meta分析范文展示
《2024年Meta分析系列之六_间接比较及网状分析》范文
《Meta分析系列之六_间接比较及网状分析》篇一Meta分析系列之六_间接比较及网状分析Meta分析系列之六:间接比较及网状分析一、引言Meta分析是一种统计技术,用于整合和分析多个独立研究的结果。
在医学、社会科学和许多其他领域中,Meta分析已成为一种重要的研究方法。
随着研究的不断深入,间接比较及网状分析(Network Meta-analysis, NMA)逐渐成为Meta分析的重要分支。
本文将详细介绍间接比较及网状分析的原理、方法、应用及高质量范文的撰写要点。
二、间接比较及网状分析的原理和方法1. 原理间接比较是一种通过比较多个研究之间的差异来评估不同干预措施效果的方法。
而网状分析则是在间接比较的基础上,通过构建网络图来展示不同干预措施之间的直接和间接比较结果。
NMA可以同时评估多个干预措施的效果,并比较它们之间的优劣。
2. 方法(1)文献检索与筛选:根据研究目的,制定明确的文献检索策略,筛选出符合纳入标准的文献。
(2)数据提取与整理:从选定的文献中提取所需数据,包括研究设计、样本量、干预措施、结局指标等,并整理成可用于NMA的格式。
(3)构建网络图:根据提取的数据,构建干预措施之间的网络图,展示各干预措施之间的直接和间接比较关系。
(4)统计分析:采用适当的统计模型进行NMA,计算各干预措施的效果估计值和置信区间。
(5)结果解读:根据统计结果,解读各干预措施的效果及优劣,并给出结论。
三、间接比较及网状分析的应用NMA在医学、社会科学等领域具有广泛的应用价值。
例如,在医学领域,NMA可以用于评估不同药物、手术和非药物治疗方法的效果,为临床决策提供依据。
在社会科学领域,NMA可以用于评估不同政策、教育方法和培训项目的效果,为政策制定和项目实施提供参考。
四、高质量范文的撰写要点1. 引言:简要介绍Meta分析和NMA的背景、目的和意义。
2. 研究方法:详细描述文献检索策略、纳入排除标准、数据提取和整理方法、NMA的统计模型等。
《2024年Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件》范文
《Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件》篇一Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件Meta 分析系列之五:贝叶斯Meta分析与WinBUGS软件一、引言Meta分析作为一种综合分析多个独立研究结果的方法,在社会科学、医学、心理学等领域得到了广泛应用。
其中,贝叶斯Meta分析以其独特的统计方法和灵活的模型设定,在处理复杂数据时具有显著优势。
本文将详细介绍贝叶斯Meta分析的原理、方法和应用,并使用WinBUGS软件进行实例操作。
二、贝叶斯Meta分析概述1. 贝叶斯Meta分析原理贝叶斯Meta分析是基于贝叶斯统计方法,结合先验信息和样本信息,通过计算后验分布来评估效应量。
相较于传统的Meta分析方法,贝叶斯Meta分析在处理不确定性时更具优势,能更好地融合多个研究结果。
2. 贝叶斯Meta分析的优势(1)能够考虑样本之间的相关性;(2)能更全面地评估研究结果的不确定性;(3)可提供更为直观的效应量估计值。
三、WinBUGS软件介绍WinBUGS(Wine and Beaujolais/Gamma University BUGS)是一款常用的贝叶斯统计分析软件,广泛应用于生物医学、公共卫生等领域。
该软件支持多种模型设定和算法优化,可实现贝叶斯Meta分析等多种统计分析。
四、WinBUGS软件在贝叶斯Meta分析中的应用1. 数据准备与模型设定在WinBUGS软件中,首先需要准备好相关数据,并设定合适的模型。
这包括定义效应量、设置先验分布和设定随机效应模型等。
根据实际情况选择适当的模型是保证分析结果准确性的关键。
2. 运行程序与分析结果设定好模型后,使用WinBUGS软件进行计算和分析。
程序会生成后验分布、效应量估计值等统计量,并可绘制出相应的统计图。
通过分析这些结果,可以得出研究结论。
五、实例操作与结果解读以某项医学研究为例,我们将使用WinBUGS软件进行贝叶斯Meta分析。
《2024年Meta分析系列之十五_Meta分析的进展与思考》范文
《Meta分析系列之十五_Meta分析的进展与思考》篇一Meta分析系列之十五_Meta分析的进展与思考Meta分析系列之十五:Meta分析的进展与思考一、引言Meta分析,作为一种重要的文献综述和定量数据分析方法,自其诞生以来就广泛应用于多学科研究领域。
本篇文章旨在回顾Meta分析的进展,并对未来发展趋势进行思考。
二、Meta分析的起源与定义Meta分析最早源于科学哲学中对于研究的评价与总结。
在现代科研中,Meta分析主要指通过对已发表或未发表的研究进行统计整合,从而对特定研究问题得出更为准确和可靠的结论。
它强调的是对现有文献的二次分析,有助于对已有研究结果进行验证和扩展。
三、Meta分析的进展(一)研究方法的不断完善随着Meta分析的广泛应用,其研究方法也在不断发展和完善。
从最初的简单统计整合,到现在的多变量分析、贝叶斯Meta分析等,Meta分析的适用范围和深度都在不断扩大。
(二)跨学科应用Meta分析在多个学科领域都得到了广泛应用,如心理学、医学、社会学等。
它能够综合不同领域的研究成果,为解决复杂问题提供新的思路和方法。
(三)大数据与Meta分析的结合随着大数据时代的到来,Meta分析与大数据的结合成为了新的研究趋势。
通过对海量的文献数据进行Meta分析,可以更加准确地得出研究结论。
四、Meta分析的思考(一)可靠性问题尽管Meta分析能够综合多篇文献,提供较为准确的研究结论,但其在数据处理和分析过程中仍可能存在误差和偏倚。
因此,在运用Meta分析时,要重视研究设计、数据采集、分析方法等环节的可靠性问题。
(二)数据来源的多样性在进行Meta分析时,要充分考虑数据来源的多样性。
不同来源的数据可能存在差异,这可能会对研究结果产生影响。
因此,在整合数据时,要充分考虑数据来源的差异性和影响程度。
(三)伦理与法律问题在进行Meta分析时,需要关注伦理和法律问题。
例如,在处理涉及个人隐私和知识产权的数据时,要遵守相关法律法规和伦理规范。
《2024年Meta分析系列之二_Meta分析的软件》范文
《Meta分析系列之二_Meta分析的软件》篇一Meta分析系列之二_Meta分析的软件Meta分析系列之二:Meta分析的软件一、引言Meta分析作为一种综合性的文献研究方法,已经在多个学科领域中得到了广泛的应用。
然而,Meta分析的过程涉及到大量的数据整理、统计分析等工作,这就需要借助专业的软件来辅助完成。
本文将重点介绍Meta分析的软件,以及如何利用这些软件提高Meta分析的质量。
二、Meta分析软件概述1. 常用Meta分析软件目前,市面上有很多用于Meta分析的软件,如Comprehensive Meta Analysis (CMA)、Review Manager (RevMan)、Stata等。
这些软件在功能、操作等方面有所不同,但都能有效地支持Meta分析的过程。
2. 软件功能特点(1) Comprehensive Meta Analysis (CMA):CMA是一款功能强大的Meta分析软件,支持多种统计模型,如固定效应模型、随机效应模型等。
同时,CMA还提供了丰富的图形工具,有助于研究者直观地了解分析结果。
(2) Review Manager (RevMan):RevMan是Cochrane协作网推出的专门用于系统评价和Meta分析的软件。
RevMan操作简便,界面友好,适合初学者使用。
(3) Stata:Stata是一款强大的统计分析软件,也支持Meta分析。
Stata的语法较为复杂,但功能丰富,适合有一定统计学基础的研究者使用。
三、软件使用方法及注意事项1. 选择合适的软件在选择Meta分析软件时,应根据自己的需求、经验水平以及软件的功能特点进行综合考虑。
对于初学者,建议选择操作简便、界面友好的软件;对于有一定统计学基础的研究者,可以选择功能更强大、灵活性更高的软件。
2. 严格按照软件操作指南进行操作在使用Meta分析软件时,应严格按照软件操作指南进行操作,避免因操作不当导致分析结果出现偏差。
《2024年Meta分析系列之十五_Meta分析的进展与思考》范文
《Meta分析系列之十五_Meta分析的进展与思考》篇一Meta分析系列之十五_Meta分析的进展与思考Meta分析系列之十五:Meta分析的进展与思考一、引言随着科学研究的深入发展,Meta分析作为一种重要的统计方法,逐渐在各个领域中发挥着越来越重要的作用。
本文旨在探讨Meta分析的进展,以及在当代科学研究中的思考与应用。
二、Meta分析的概述Meta分析,即元分析,是一种利用统计方法对多个独立研究结果进行综合分析的方法。
它通过对不同研究结果进行量化评估和合并,从而得出更可靠、更全面的结论。
Meta分析在许多领域都有广泛的应用,如医学、心理学、社会科学等。
三、Meta分析的进展(一)方法论的完善随着Meta分析的不断发展,其方法论得到了进一步的完善。
在研究设计、数据采集、统计分析等方面,都出现了更多的方法和工具。
例如,通过系统评价和文献计量学的方法,可以更全面地收集和筛选相关研究;通过随机效应模型等统计方法,可以更准确地评估不同研究结果之间的异质性。
(二)应用领域的拓展Meta分析的应用领域不断扩大,不仅在医学、心理学、社会科学等领域得到广泛应用,还在生物学、计算机科学等领域得到尝试。
这表明Meta分析具有广泛的应用前景和潜力。
(三)与其他方法的结合Meta分析可以与其他统计方法相结合,如系统评价、网络元分析等,从而更好地解决实际问题。
此外,随着大数据和人工智能技术的发展,Meta分析与这些技术的结合也将为科学研究带来更多的可能性。
四、对Meta分析的思考(一)研究质量的保证在进行Meta分析时,需要保证所纳入的研究质量可靠。
这需要对研究的设计、数据采集、统计分析等方面进行全面评估。
同时,还需要注意研究间的异质性,避免因异质性过大而影响结果的可靠性。
(二)结果解读的准确性在进行Meta分析时,需要准确解读结果。
