍兴 )假如二次函数的二次项系数为l ,则此二次函数可表示为2[p , q] 为此函数的特色数,如函数 2y=x +px+q ,我们称 y=x +2x+3 的特色数是 [2, 3] . ( 1)若一个函数的特色数为 [ ﹣ 2, 1] ,求此函数图象的极点坐标.( 2)研究以下问题: ①若一个函数的特色数为 [4,﹣ 1] ,将此函数的图象先向右平移1 个单位,再向上平移1个单位,求获得的图象对应的函数的特色数.②若一个函数的特色数为[2, 3],问此函数的图象经过如何的平移,才能使获得的图象对应的函数的特色数为 [3,4] ?考点: 二次函数图象与几何变换;二次函数的性质. 专题: 新定义.剖析: (1)依据题意得出函数解读式,从而得出极点坐标即可; (2)①第一得出函数解读式,进而利用函数平移规律得出答案;②分别求出两函数解读式,从而得出平移规律.22解答: 解:( 1)由题意可得出: y=x ﹣ 2x+1= ( x ﹣ 1) ,(2)①由题意可得出: y=x 2 +4x ﹣ 1=( x+2 )2﹣5,1 个单位后获得: y=( x+1 )2﹣ ∴将此函数的图象先向右平移1 个单位,再向上平移 24=x +2x ﹣ 3,∴图象对应的函数的特色数为:[2,﹣ 3];②∵一个函数的特色数为 [2, 3],∴函数解读式为: y=x 2+2x+3= (x+1 ) 2 +2, ∵一个函数的特色数为 [3,4],22∴函数解读式为: y=x +3x+4= (x+) + ,∴原函数的图象向左平移个单位,再向下平移个单位获得.评论: 本题主要考察了二次函数的平移以及配方法求函数解读式,利用特色数得出函数解读式是解题重点.23.( 6 分) (2018 年浙江绍兴 )( 1)如图,正方形 ABCD 中,点 E , F 分别在边 BC ,CD 上,∠ EAF=45°,延伸 CD 到点 G ,使 DG=BE ,连结 EF , AG .求证: EF=FG .( 2)如图,等腰直角三角形 ABC 中,∠ BAC=90° , AB=AC ,点 M ,N 在边 BC 上,且 ∠MAN=45° ,若 BM=1 ,CN=3 ,求 MN 的长.考点: 全等三角形的判断与性质;正方形的性质. 专题: 证明题.剖析: (1)证 △ADG ≌△ ABE , △ FAE ≌△ GAF ,依据全等三角形的性质求出即可; (2)过点 C 作 CE ⊥ BC ,垂足为点 C ,截取 CE ,使 CE= BM .连结 AE 、EN .经过证明△ABM ≌△ ACE ( SAS )推知全等三角形的对应边 AM=AE 、对应角∠ BAM= ∠ CAE ;然后由等腰直角三角形的性质和∠MAN=45° 获得∠ MAN= ∠ EAN=45° ,因此△MAN ≌△ EAN ( SAS ),故全等三角形的对应边MN=EN ;最后由勾股定理获得222222.EN =EC +NC 即 MN =BM +NC 解答: (1)证明:在正方形 ABCD 中,∴∠ ABE= ∠ADG , AD=AB ,在△ ABE 和 △ADG 中,∴△ ABE ≌△ ADG ( SAS),∴∠ BAE= ∠DAG , AE=AG ,∴∠ EAG=90°,在△ FAE 和△GAF 中,,∴△ FAE ≌△ GAF ( SAS),∴E F=FG(2)解:如图 2,过点 C 作 CE⊥BC ,垂足为点 C,截取 CE,使 CE=BM .连结 AE 、 EN .∵A B=AC ,∠ BAC=90°,∴∠ B=∠ C=45°.∵CE ⊥BC ,∴∠ ACE= ∠ B=45°.在△ ABM 和△ ACE 中,∴△ ABM ≌△ ACE ( SAS).∴AM=AE ,∠ BAM= ∠ CAE .∵∠ BAC=90°,∠ MAN=45°,∴∠ BAM+ ∠CAN=45° .于是,由∠ BAM= ∠ CAE ,得∠ MAN= ∠ EAN=45° .在△ MAN 和△EAN 中,∴△ MAN ≌△ EAN (SAS).∴MN=EN .在 Rt△ ENC 中,由勾股定理,得222 EN =EC +NC .∴MN 2=BM2+NC2.∵B M=1 , CN=3 ,222∴MN =1 +3 ,∴MN=评论:本题主要考察正方形的性质,全等三角形的判断和性质、等腰直角三角形的性质以及勾股定理的综合应用.25.( 14 分) (2018 年浙江绍兴 )如图,在平面直角坐标系中,直线l 平行 x 轴,交 y 轴于点 A ,第一象限内的点 B 在 l 上,连结 OB,动点 P 知足∠ APQ=90°, PQ 交 x 轴于点 C.(1)当动点 P 与点 B 重合时,若点 B 的坐标是( 2, 1),求 PA 的长.(2)当动点P 在线段 OB 的延伸线上时,若点 A 的纵坐标与点 B 的横坐标相等,求PA:PC 的值.(3)当动点 P 在直线 OB 上时,点 D 是直线 OB 与直线 CA 的交点,点 E 是直线 CP 与 y 轴的交点,若∠ ACE= ∠ AEC ,PD=2OD ,求 PA: PC 的值.考点:相像形综合题;全等三角形的判断与性质;角均分线的性质;等腰三角形的判断与性质;勾股定理;矩形的判断与性质;平行线分线段成比率;相像三角形的判断与性质.专题:压轴题.剖析:(1)易得点P 的坐标是( 2, 1),即可获得PA 的长.(2)易证∠ AOB=45°,由角均分线的性质可得PA=PC,而后经过证明△ ANP≌△ CMP即可求出 PA: PC 的值.(3)可分点P 在线段 OB 的延伸线上及其反向延伸线上两种状况进行议论.易证PA:PC=PN : PM,设 OA=x ,只要用含x 的代数式表示出PN、 PM 的长,即可求出PA: PC 的值.解答:解:(1)∵点P与点B重合,点 B 的坐标是( 2, 1),∴点 P 的坐标是( 2, 1).∴PA 的长为 2.(2)过点 P 作 PM ⊥ x 轴,垂足为 M ,过点 P 作 PN⊥ y 轴,垂足为 N,如图 1 所示.∵点A 的纵坐标与点B 的横坐标相等,∴OA=AB .∵∠ OAB=90°,∴∠ AOB= ∠ ABO=45° .∵∠ AOC=90°,∴∠ POC=45° .∵PM ⊥ x 轴, PN ⊥y 轴,∴PM=PN ,∠ ANP= ∠ CMP=90° .∴∠ NPM=90° .∵∠ APC=90° .∴∠ APN=90° ﹣∠ APM= ∠ CPM .在△ ANP 和△CMP 中,∵∠ APN= ∠CPM , PN=PM ,∠ ANP= ∠ CMP ,∴△ ANP ≌△ CMP .∴P A=PC.∴PA: PC 的值为 1: 1.(3)①若点P 在线段 OB 的延伸线上,过点 P 作 PM⊥ x 轴,垂足为 M ,过点 P 作 PN⊥ y 轴,垂足为 N ,PM 与直线 AC 的交点为 F,如图 2 所示.∵∠ APN= ∠CPM ,∠ ANP= ∠ CMP ,∴△ ANP ∽△ CMP .∴.∵∠ ACE= ∠AEC ,∴A C=AE .∵AP ⊥PC,∴E P=CP.∵PM ∥ y 轴,∴A F=CF , OM=CM .∴FM=OA .设 OA=x ,∵PF∥OA ,∴△ PDF∽△ ODA .∴∵PD=2OD ,∴PF=2OA=2x , FM= x.∴PM= x.∵∠ APC=90°,AF=CF ,∴AC=2PF=4x .∵∠ AOC=90°,∴O C=x.∵∠ PNO= ∠NOM= ∠ OMP=90°,∴四边形 PMON 是矩形.∴PN=OM=x.∴PA: PC=PN: PM=x:x=.②若点 P 在线段 OB 的反向延伸线上,过点 P 作 PM⊥ x 轴,垂足为 M ,过点 P 作 PN⊥ y 轴,垂足为 N ,PM 与直线 AC 的交点为 F,如图 3 所示.同理可得: PM= x, CA=2PF=4x ,OC=x.∴PN=OM= OC=x.∴PA: PC=PN: PM=x:x=.综上所述: PA: PC 的值为或.评论:本题考察了角均分线的性质、全等三角形的判断与性质、相像三角形的判断与性质、矩形的判断与性质、等腰三角形的判断与性质、平行线均分线段定理、勾股定理等知识,综合性特别强.中考数学真题及答案浙江绍兴数学(含解析)【学科网】20/20。