这需要对统计方法和结果进行深入理解,避免误解或误用。
同时,还需要注意结果的适用范围和局限性,避免过度解读或滥用结果。
meta分析范文展示
The effect of fructose consumption on plasma cholesterol in adults: a meta-analysis of controlled feeding trials1,2,3Tao An4,5, Rong Cheng Zhang4,5, Yu Hui Zhang4, Qiong Zhou4, Yan Huang4, Jian Zhang4, *.4 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China5Tao An and Rong Cheng Zhang contributed equally to this study.3 Supplemental Table 1 and supplemental Figures 1-4 are available as Online Supporting Material with the online posting of this paper at RUNNING TITLE: Fructose and cholesterolWORD COUNT: 5618; NUMBER OF FIGUREA: 3; NUMBER OF TABLES: 2 SUPPLEMENTARY MATERIAL: Online Supporting Materials: 5AUTHOR LIST FOR INDEXING: An, Zhang, Zhang, Zhou, Huang, Zhang1 The study was supported by the Ministry of Science and Technology of China with grant of the National High-tech Research and Development Program of China to Dr Jian Zhang.2 Author disclosures: T. An, R.C. Zhang, Y.H. Zhang, Q. Zhou, Y. Hung, J. Zhanghave no conflicts of interest.* To whom correspondence should be addressed. Mailing address: Heart FailureCenter, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, 167 Beilishilu, Beijing, China; Zip code: 100000; Telephone number: 86-10-88396180; Fax number: 86-10-88396180; E-mail: Fwzhangjian62@PROSPERO REGISTRATION NUMBERS: CRD420120033511ABSTRACT2Fructose is widely used as a sweetener in production of many foods, yet the relation 3between fructose intake and cholesterol remains uncertain. We performed a systematic 4review and meta-analysis of human controlled feeding trials of isocaloric fructose 5exchange for other carbohydrates to quantify the effects of fructose on total 6cholesterol (TC), LDL cholesterol (LDL-C), and HDL cholesterol (HDL-C) in adult 7humans. Weighted mean differences were calculated for changes from baseline 8cholesterol concentrations by using generic inverse variance random-effects models. 9The Heyland Methodological Quality was used to assess study quality. Subgroup 10analyses and meta-regression were conducted to explore possible influence of study 11characteristics. Twenty-four trials (with a total of 474 subjects) were included in our 12meta-analysis. In an overall pooled estimate, fructose exerted no effect on TC, LDL-C 13and HDL-C. Meta-regression analysis indicated that fructose dose was positively 14correlated with the effect sizes of TC and LDL-C. Subgroup analyses showed that 15isocaloric fructose exchange for carbohydrates could significantly increase TC by 1612.97 mg/dL (95%CI: 4.66, 21.29; P = 0.002) and LDL-C by 11.59 mg/dL (95%CI: 174.39, 18.78; P = 0.002) at >100g fructose/d but had no effect on TC and LDL-C when 18fructose intake was ≤100g/d. In conclusion, very high fructose intake (>100g/d) 19could lead to significantly increase in serum LDL-C and TC. Larger, longer and 20higher-quality human controlled feeding trials are needed to confirm these results.21Key words: fructose, cholesterol, meta-analysis2223INTRODUCTION24Hyperlipidemia is a common risk factor for coronary heart disease (CHD), with 2544.4% of adults in the United States having abnormal TC values and 32% having 26elevated LDL-C levels (1). Compared to subjects with normal blood lipid, those with 27hyperlipidemia have a 3-fold risk of heart attacks (2). Lifestyle modification should be 28initiated in conjunction both primary and secondary prevention of CHD. More 29consideration exists as to what constitutes healthy eating.30Fructose is the most naturally occurring monosaccharide, and has become a major 31constituent of our modern diet. Fruit, vegetables, and other natural sources provide 32nearly one-third of dietary fructose, and two-thirds come from beverages and foods in 33the diets (eg, candies, jam, syrups, etc) (3). Fructose is preferred by many people, 34especially those with diabetes mellitus because of its low glycemic index (23% versus 35glucose 100%) (4). After intestinal uptake, fructose is mainly removed from the blood 36stream by the liver in an insulin-independent manner, and is used for intrahepatic 37production of glucose, fatty acids or lactate. Cross-sectional studies in human suggest 38that excessive fructose consumption can lead to adverse metabolic effects, such as 39dyslipidemia and increased visceral adiposity (5-7). The Dietary Guidelines for 40Americans, 2010, point out that it is lack of sufficient evidence to set