2018年浙江省绍兴市中考数学试卷(含答案和详细解析)

2018年浙江省绍兴市中考数学试卷(含答案和详细解析)

2018年浙江省绍兴市中考数学试卷一、选择题(每小题只有一个选项符合题意.共10小题,每小题4分,共40分)1.(4分)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.(4分)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×1093.(4分)有6个相同的立方体搭成的儿何体如图所示,则它的主视图是()A.B.C.D.4.(4分)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.5.(4分)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④6.(4分)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A (﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小7.(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m8.(4分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.9.(4分)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张二、填空题(本题包括6小题,每小题5分,共30分)11.(5分)因式分解:4x2﹣y2=.12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O 为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC 的面积为8,则k的值是.16.(5分)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.三、填空题(本题包括8小题,第17-20题每小题8分,第21小题10分,第22、23小题每小题8分,第24题14分,共80分)17.(8分)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.18.(8分)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)。

浙江省绍兴市上虞市2018年中考数学一模试卷附答案解析

浙江省绍兴市上虞市2018年中考数学一模试卷附答案解析

浙江省绍兴市上虞市2018年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O 点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k 的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三角形面积的比等③如图3,利用面积差求得:S△CFG于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y (元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,矩形一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD 还要满足AC⊥BD时,四边形MNPQ是正方形.(2)如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是3+2;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC⊥BD时,四边形MNPQ是正方形,首先证明四边形MNPQ是菱形,再证明有一个角是直角即可;=S△ADE+S梯形DEBC计算,求出相关线段即可;(2)①如图2中,作DE⊥AB于E.根据S四边形ABCD②如图3中,设AE与BD相交于点Q,连接CE,只要证明当AC⊥BD且A、C、E共线时,四边形ABED的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中,∵矩形的对角线相等,∴矩形一定是等角线四边形,故答案为矩形.②当AC⊥BD时,四边形MNPQ是正方形.理由:如图1中,∵M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,∴PQ=MN=AC,PN=QM=BD,PQ∥AC,MQ∥BD,∵AC=BD,∴MN=NP=PQ=QM,∴四边形MNPQ是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ是正方形.故答案为AC⊥BD.(2)①如图2中,作DE⊥AB于E.在Rt△ABC中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD,DE⊥AB,∴AE=BE=2,∵四边形ABCD是等角线四边形,∴BD=AC=AD=5,在Rt△BDE中,DE==,=S△ADE+S梯形DEBC∴S四边形ABCD=•AE•DE+•(DE+BC)•BE=×+(+3)×2=3+2.故答案为3+2.②如图3中,设AE与BD相交于点Q,连接CE,作DH⊥AE于H,BG⊥AE于G.则DH≤DQ,BG≤BQ,∵四边形ABED是等角线四边形,∴AE=BD,=S△ABE+S△ADE=•AE•DH+•AE•BG=•AE•(GB+DH)≤•AE•(BQ+QD),∵S四边形ABED≤AE•BD,即S四边形ABED∴当G、H重合时,即BD⊥AE时,等号成立,∵AE=BD,≤AE2,∴S四边形ABED即线段AE最大时,四边形ABED的面积最大,∵AE≤AC+CE,∴AE≤5+1,∴AE≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP ∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t (s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;;当点Q在线段OA上,且点P在线段CB的延长线上时,(4)当点Q在线段OA上时,S=S△CPQ=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S 由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t 表示出AM,从而可表示出BM,S=S,可求得答案.△CBM【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;∴S=S四边形BCQM当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t 的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。

浙江省绍兴市上虞区中考数学一模试卷含答案解析

浙江省绍兴市上虞区中考数学一模试卷含答案解析

浙江省绍兴市上虞区中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.下列备选答案的四个数中,最小的一个是()A.﹣3 B.3 C.﹣D.2.计算(2a2b)2的正确结果是()A.4a2b B.2a4b2C.4a4b2D.2a4b3.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.4.6×109C.46×108D.0.46×10104.如图中几何体的俯视图是()A.B.C.D.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.B.C.D.6.不等式2x﹣3≥﹣1的解集是()A.x≥﹣B.x C.x≥1 D.x≤17.如图,数轴上点A表示的数是﹣1,原点O是线段AB的中点,∠BAC=30°,∠ABC=90°,以点A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数是()A.B.C.D.8.在△ABC中,CO为AB边上的中线,且OC=AB,以点O为圆心,OC长为半径画圆,延长CO交⊙O于点D,连结AD,BD,则四边形ADBC是()A.正方形B.矩形C.菱形D.邻边相等的四边形9.小敏到距家1500米的学校去上学,小敏出发10分钟后,小敏的爸爸立即去追小敏,且在距离学校60米的地方追上了她.已知爸爸比小敏的速度快100米/分,求小敏的速度.若设小敏的速度为x米/分,则根据题意所列方程正确的是()A.B.C.D.10.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC折叠,使点B落在D点的位置,且交y轴交于点E,则点D的坐标是()A.(﹣,)B.(﹣,2)C.(﹣,)D.(﹣,)二、填空题(共6小题,每小题5分,满分30分)11.分解因式:x2﹣4x=.12.如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠CAE的度数是度.13.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=8cm,BC=16cm,则⊙O的半径等于cm.14.若关于x,y方程组的解为,则方程组的解为.15.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,则CA1的长为.16.如图,正比例函数y=kx(k>0)的图象与反比例函数y1=,y2=,…,y的图象在第一象限内分别交于点A1,A2,…,A,点B1,B2,…,B分别在反比例函数y1=,y2=,…,y的图象上,且A2B1,A2B2,…,AB分别与y轴平行,连接OB1,OB2,…,OB,则△OA2B1,△OA3B2,…,△OAB的面积之和为.三、解答题(共8小题,满分80分)17.(1)计算:;(2)化简:(x+5)(x﹣1)+(x﹣2)2.18.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?19.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.20.我区某校为调查学生的视力变化情况,从全校九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,绘制成折线统计图和扇形统计图如下:解答下列问题:(1)该校共抽取了多少名九年级学生?(2)若该校共有1100名九年级学生,请你估计该校九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈你的感想(不超过30字).21.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连结AF交CG于点K,H是AF的中点,连结CH.(1)求tan∠GFK的值;(2)求CH的长.22.定义感知:若抛物线的顶点为P,与y轴的交点为Q,则称直线PQ是该抛物线的“随形线”.初步运用:判断下列伦断是否正确?正确的在题后括号内打“√”,错误“×”;1.对称轴不是y轴的抛物线有且只有一条“随形线”.()2.抛物线y=x2﹣4x+2的“随形线”是直线y=2x+2.()拓展延伸:若直线y=﹣3x+3是某抛物线的“随形线”,该“随形线”与y轴交于点Q,且抛物线顶点P 与点Q相距2个单位长度.(1)试求该抛物线的解析式;(2)问所得到的抛物线能否经过适当的平移,才能使平移后的图象所对应的函数解析式为y=?若能,说明平移的方法;若不能,请说明理由.23.(1)问题背景如图①,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E,CE交直线BA于M.探究线段BD与CE的数量关系得到的结论是.(2)类比探索在(1)中,如果把BD改为△ABC的外角∠ABF的平分线,其他条件均不变(如图②),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(3)拓展延伸在(2)中,如果AB=AC,其他条件均不变(如图③),请直接写出BD与CE的数量关系为.24.如图1,平面直角坐标系中,已知A(0,4),B(5,0),D(3,0),点P从点A出发,沿y轴负方向在y轴上以每秒1个单位长度的速度匀速运动,过点P作PE∥x轴交直线AD于点E.(1)设点P的运动时间为t(s),DE的单位长度为y,求y关于t的函数关系式,并写出t的取值范围;(2)当t为何值时,以EP为半径的⊙E恰好与x轴相切?并求此时⊙E的半径;(3)在点P的运动过程中,当以D,E,P三点为顶点的三角形是等腰三角形时,求此时t的值;(4)如图2,将△ABD沿直线AD翻折,得到△AB′D,连结B′O,如果∠AOE=∠BOB′,求t 值.(直接写出答案,不要求解答过程).浙江省绍兴市上虞区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列备选答案的四个数中,最小的一个是()A.﹣3 B.3 C.﹣D.【考点】有理数大小比较.【分析】根据正数大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:由正数大于负数,两个负数比较大小,绝对值大的负数反而小,得3>>﹣>﹣3.故选:A.【点评】本题考查了有理数大小比较,两个负数比较大小,绝对值大的负数反而小.2.计算(2a2b)2的正确结果是()A.4a2b B.2a4b2C.4a4b2D.2a4b【考点】幂的乘方与积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(2a2b)2=4a4b2.