a tolerable upper 41intake of carbohydrates for adults (8). Although The Candian Diabetes Association 42suggests consumption of no more than 60g of added fructose per day by people with 43diabetes for its triglyceride-raising effect (9), the threshold dose of fructose at which 44the adverse influence on cholesterol is controversial.45To determine the effect of fructose on cholesterol, a substantial number of clinical 46trials have been performed on adult humans with different health status (diabetic, 47obese, overweight, hyperinsulinemic, impaired glucose-tolerant and healthy). These 48trials used various intake levels of fructose and different protocols. Thus, it is difficult 49to reach a consistent conclusion across these studies. Therefore, we conducted a 50systematic review of the scientific literature and meta-analysis of controlled feeding 51trials to evaluate the effect of isocaloric oral fructose exchange for carbohydrates on 52cholesterol and to clarify the active factors of fructose.53Materials and Methods54This meta-analysis followed the Preferred Reporting Items for Systematic Reviews 55and Meta-analyses (PRISMA) criteria (10).56Search strategy.We searched PubMed (/pubmed; from 571966 to December 2012), Embase (; from 1966 to December 582012) and the Cochrane Library database () by using the 59following search terms: fructose and (lipemia or lipaemia or lipids or cholesterol or 60“total cholesterol”or “LDL cholesterol” or “HDL cholesterol”) in English. We also 61searched China National Knowledge Infrastructure () and Wangfang 62database () in Chinese according to the search strategy. The 63search was restricted to reports of trials on humans.64Study selection.All clinical trials using fructose and indexed within the above 65databases were collected. Two independent reviewers (T.A., R.C.Z) screened the 66abstracts and titles for initial inclusion. If this was not sufficient, full texts articles 67were obtained and reviewed by at least two independent reviewers (T.A., R.C.Z, Q.Z., 68Y.H.). The reference lists of retrieved articles also used to supplement the database.69Any disagreements were resolved through discussion. We included controlled feeding 70trials investigating the chronic effect of fructose on blood cholesterol, from both 71randomized and nonrandomized studies, if they met the following criteria: subjects 72must have been administered fructose for at least 2 weeks; studies investigated the 73effect of oral free (unbound, monosaccharide) fructose when compared with isocaloric 74control diet with another carbohydrate in place of fructose; studies were performed in 75human adults with either a parallel or crossover design; subjects in both experimental 76groups and control groups were instructed to consume isocaloric diets. If the study 77reported any comparisons, we included all such comparisons in the meta-analysis.78Data extraction and quality assessment.Two reviewers (T.A., R.C.Z) independently 79extracted relevant data from eligible studies. Disagreements were resolved by one of 80the two authors (Y.H.Z., J.Z.). These data included information on study features 81(author, year of publication, study design, randomization, blinding, sample size, 82comparator, fructose form, dose, follow-up and macronutrient profile of the 83background diet), participant characteristics (gender, age and healthy status) and 84baseline and final concentrations or net changes of total cholesterol, LDL-C and 85HDL-C. Data initially extracted were converted to system international unit (eg, TC: 1 86mmol/L converted to 38.6 mg/dL). For multi-arm studies, only intervention groups 87that met inclusion criteria were used in this analysis. If blood lipid concentrations 88were measured several times at different stages of trials, only final records of lipid 89concentrations at the end of the trials were extracted for this meta-analysis.90The quality of each study was assessed with the Heyland Methodological Quality 91Score (MQS) (11), generalized as follows: randomization; analysis; blinding; patient 92selection; comparability of groups at baseline; extent of follow up; treatment protocol;93co-intervention; outcomes. The highest score for each area was two points. Higher 94numbers represented a better quality (MQS≥8).95Data synthesis.Statistical analyses were performed with Stata software (version 11.0;96StataCorporation, TX, USA) and REVMAN software (version 5.2; Cochrane 97Collaboration, Oxford, United Kingdom). Separate pooled analyses were conducted 98by using the generic inverse variance random-effects models even where there was no 99evidence of between-study heterogeneity because these models give more 100conservative summary effect estimates in the presence of undetected residual 101heterogeneity than fixed-effects models. The different changes from baseline between 102fructose and carbohydrate comparators for total cholesterol, LDL cholesterol and 103HDL cholesterol were used to estimate the principle effect. We applied paired 104analyses to all crossover trials according to the methods of Elbourne and colleagues 105(12). Weighted mean differences of fructose consumption on cholesterol 106concentrations and corresponding 95% CIs were calculated. A 2-sided P value <0.05 107was set as the level of significance for an effect. The variances for net changes in 108serum cholesterol were only reported directly in two trials (29, 31). We calculate net 109changes for other studies by using the means±SDs cholesterol concentrations at 110baseline and at the end of intervention period (13). SDs were calculated from SEs 111when they were not directly given. If these data were unavailable, we extrapolated 112missing SDs by borrowing SDs derived from other trials in this meta-analysis (14). In 113addition, we assumed a conservative degree of correlation of 0.5 to impute the 114change-from-baseline SDs, with sensitivity analyses performed across a range of 115possible correlation coefficients (0.25 and 0.75) (13). For crossover trials in which 116only final measurements were included, the differences in mean final measurements 117were assumed on average to be the same as the differences in mean change scores 118(13). Inter-study heterogeneity was tested by the Cochrane’s Q-test (P < 0.1), and was 119quantified by the I2statistic, where I2 ≥ 50% was evidence of substantial heterogeneity. 120To explore the potential effects of factors on the primary outcomes and investigate the 121possible sources of heterogeneity, we performed meta-regressions and predefined 122subgroup analyses stratified by comparator, dose, study duration, randomization, 123health status, study design and study quality. As for studies used a range of fructose 124doses, the average doses calculated on the basis of the average reported energy intake 125or weight of participants (28.5 calories per kilogram of body weight). Sensitivity 126analyses were also performed according to the Cochrane Handbook for Systemic 127Review. Funnel plots and Egger’s linear regression test were conducted to detect 128publication bias.129RESULTS130Based on our search criteria, 1602 eligible studies were identified, and 1565 131studies were excluded on review of the titles and abstracts. The remaining 37 studies 132were retrieved and fully reviewed. Fifteen of these did not meet the inclusion criteria 133and were excluded in the final analysis. A total of 22 studies (providing data for 24 134trials) involving 474 subjects (15-36) were included in the meta-analysis 135(Supplemental Fig. 1, Table 1).136The reports of Koh and Reiser (22, 23) included two trials (bringing the total 137number of trials to 24). Eleven trials were randomized (17, 18, 20, 21, 25, 27-29, 31, 13834, 36). Nineteen trials used crossover (15-19, 21-32), and five used parallel designs 139(20, 33-36). As for the 19 cross-over trials, 10 trials have reported the washout period 140(16, 18, 22, 25, 27-31), 9 trials did not have washout period (15, 17, 19, 21, 23, 24, 26, 14132). The trials varied in size, from 8 to131 subjects. The mean age of trial participants 142ranged from 26.7 to 64.4 years. Seventeen trials (15, 17-23, 25, 27, 28, 30, 31, 34, 36) 143were performed in outpatient settings, 3 trials (26, 29, 32) in inpatient settings, and 4 144trials in both outpatient and inpatient settings (16, 24, 33, 35). Nine trials were 145conducted on diabetic subjects (19-21, 24-27, 29, 30), 8 trials in healthy subjects (17, 14618, 22, 23, 28, 31, 34, 35), 3 trials in overweight/obese subjects (32, 33, 36), 2 trials in 147hyperinsulinemic subjects (16, 23), 1 trial in those who were impaired 148glucose-tolerant (22), and 1 trial in subjects with type IV hyperlipoproteinaemia (HLP) 149(15). Background diets were 42-55% carbohydrate, 25-38% fat, and 13-20% protein. 