故选:C.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方公式.3.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.4.6×109C.46×108D.0.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4 600 000 000用科学记数法表示为:4.6×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图中几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:人站在几何体的正面,从上往下看,正方形个数依次为1,1,1,故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.B.C.D.【考点】概率公式.【分析】用黄球所占的份数除以所有份数的和即可求得是黄球的概率.【解答】解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是==,故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.不等式2x﹣3≥﹣1的解集是()A.x≥﹣B.x C.x≥1 D.x≤1【考点】解一元一次不等式.【分析】不等式移项合并,把x系数化为1,即可求出解.【解答】解:2x﹣3≥﹣1,2x≥2,x≥1.故选C.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.如图,数轴上点A表示的数是﹣1,原点O是线段AB的中点,∠BAC=30°,∠ABC=90°,以点A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数是()A.B.C.D.【考点】勾股定理;实数与数轴.【分析】首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.【解答】解:∵点A表示﹣1,O是AB的中点,∴OA=OB=1,∴AB=2,在直角△ABC中,AC===,∴AD=AC=,∴OD=.故选D.【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.8.在△ABC中,CO为AB边上的中线,且OC=AB,以点O为圆心,OC长为半径画圆,延长CO交⊙O于点D,连结AD,BD,则四边形ADBC是()A.正方形B.矩形C.菱形D.邻边相等的四边形【考点】矩形的判定.【分析】根据题意画出图形,根据对角线互相平分的四边形为平行四边形可得四边形ACBD是平行四边形,然后证明AB=CD,再根据对角线相等的平行四边形是矩形可得四边形ADBC为矩形.【解答】解:如图:∵延长CO交⊙O于点D,∴DO=CO,∵CO为AB边上的中线,∴AO=BO,∴四边形ACBD是平行四边形,∵OC=AB,∴AB=CD,∴四边形ADBC为矩形,故选:B.【点评】此题主要考查了矩形的判定,关键是掌握对角线相等的平行四边形是矩形.9.小敏到距家1500米的学校去上学,小敏出发10分钟后,小敏的爸爸立即去追小敏,且在距离学校60米的地方追上了她.已知爸爸比小敏的速度快100米/分,求小敏的速度.若设小敏的速度为x米/分,则根据题意所列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设小敏的速度为x米/分,则爸爸的速度为(x+100)米/分,由题意得等量关系:小敏走1440米的路程所用时间﹣小敏爸爸走1440米的路程所用时间=10分钟,根据等量关系列出方程即可.【解答】解:设小敏的速度为x米/分,则爸爸的速度为(x+100)米/分,由题意得:﹣=10,即=+10,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC折叠,使点B落在D点的位置,且交y轴交于点E,则点D的坐标是()A.(﹣,)B.(﹣,2)C.(﹣,)D.(﹣,)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=m,那么CE=3﹣m,DE=m,利用勾股定理即可求出m,然后利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF 的长度,也就求出了点D的坐标.【解答】解:如图,过D作DF⊥AO于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=m,那么CE=3﹣m,DE=m,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣m)2=m2+12,解得m=,∵DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴==,即=,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选D.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.二、填空题(共6小题,每小题5分,满分30分)11.分解因式:x2﹣4x=x(x﹣4).【考点】因式分解-提公因式法.【分析】直接提取公因式x进而分解因式得出即可.【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠CAE的度数是22.5度.【考点】正方形的性质;等腰三角形的性质.【分析】直接利用正方形的性质得出∠ACB=45°,再利用等腰三角形的性质得出答案.【解答】解:∵在正方形ABCD中,AC是对角线,∴∠ACB=45°,∵AC=CE,∴∠CAE=∠E=×45°=22.5°.故答案为:22.5.【点评】此题主要考查了正方形的性质以及等腰三角形的性质等知识,正确掌握正方形对角线平分对角是解题关键.13.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=8cm,BC=16cm,则⊙O的半径等于20cm.【考点】切线的性质.【分析】设圆的半径为rcm,连接OC、OA,作AD⊥OC,垂足为D,利用勾股定理,在Rt△AOD中,得到r2=(r﹣8)2+162,求出r即可.【解答】解:设圆的半径为rcm,如图,连接OC、OA,作AD⊥OC,垂足为D.则OD=(r﹣8)cm,AD=BC=16cm,在Rt△AOD中,r2=(r﹣8)2+162解得:r=20.即该圆的半径为20cm.故答案为:20.【点评】本题考查的是切线的性质,根据切线的性质,利用图形得到直角三角形,然后用勾股定理计算求出圆的半径.14.若关于x,y方程组的解为,则方程组的解为.【考点】二元一次方程组的解.【专题】计算题.【分析】将代入可得出一个关系式,将此关系式与于关于x的方程组对应相减,从而可得出一个新的方程组,解出即可得出答案.【解答】解:由题意得:,∴方程组可变形为:∴对符合条件的a1,b1,a2,b2都成立.故答案为:.【点评】本题考查二元一次方程组的解,难度较大,关键是将要求的方程组根据题意变形.15.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,则CA1的长为2±1.【考点】矩形的性质;翻折变换(折叠问题).【分析】如图,过点A1作A1M⊥BC于点M.设CM=A1M=x,则BM=4﹣x.在直角△A1MB中,由勾股定理得到:A1M2=A1B2﹣BM2=9﹣(4﹣x)2.由此求得x的值;然后在等腰Rt△A1CM 中,CA1=A1M.【解答】解:如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∴设CM=A1M=x,则BM=4﹣x.又由折叠的性质知AB=A1B=3.∴在直角△A1MB中,由勾股定理得到:A1M2=A1B2﹣BM2=9﹣(4﹣x)2.∴9﹣(4﹣x)2=x2,∴x=A1M=2±,∴在等腰Rt△A1CM中,CA1=A1M=2±1.故答案是:2±1.【点评】本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△A1MB和等腰直角△A1CM,利用勾股定理将所求的线段与已知线段的数量关系联系起来.16.如图,正比例函数y=kx(k>0)的图象与反比例函数y1=,y2=,…,y的图象在第一象限内分别交于点A1,A2,…,A,点B1,B2,…,B分别在反比例函数y1=,y2=,…,y的图象上,且A2B1,A2B2,…,AB分别与y轴平行,连接OB1,OB2,…,OB,则△OA2B1,△OA3B2,…,△OAB的面积之和为1012.【考点】反比例函数与一次函数的交点问题.【专题】规律型;反比例函数及其应用.【分析】延长A2B1,A3B2,A4B3,分别与x轴交于C1,C2,C3,如图所示,利用反比例函数k的几何意义分别求出△OA2B1,△OA3B2,…,△OAB的面积,即可求出面积之和.【解答】解:延长A2B1,A3B2,A4B3,分别与x轴交于C1,C2,C3,如图所示:∵y1=,y2=,∴S△OA2B1=S△A20C1﹣S△B1C10=1﹣=;∵y2=,y3=,∴S△OA3B2=S△A30C2﹣S△B2C2=﹣1=;依此类推,S△OAB=,则△OA2B1,△OA3B2,…,△OAB的面积之和为++…+==1012.故答案为:1012.【点评】此题考查了反比例函数与一次函数的交点,弄清题中的规律是解本题的关键.三、解答题(共8小题,满分80分)17.(1)计算:;(2)化简:(x+5)(x﹣1)+(x﹣2)2.【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式第一项利用平方根定义计算,第二项利用绝对值的代数意义及负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=3+4×﹣1=3+2﹣1=4;(2)原式=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1.【点评】此题考查了实数的运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.18.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?【考点】一次函数的应用.【分析】(1)根据图象可以求出小明在甲地游玩的时间,由速度=路程÷时间就可以求出小明骑车的速度;(2)直接运用待定系数法就可以求出直线BC和DE的解析式,再由其解析式建立二元一次方程组,求出点F的坐标就可以求出结论.【解答】解:(1)由图象得:在甲地游玩的时间是1﹣0.5=0.5(h).小明骑车速度:10÷0.5=20(km/h);(2)妈妈驾车速度:20×3=60(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵小明走OA段与走BC段速度不变,∴OA∥BC.设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=﹣80∴y=60x﹣80.∴,解得:.∴F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.【点评】本题考查了一次函数的应用,考查了路程=速度×时间的运用,待定系数法求一次函数的解析式的运用,一次函数图象性质的而运用.解题的关键是从实际问题中整理出一次函数模型.19.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD 中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.【解答】解:(1)如图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan30°=,∴CD=AC•tan30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为:(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.【点评】此题考查了仰角与俯角的定义.注意能借助仰角与仰角构造直角三角形并解直角三角形是关键.20.我区某校为调查学生的视力变化情况,从全校九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,绘制成折线统计图和扇形统计图如下:解答下列问题:(1)该校共抽取了多少名九年级学生?(2)若该校共有1100名九年级学生,请你估计该校九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈你的感想(不超过30字).【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)利用折线图中的视力为4.9以下人数80和扇形图中的百分比40%,即可求出总人数;(2)用样本估计总体可直接求算结果;(3)谈自己的感想要结合图上数据合理阐述.【解答】解:(1)80÷40%=200(人).答:该校共抽取了200名九年级学生;(2)1100×40%=440(人).答:该校九年级视力不良(4.9以下)的学生大约有440人;(3)合理即可.如:近视的人越来越多,要注意用眼卫生,保护眼睛.【点评】本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连结AF交CG于点K,H是AF的中点,连结CH.(1)求tan∠GFK的值;(2)求CH的长.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;解直角三角形.【分析】(1)由正方形的性质得出AD=CD=BC=1,CG=FG=CE=3,AD∥BC,GF∥BE,∠G=90°,证出△ADK∽△FGK,得出比例式求出GK=DG=,即可得出结果;(2)由正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF,即可得出结果.【解答】解:(1)∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1,CG=FG=CE=3,AD∥BC,GF∥BE,∠G=90°,∴DG=CG﹣CD=2,AD∥GF,∴△ADK∽△FGK,∴DK:GK=AD:GF=1:3,∴GK=DG=,∴tan∠GFK===;(2)∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,如图所示:则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=AF=.