150The carbohydrate comparators choose starch in 13 trials (15, 16, 21, 23-25, 27-30, 32, 15136), glucose in 6 trials (22, 31, 33-35), sucrose in 3 trials (17, 18, 26), and mixed 152carbohydrates in two trials (19, 20). Four trials used fructose in crystalline (16, 18, 20, 15321), 5 trials in liquid (19, 32-35), and 15 trials in mixed form (15, 17, 22-31). The 154reported mean baseline serum TC ranged from 170 to 230.8 mg/dl, LDL-C ranged 155from 90.7 to 157 mg/dl, and HDL-C ranged from 35.1 to 57.1 mg/dl. Nineteen trials 156reported the fructose intake among background diet was not different between the 157fructose and control groups, in which 15 trials reported the background fructose intake 158account for ≤3% of total energy (9 to 24g) (15-23, 29, 32, 33, 35), while 4 trials did 159not report the proportion of it (24, 25, 26, 34). Four trials used background fructose ≤3% 160(3.2 to 18g) of total energy in the control groups, but put total fructose into 161consideration in the fructose group (27, 28, 30-31). Only o ne trial reported less than 16220g (4.3 % of total energy) fructose was consumed among basal diet (36). The baseline 163values were not provided in 5 trials (19, 22, 23). The median fructose dose in the 164available trials included in our meta-analysis was 79.25 g/d (range: 30-182 g/d), and 165the duration varied from 2 to 26 weeks.166The quality scores of each study ranged from 6 to 9. Fifteen trials were classified 167as high quality (MQS≥8),and 8 trials were of low quality (17, 19, 26, 30, 32-35). 168Only three trials were blinded, one single-blinded (34) and 2 double-blinded (29, 35). 169Eight trials (19, 21, 24, 26-30) received industry funding. Three studies with four 170trials (15, 16, 22) did not report any information about financial conflicts of interest. 171Effect of fructose on cholesterol172Total cholesterol.Twenty-two trials (16-34, 36) reported the value of TC, and the 173pooled estimate was 2.47 mg/dL (95% CI: -3.04, 7.98; P = 0.38) without statistically 174heterogeneity (heterogeneity Chi2 = 28.14, I2= 25%, P = 0.14) (Fig. 1). The residual 175sources of heterogeneity were investigated by meta-regression models. Univariate 176meta-regression showed that the fructose dose was positively related to TC, even after 177adjusted for study duration and health status(regression coefficient = 0.18; 95% CI: 1780.06, 0.31, P = 0.008)(Table 2). The dose-response relation between fructose 179consumption and TC largely explained the residual heterogeneity of the effect. 180Subsequently, we stratified fructose dose ≤60, >60 to 100, and >100 as moderate, 181high, and very high, respectively, according to Candian Diabetes Association and 182reference ranges for fructose (9, 37, 38). Fructose could significantly increase TC by 18312.97 mg/dL (95%CI: 4.66, 21.29; P= 0.002) when fructose intakes were >100g/d 184but had no effect on TC if fructose was given lower than 100g. Predefined subgroup 185analyses were conducted by study characteristics (Supplemental Table 1). Sensitivity 186analyses according to possible correlation coefficients (0.25 and 0.75) and 187systematically removal of each individual trial did not alter the overall analysis and 188analyses stratified by dose.189LDL cholesterol.The mean change for LDL cholesterol in nineteen trials (15, 16, 18, 19020, 22, 23, 25-35) was 3.76 mg/dL (95% CI: -1.07, 8.6; P = 0.13) without statistically 191heterogeneity (heterogeneity Chi2 = 19.85, I2= 9%, P = 0.34) (Fig. 2). The residual 192sources of heterogeneity were investigated by meta-regression models. Univariate 193meta-regression showed that the fructose dose was positively related to LDL-C, even 194after adjusted for comparators, study duration and health status(regression coefficient 195= 0.15; 95% CI: 0.03, 0.28, P = 0.02)(Table 2). The dose-response relation between 196fructose consumption and LDL-C largely explained the residual heterogeneity of the 197effect. We stratified fructose dose according to CDA and reference ranges for fructose 198(9, 37, 38). Fructose intake >100g/d could significantly increase LDL-C by 11.59 199mg/dL (95%CI: 4.39, 18.78; P= 0.002). Predefined subgroup analyses were 200conducted by other study characteristics (Supplemental Table 1). Sensitivity analyses 201across possible correlation coefficients (0.25 and 0.75) did not alter the overall 202analysis and analyses stratified by dose. The removal of Cybulska et al resulted in a 203significant LDL-C-raising effect in the overall analysis (P = 0.03).204HDL cholesterol.The result of HDL cholesterol was calculated based on 24 trials 205(15-36), the mean difference was -0.56 mg/dL (95% CI: -2.05, 0.93; P = 0.46) without 206heterogeneity (heterogeneity Chi2 = 21.85, I2= 0%, P= 0.53) (Fig. 3). 