【点评】本题考查了相似三角形的判定与性质、三角函数、勾股定理,正方形的性质,直角三角形斜边上的中线性质;本题有一定难度,特别是(2)中,需要通过作出辅助线运用直角三角形斜边上的中线性质才能得出结果.22.定义感知:若抛物线的顶点为P,与y轴的交点为Q,则称直线PQ是该抛物线的“随形线”.初步运用:判断下列伦断是否正确?正确的在题后括号内打“√”,错误“×”;1.对称轴不是y轴的抛物线有且只有一条“随形线”.(√)2.抛物线y=x2﹣4x+2的“随形线”是直线y=2x+2.(×)拓展延伸:若直线y=﹣3x+3是某抛物线的“随形线”,该“随形线”与y轴交于点Q,且抛物线顶点P 与点Q相距2个单位长度.(1)试求该抛物线的解析式;(2)问所得到的抛物线能否经过适当的平移,才能使平移后的图象所对应的函数解析式为y=若能,说明平移的方法;若不能,请说明理由.【考点】二次函数综合题.【分析】1.根据过抛物线的顶点与抛物线与y轴的交点有且只有一条直线,可得答案;2.根据自变量与函数值的对应关系,可得抛物线与y轴的交点,根据配方法,可得顶点坐标,根据待定系数法,可得答案;(1)根据“随形线”,可得抛物线与y轴的交点,根据交点与顶点的距离,可得顶点坐标,根据待定系数,可得函数解析式;(2)根据函数解析式中a的值相同,函数图象可平移得到,根据函数图象的平移规律,可得答案.【解答】解:1.过两点有且只有一条直线,故对称轴不是y轴的抛物线有且只有一条“随形线”正确,(√)2.y=x2﹣4x+2与y轴的交点坐标为(0,2)顶点坐标为(2,﹣2),抛物线y=x2﹣4x+2的“随形线”是直线y=﹣2x+2.(×)故答案为:√,×;(1)当x=0时,y=3,即点Q的坐标为(0,3)设顶点P的坐标为(m,﹣3m+3),由PQ=2,得m2+(3m﹣3+3)2=(2)2,解得m1=2,m2=﹣2,当m=2时,﹣3m+3=﹣3,即顶点P(2,﹣3);当m=﹣2时,﹣3m+3=9,即顶点P的坐标为(﹣2,9).当顶点(2,﹣3)时,设抛物线的解析式为y=a(x﹣2)2﹣3,将Q(0,3)代入函数解析式,得4a﹣3=3,解得a=,当顶点(2,﹣3)时,设抛物线的解析式为y=(x﹣2)2﹣3;当顶点(﹣2,9)时,设抛物线的解析式为y=a(x+2)2+9,将Q(0,3)代入函数解析式,得4a+9=3,解得a=﹣,当顶点(2,﹣3)时,设抛物线的解析式为y=﹣(x﹣2)2﹣3;综上所述:抛物线的解析式为y=(x﹣2)2﹣3或y=﹣(x﹣2)2﹣3;(2)当抛物线的解析式为y=(x﹣2)2﹣3时,可平移得到抛物线的解析式为y=x2,y=(x﹣2)2﹣3的图象向左平移2个单位再向上平移3个单位得到抛物线的解析式为y=x2;当抛物线的解析式为y=﹣(x﹣2)2﹣3时不能平移得到抛物线的解析式为y=x2,理由如下:a不同,抛物线的开口方向不同,形状不同,平移不能使抛物线重合.【点评】本题考查了二次函数综合题,利用了直线的性质,待定系数求函数解析式,把抛物线的解析式设成顶点式是解题关键,要分类讨论,以防遗漏.图象平移的规律是:左加右减,上加下减.23.(1)问题背景如图①,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E,CE交直线BA于M.探究线段BD与CE的数量关系得到的结论是BD=2CE.(2)类比探索在(1)中,如果把BD改为△ABC的外角∠ABF的平分线,其他条件均不变(如图②),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(3)拓展延伸在(2)中,如果AB=AC,其他条件均不变(如图③),请直接写出BD与CE的数量关系为BD=CE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据角平分线的定义可得∠ABD=∠CBD,再利用“角边角”证明△BME和△BCE全等,根据全等三角形对应边相等可得CE=ME,再求出∠ADB=∠M,然后利用两角的正弦列式整理可得BD=CM,从而得证;(2)根据角平分线的定义可得∠1=∠2,再根据对顶角相等求出∠3=∠4,然后利用“角边角”证明△BME和△BCE全等,根据全等三角形对应边相等可得CE=ME,再求出∠D=∠M,然后利用两角的正弦列式整理可得BD=CM,从而得证;(3)根据(2)的求解思路解答即可.【解答】(1)解:∵BE是∠ABC的平分线,∴∠ABD=∠CBD,在△BME和△BCE中,,∴△BME≌△BCE(ASA),∴CE=ME,∵CE⊥BD,∠BAC=90°,∴∠ABD+∠M=90°,∠ADB+∠ABD=90°,∴∠ADB=∠M,∴sin∠ADB=sin∠M,即=,∵AB=AC,∴BD=CM,∴BD=2CE;(2)结论BD=2CE仍然成立.证明:∵BD是∠ABF的平分线,∴∠1=∠2,∵∠1=∠3,∠2=∠4,∴∠3=∠4,在△CBE和△MBE中,,∴△CBE≌△MBE(ASA),∴CE=ME,∴CM=2CE,∵∠D+∠DCM=∠M+∠DCM=90°.∴∠D=∠M,∴sin∠D=sin∠M,∴=,∵AB=AC,∴BD=CM=2CE;(3)解:同(2)可得=,∵AB=AC,∴BD=CM,∴BD=CE.故答案为:(1)BD=2CE;(3)BD=CE.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数,准确识图判断出全等的三角形是解题的关键利用锐角的正弦列式求解更简便.24.如图1,平面直角坐标系中,已知A(0,4),B(5,0),D(3,0),点P从点A出发,沿y轴负方向在y轴上以每秒1个单位长度的速度匀速运动,过点P作PE∥x轴交直线AD于点E.(1)设点P的运动时间为t(s),DE的单位长度为y,求y关于t的函数关系式,并写出t的取值范围;(2)当t为何值时,以EP为半径的⊙E恰好与x轴相切?并求此时⊙E的半径;(3)在点P的运动过程中,当以D,E,P三点为顶点的三角形是等腰三角形时,求此时t的值;(4)如图2,将△ABD沿直线AD翻折,得到△AB′D,连结B′O,如果∠AOE=∠BOB′,求t 值.(直接写出答案,不要求解答过程).【考点】一次函数综合题.【专题】压轴题.【分析】(1)由勾股定理求出AD,分两种情况,由平行线得出比例式求出AE,得出DE即可;(2)作EM⊥OD于M,则EM=4﹣t,由平行线得出比例式,得出PE=t,AE=t,当以EP为半径的⊙E恰好与x轴相切时,PE=EM,分两种情况:①当0<t<4时;②当t>4时;得出方程,解方程即可;(3)当0≤t≤4时,由PE=DE,得出方程,解方程即可;当t>4时,分三种情况:①当DP=DE=t ﹣5时,由勾股定理得出方程,解方程即可;②当PE=PD时,由勾股定理得出方程,解方程即可;③当PE=DE时,得出方程,解方程即可;即可得出结果;(4)设直线AD交BB′于F,连接BB′,则AF⊥BB′,证明△AOD∽△BFD,得出比例式求出BF=,得出BB′=,证明△AOE∽△BOB′,得出比例式求出AE=,即可得出t的值.【解答】解:(1)∵A(0,4),B(5,0),D(3,0),。