207Meta-regression analysis did not show significant effect modifier of HDL-C. 208Predefined subgroup analyses were conducted by study characteristics (Supplemental 209Table 1). Sensitivity analyses according to possible correlation coefficients (0.25 and 2100.75) and systematically removal of each individual trial did not alter the overall 211analysis.212Publication bias213Funnel plots and Egger’s test indicated no significant publication bi as in the 214meta-analyses of TC, LDL cholesterol, and HDL cholesterol (TC Egger’s test: P= 2150.881; LDL cholesterol Egger’s test: P= 0.815; HDL cholesterol Egger’s test: P= 2160.484) (Supplemental Figs. 2-4).217DISCUSSION218This meta-analysis of 24 controlled feeding trials with 477 subjects found no 219effect on TC, LDL-C and HDL-C when fructose was substituted for other 220carbohydrates. Residual heterogeneity was detected by meta-regression for this 221outcome that fructose dose was positively correlated with the effect sizes of TC and 222LDL-C.223The present meta-analysis is consistent with a prospective 2-year trial on chronic 224effect of fructose from Turku sugar studies XI, which did not report any change in 225cholesterol for those individuals who consumed more than 100g fructose/d (39). 226Aeberli et al reported another prospective, randomized, 3-week controlled crossover 227trial in which healthy young men were fed 80 g/d free fructose, and found a 228significant atherogenic LDL subclass distribution (40). However, there was an average 229of 34g combined fructose consumed among basal foods in this study, which meant 230subjects consumed fructose over 110g/d. The median dose of fructose available in our 231meta-analysis was ≈79.25 g/d, it was higher than 90th percentile (78 g/d) and lower 232than 95th percentile (87 g/d) in the United States, reported by the National and Health 233and Nutrition Examination Survey III (41). As for subjects with diabetic mellitus, 234Sievenpiper et al did not report cholesterol-raising effect if the fructose dose was >60 235g/d (median: 97.5 g/d) in their meta-analysis (42). The result of our study and 236intervention trials may be supported the idea that fructose did not increase cholesterol 237for the subjects with generalizable levels of exposure.238The results of subgroup analyses showed that the effects of fructose intake on TC 239and LDL-C were significant as the fructose dose > 100g/d. An intake of 100g/d is 240approximately equal to 400kcal/d or 20% of energy intake for a sedentary person with 241an energy requirement of 2000 kcal/d. The doses for cholesterol-raising effect account 242for less than 10 percent of intake in males and females aged 19 to 22 years, the group 243with the highest level of exposure in the United States (41). Another study found that 244the upper quintile of Americans consume more than 110g fructose daily as added 245sugar or as high-fructose corn syrup (43). Although a small number of people 246consume fructose at very high dose, it is necessary to advise them to change their 247lifestyle.248The dose-dependent effect on triglyceride was also reported in a recent 249meta-analysis that concluded the same dose threshold of 100g/d for a 250triglyceride-increasing effect of fructose on fasting triglyceride level in adult humans 251(38). For healthy subjects who consumed 150g of fructose/day, endogenous 252cholesterol synthesis and the fat content of viscera and liver have been shown to 253increase (44). All evidences have proved that fructose is proposed to have adverse 254effects at very high or excessive doses. The mechanism of the cholesterol increase by 255fructose might be due to increased levels of advanced glycation end products, which 256cause damage to LDL and make it poorly recognized by lipoprotein receptors and 257scavenger receptors (45). Furthermore, excess exposure to fructose can damage the 258function of adipocytes and may reduce the recycling of cholesterol extracted from 259serum LDL. Studies have shown that elevated uric acid might contribute to LDL-C 260increases, and this effect can be reduced by allopurinol (46).261Based on the composition of added sugars in the United States where the fructose: 262glucose ratio is close to 0.43, and the NHANES 1999–2004 estimates (41), the 263increase of fructose consumption is always accompanied with an increase in total 264energy intake. Persons consuming >100g/d of sugars are potentially eating in excess 265of their energy requirement (47), and then overweight and obesity could result. So we 266can not suggest that it is safe to only limit fructose to <100g/d in coronary heart 267disease management and prevention. It may need to take into account the other 268components of foods that accompany the fructose. This dose threshold effects on TG 269and LDL-C can only help better inform nutritional guidance and avoid inappropriate 270marketing of carbohydrates.271Our meta-analysis did not show significant effect of fructose on HDL-C. 272However, Perez-Pozo et al (46) reported a significant HDL-C-lowing effect in 74 273adult men fed with 200g fructose/d in a randomized, 2-week crossover trial, 274suggesting that excessive fructose dose intake can also affect HDL-C. Further trials 275are needed to find the threshold of fructose on HDL-C.276There are several limitations to our work. First, many trials had a relatively small 277sample size, and most of them were funded by industry which can affect the quality of 278studies. Second, the change of fructose in the background diet can affect the practical 279utility of the outcomes of meta-analyses. However, most of trials used the background 280diet with ≤ 3% of total energy derived from fructose (15-23, 27-33, 35), others trials 281did not report the proportion of fructose in the background (24, 25, 26, 34). It was 282hard to make sure the dose of background fructose in every trial. Third, the data 283provided by Reiser et al (23) must be interpreted with caution. Although this study 284met all of our inclusion criteria, they choose a low P:S (polyunsaturated : saturated) 285rate of the fat as the background diet, which might change the metabolism of fructose 286as diets high in saturated fatty acids can enhance intestinal fructose absorption (48). 287Fourth, some of included trials lack test statistics, baseline values and SDs. We 288overcame these problems according to the methods proposed by Cochrane Handbook 289for Systematic Reviews of Interventions. Finally, it is difficult to differentiate effects of 290other modifiers, such as exercise and age, from those included trials. These factors can 291also influence the final result. Fructose can indeed be metabolized during exercise, 292and the rate of metabolism is different between exercise and sedentary lifestyle. Most 293of participants were requested to follow a designed regiment at home, but it is not 294easy to maintain the activity intensity. On the plus size, the age of participants in our 295meta-analysis ranged from 18 to 72 years old. Evidence from animal experiments 296shows that fructose absorption may affected by age, as older rats showed decreased 297fructose absorption (49). However, no human trial has been done to assess the 298difference in fructose effect among different age groups. Therefore, further studies 299should attempt to limit or isolate the degree of heterogeneity present in the study 300population to better assess the effect of age.301In conclusion, our meta-analysis shows that fructose used as a sweetener in 302isocaloric exchange for other carbohydrates has significant increasing effects on TC 303and LDL-C in individuals with very high fructose (>100g). This effect seems not to be 304dose-dependent when fructose is given at moderate or high dose of fructose (<100g). 305Further studies should concentrate on larger, longer and higher-quality human 306controlled feeding trials, which provide a better assessment of the effect of fructose on 307cholesterol.308Acknowledgements309Tao An, Rong Cheng Zhang and Jian Zhang designed the research; Tao An, Rong 310Cheng Zhang, Yu Hui Zhang and Jian Zhang preformed the research; Tao An and 311Rong Cheng Zhang summarized the data and had primary responsibility for the 312accuracy of the analysis; Rong Cheng Zhang wrote the manuscript. All the authors 313had full access to the data. None of the authors declared a conflict of interest.314。
《2024年Meta分析系列之六_间接比较及网状分析》范文