(完整版)2018年浙江省绍兴市中考数学试卷含答案解析,推荐文档

(完整版)2018年浙江省绍兴市中考数学试卷含答案解析,推荐文档

一、选择题1.如果向东走2m 记为+2m,则向西走3 米可记为()A. +3mB. +2mC. -3mD. -2m2.绿水青ft就是金ft银ft,为了创造良好的生态生活环境,浙江省2017 年清理河湖库塘淤泥约为116000000 方,数字116000000 用科学记数法可以表示为()A. 1.16×109B. 1.16×108C. 1.16×107D. 0.116×1093.有6 个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2 的概率是()A. B. C. D.5.下面是一位同学做的四道题①(a+b)2=a2+b2 ,②(2a2)2=-4a4 ,③a5÷a3=a2 ,④a3·a4=a12。

其中做对的一道题的序号是()A. ①B. ②C. ③D. ④6.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A. 当x<1,y 随x 的增大而增大B. 当x<1,y 随x 的增大而减小C. 当x>1,y 随x 的增大而增大D. 当x>1,y 随x 的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4,AB=1.6m,CO=1m,则栏杆C 端应下降的垂直距离CD 为()A. 0.2mB. 0.3mC. 0.4mD. 0.5m8.利用如图1 的二维码可以进行身份识别,某校建立了一个身份识别系统,图2 是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省绍兴市上虞市2018年中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为()A.3.50×102B.350×108C.3.50×1010D.3.50×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350亿有11位,所以可以确定n=11﹣1=10.【解答】解:350亿=35 000 000 000=3.50×1010.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.如图,小聪把一块含有60°角的直角三角形板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选:C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3 B.3,3 C.2,4 D.3、4【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a ﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.【解答】解:要计算7×9,左手应伸出手指:7﹣5=2(个);右手应伸出手指:9﹣5=4(个).故选:C.【点评】此题考查数字的变化规律.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选:C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【分析】根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【解答】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣5,CF=AF=(2a﹣5),OF=OA﹣AF=15﹣2a,∴点D(a,a),点C[15﹣2a,(2a﹣5)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(15﹣2a)×(2a﹣5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.二、填空题11.(5.00分)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(5.00分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A',则点A'关于原点对称的点A''的坐标为(﹣1,﹣3).【分析】直接利用平移的性质得出点A'的坐标,再利用关于原点对称点的性质得出答案.【解答】解:∵点A(2,3)向左平移一个单位得到点A',∴A′(1,3),∴点A'关于原点对称的点A''的坐标为:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了平移变换以及关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.13.(5.00分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.14.(5.00分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15.(5.00分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.(5.00分)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD,CE分别交OA,OB于点F,G,连结FG,则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是20;④OD=;其中正确的结论是①(填写所有正确结论的序号)【分析】①证明△CDB∽△FDO,列比例式得:=,再由D、E为OB的三等分点,则==2,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三角形面积的比等于相似③如图3,利用面积差求得:S△CFG比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论错误;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴=,=;∴S四边形DEGF所以③结论错误;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论错误;故本题结论正确的有:①;故答案为:①.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共8小题,共80分)17.(8.00分)(1)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1;(2)解不等式组:【分析】(1)根据零指数幂的意义、特殊角锐角三角函数、负整数指数幂的意义即可求出答案.(2)根据不等式组的解法即可求出答案.【解答】解:(1)原式=3+1﹣2×+3=6(2)由2x≥﹣9﹣x得:x≥﹣3,由5x﹣1>3(x+1)得:x>2∴该不等式组的解集为:x>2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(8.00分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是1部,中位数是2部,扇形统计图中“1部”所在扇形的圆心角为126度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【解答】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)条形统计图如图所示,(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【点评】本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.(8.00分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C作直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.【分析】(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∴∠DOC=∠BOC,∴CD=CB=2,∵ED=1,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.【点评】本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.20.(8.00分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【解答】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG=2.17,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.(10.00分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【分析】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点评】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.22.(12.00分)如图1,在四边形ABCD 中,如果对角线AC 和BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中, 矩形 一定是等角线四边形(填写图形名称); ②若M 、N 、P 、Q 分别是等角线四边形ABCD 四边AB 、BC 、CD 、DA 的中点,当对角线AC 、BD 还要满足 AC ⊥BD 时,四边形MNPQ 是正方形.(2)如图2,已知△ABC 中,∠ABC=90°,AB=4,BC=3,D 为平面内一点. ①若四边形ABCD 是等角线四边形,且AD=BD ,则四边形ABCD 的面积是 3+2;②设点E 是以C 为圆心,1为半径的圆上的动点,若四边形ABED 是等角线四边形,写出四边形ABED 面积的最大值,并说明理由.【分析】(1)①只有矩形的对角线相等,所以矩形是等角线四边形;②当AC ⊥BD 时,四边形MNPQ 是正方形,首先证明四边形MNPQ 是菱形,再证明有一个角是直角即可;(2)①如图2中,作DE ⊥AB 于E .根据S 四边形ABCD =S △ADE +S 梯形DEBC 计算,求出相关线段即可; ②如图3中,设AE 与BD 相交于点Q ,连接CE ,只要证明当AC ⊥BD 且A 、C 、E 共线时,四边形ABED 的面积最大即可.【解答】解:(1)①在“平行四边形、矩形、菱形”中, ∵矩形的对角线相等, ∴矩形一定是等角线四边形, 故答案为矩形.②当AC ⊥BD 时,四边形MNPQ 是正方形. 理由:如图1中,∵M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,∴PQ=MN=AC,PN=QM=BD,PQ∥AC,MQ∥BD,∵AC=BD,∴MN=NP=PQ=QM,∴四边形MNPQ是菱形,∵∠1=∠2,∠2=∠3,∠1=90°,∴∠3=90°,∴四边形NMPQ是正方形.故答案为AC⊥BD.(2)①如图2中,作DE⊥AB于E.在Rt△ABC中,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AD=BD,DE⊥AB,∴AE=BE=2,∵四边形ABCD是等角线四边形,∴BD=AC=AD=5,在Rt△BDE中,DE==,=S△ADE+S梯形DEBC∴S四边形ABCD=•AE•DE+•(DE+BC)•BE=×+(+3)×2=3+2.故答案为3+2.②如图3中,设AE与BD相交于点Q,连接CE,作DH⊥AE于H,BG⊥AE于G.则DH≤DQ,BG≤BQ,∵四边形ABED是等角线四边形,∴AE=BD,=S△ABE+S△ADE=•AE•DH+•AE•BG=•AE•(GB+DH)≤•AE•(BQ+QD),∵S四边形ABED≤AE•BD,即S四边形ABED∴当G、H重合时,即BD⊥AE时,等号成立,∵AE=BD,≤AE2,∴S四边形ABED即线段AE最大时,四边形ABED的面积最大,∵AE≤AC+CE,∴AE≤5+1,∴AE≤6,∴AE的最大值为6,∴当A、C、E共线时,取等号,∴四边形ABED的面积的最大值为×62=18.【点评】本题考查四边形综合题、中点四边形、三角形中位线定理、正方形的判定和性质、圆等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,会求圆上一点到圆外一定点的距离的最大值或最小值,属于中考压轴题.23.(12.00分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD 为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,=AD•DC=AC•DQ,∵S△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.24.(14.00分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;;当点Q在线段OA上,且点P在线段CB的延长线上时,由相(4)当点Q在线段OA上时,S=S△CPQ=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S与t的关系似三角形的性质可用t表示出AM的长,由S=S四边形BCQM式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而,可求得答案.可表示出BM,S=S△CBM【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;∴S=S四边形BCQM当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.一、选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.杭绍台城际铁路的建设,使浙江南北联通更加紧密,迎来“高铁时代”,该铁路总投资350亿元.将350亿用科学记数法表示为().50×1011。

相关文档
最新文档