《Meta分析系列之六_间接比较及网状分析》篇一Meta分析系列之六_间接比较及网状分析Meta分析系列之六:间接比较及网状分析一、引言Meta分析作为一种综合分析多个研究结果的方法,被广泛应用于医学、社会科学等多个领域。
随着研究的不断深入,间接比较及网状分析作为Meta分析的重要组成部分,其重要性日益凸显。
本文将介绍间接比较及网状分析的原理、方法、应用及其在实践中的高质量范式的撰写。
二、间接比较及网状分析的原理和方法1. 原理间接比较是指在多个研究之间无法直接进行比较时,通过某种方法对研究结果进行间接比较的过程。
网状分析则是一种基于贝叶斯统计的复杂网络模型,用于评估多个干预措施之间的直接和间接比较。
2. 方法(1)间接比较在进行间接比较时,首先需要确定各个研究的共同变量或效应指标。
然后,通过转换或标准化等方法,将不同研究的结果调整到同一尺度上,以便进行比较。
此外,还需要考虑研究间的异质性,通过统计学方法对异质性进行评估和处理。
(2)网状分析网状分析主要利用贝叶斯网络模型,对多个干预措施进行全面的评估和比较。
首先需要构建一个网络模型,包括节点(各干预措施)和边(各干预措施之间的直接和间接比较)。
然后根据数据收集的结果和网络模型的参数设置,计算每个干预措施与其他措施的比较效果,最后通过概率排名等统计方法,对所有干预措施进行比较和评估。
三、间接比较及网状分析的应用1. 在临床医学中的应用间接比较及网状分析在临床医学领域有着广泛的应用。
例如,针对不同的治疗方法或药物,通过Meta分析和网状分析可以评估各种治疗方法的疗效和安全性,为临床医生提供参考依据。
此外,在药物研发过程中,也可以通过间接比较和网状分析对不同药物进行综合评估和比较。
2. 在社会科学中的应用在社会科学领域,间接比较及网状分析同样具有广泛的应用价值。
例如,在政策评估中,可以通过Meta分析和网状分析对不同政策的效果进行综合评估和比较,为政策制定提供参考依据。
医学meta分析开题报告范文(优选48篇)
医学meta分析开题报告范文(优选48篇)一、选题依据、目的和意义:骨折不愈合是骨科临床常见病症,其中以四肢长骨多发,例如胫骨,股骨,肱骨等,针对四肢长骨骨折不愈合二次手术我院多才用植骨术配合LCP重新内固定。
自体髂骨作为植骨材料具有较多的优点:如取材简单、**相容性好、无移植排斥反应、骨诱导作用强等,这些优点使得髂骨成为一种最佳的植骨供材,这在临床上已形成共识。
植骨是治疗骨折不愈合的重要方法,其机制是爬行替代所引起的支架作用与供给矿物质的作用,爬行替代顺利进行的条件要求准确的复位、充分的植骨和坚强的固定。
为达到充分的植骨,及早促进骨折愈合,我们采用髓内外36°植骨的方法,外用钢丝环扎,配合LCP坚强内固定,术后3~1个月内进行随访,根据愈合情况和功能恢复情况分析手术的临床疗效。
选题目地在于探讨治疗四肢长骨骨折不愈合的手术改进方法和疗效,为临床治疗提供参考。
本课题以导师多年的临床资料为依据,通过对骨折不愈合手术治疗的**外文献进行系统整理,结合山东中医药大学附属医院骨科病房对四肢长骨骨折不愈合患者的随访**及回顾性分析,根据骨科特殊生物力学特点和导师治疗骨折不愈合的多年临床体会,分析治疗效果,并对手术中的细节问题做初步探讨与论述。
同时也希望可以通过对导师的临床实践的研究、总结,能为今后的临床工作提供一些帮助和指导。
二、本课题目前**外研究的动态、水*治疗骨折不愈合,可分为手术治疗和非手术治疗,其中手术治疗最重要的就是植骨术加更改断端内固定。
骨折不愈合应用自体骨移植治疗效果显著,已经形成共识。
植骨是治疗骨不连的重要方法,植骨方式临床多采用髓内外联合植骨。
沿肌间隙进入,骨膜下小心剥离显露骨折部位,取出内固定器械,**骨断端间瘢痕,咬除硬化骨,打通髓腔,修整骨折端,手法复位,按照骨缺损情况取骨。
髓内植骨以比髓腔稍粗的骨棒,贴紧髓腔骨质;髓外上盖植骨宜用螺丝钉固定植骨块;骨碎屑充分填充残余的空隙,这样才能确实达到植骨的目的和要求。
《2024年Meta分析系列之十五_Meta分析的进展与思考》范文
《Meta分析系列之十五_Meta分析的进展与思考》篇一Meta分析系列之十五_Meta分析的进展与思考Meta分析系列之十五:Meta分析的进展与思考一、引言Meta分析,作为一种强大的统计工具,已广泛应用于各个研究领域。
自其诞生以来,Meta分析在整合、比较和综合不同研究结果方面发挥了重要作用。
本文将探讨Meta分析的进展、当前的应用领域以及面临的挑战与思考。
二、Meta分析的进展1. 定义与发展Meta分析最初用于医学领域,通过对之前研究结果进行再次分析,综合各个研究结果来得到更为可靠的结论。
随着统计方法和计算机技术的进步,Meta分析逐渐扩展到其他领域,如社会科学、心理学、教育学等。
2. 统计方法的进步早期的Meta分析主要依赖于固定效应模型和随机效应模型。
随着研究的深入,越来越多的统计方法被引入到Meta分析中,如贝叶斯Meta分析、多元回归Meta分析等。
这些新方法使得Meta 分析能够更好地处理异质性、考虑多个变量因素等复杂问题。
3. 技术的应用随着大数据和人工智能的兴起,Meta分析在技术应用方面也取得了显著的进展。
通过运用先进的算法和软件工具,可以快速地收集、整理、分析和解释大量文献数据,从而提高Meta分析的效率和准确性。
三、Meta分析的应用领域1. 医学领域医学领域是Meta分析的主要应用领域之一。
通过对医学文献进行Meta分析,可以综合不同研究结果,评估某种药物或治疗方法的效果,为临床实践提供参考依据。
2. 社会科学领域在社会科学领域,Meta分析被广泛应用于心理学、教育学、社会学等学科的研究中。
通过对不同研究的综合分析,可以揭示某一现象或问题的本质和规律。
3. 其他领域除了医学和社会科学领域外,Meta分析还应用于其他领域,如经济学、管理学等。
在这些领域中,Meta分析可以帮助研究者整合不同研究结果,为决策提供科学依据。
四、面临的挑战与思考1. 数据质量与选择偏倚在进行Meta分析时,数据的质量和选择偏倚是两个重要的问题。
《2024年Meta分析系列之二_Meta分析的软件》范文
《Meta分析系列之二_Meta分析的软件》篇一Meta分析系列之二_Meta分析的软件Meta分析系列之二:Meta分析的软件的高质量范文一、引言Meta分析是一种统计方法,用于综合多个独立研究的结果,以提供更全面、更准确的结论。
随着科研工作的不断发展,Meta 分析在各个领域的应用越来越广泛。
本文将重点介绍Meta分析的软件,探讨其功能、特点及使用方法,以期为读者提供有价值的参考。
二、Meta分析软件概述Meta分析软件是用于执行Meta分析的计算机程序,其功能包括数据管理、效应量计算、异质性检验、合并效应量等。
目前市面上常见的Meta分析软件包括RevMan、Stata、R语言等。
这些软件具有不同的特点,适用于不同的研究需求。
三、常见Meta分析软件介绍1. RevManRevMan是一款由Cochrane Collaboration开发的免费软件,主要用于系统评价和Meta分析。
其优点在于操作简便、界面友好,支持多种类型的效应量计算和模型选择。
然而,RevMan的功能相对有限,对于复杂的Meta分析可能不够灵活。
2. StataStata是一款功能强大的统计分析软件,也支持Meta分析。
其优点在于具有丰富的统计功能和强大的数据处理能力,可以处理各种复杂的数据结构和效应量模型。
同时,Stata的编程语言易于学习,方便用户进行定制化开发。
3. R语言R语言是一种开源的统计分析语言,具有广泛的应用领域。
在Meta分析方面,R语言具有强大的功能和灵活性,支持各种类型的效应量计算和模型选择。
此外,R语言还具有丰富的第三方包和社区支持,方便用户获取帮助和解决问题。
四、Meta分析软件的使用方法1. 数据准备:收集相关研究的数据和资料,包括研究设计、样本信息、效应量等。
2. 软件选择:根据研究需求和数据分析能力选择合适的Meta 分析软件。
3. 数据导入:将数据导入到所选软件中,进行数据管理和清洗。
4. 效应量计算:根据研究类型选择合适的效应量指标,如OR、RR、MD等。
《2024年Meta分析系列之六_间接比较及网状分析》范文
《Meta分析系列之六_间接比较及网状分析》篇一Meta分析系列之六_间接比较及网状分析Meta分析系列之六:间接比较及网状分析一、引言随着科研领域的快速发展,传统的前瞻性实验已经难以满足越来越多的科研需求。
于是,通过文献检索和汇总信息进行的Meta分析成为重要的辅助手段。
Meta分析中除了直接的同质实验结果对比,还有一种常见的策略,即间接比较和网状分析。
本文旨在介绍如何高质量地进行间接比较及网状分析。
二、方法论1. 间接比较间接比较是通过综合多个独立研究的多个变量来估计研究效应,通过将各个研究的直接效应进行比较和转换,再进一步比较间接效应。
这种方法的优点在于可以扩展到复杂的研究设计,并可以整合那些无法直接比较的异质性研究。
2. 网状分析网状分析是一种综合多种不同类型证据的统计方法,用于评估不同干预措施的相对效果。
它通过构建一个复杂的网络图来展示不同研究之间的相互关系,并使用贝叶斯模型或多元回归模型等统计方法进行综合分析。
三、间接比较与网状分析的应用本文以一个药物研究的Meta分析为例,通过将多篇药物干预的研究成果进行整合和对比,评估其效果。
我们采用间接比较和网状分析的方法,对不同药物干预的疗效进行综合评估。
首先,我们收集了多篇关于该药物研究的文献,并对这些文献进行了筛选和评估。
然后,我们使用间接比较的方法,对不同研究中的药物剂量、药物作用机制、研究人群等因素进行综合比较,得出各研究的直接效应。
接下来,我们利用这些直接效应构建了一个复杂的网络图,进行网状分析。
在网状分析中,我们采用了贝叶斯模型来评估不同药物干预之间的相对效果。
四、结果与讨论通过综合分析和比较各研究的直接效应,我们得出了各种药物干预的相对效果排序。
在网状分析中,我们发现某些药物在特定情况下具有较好的疗效,而其他药物在另一些情况下可能更有效。
此外,我们还发现某些因素(如药物剂量、研究人群等)对药物疗效的影响较大。
这些结果为临床实践提供了重要的参考依据。
BMJ的一篇meta分析范文分享
BMJ的⼀篇meta分析范⽂分享随着科学研究的发展,医学研究数量急剧增加,医⽣和研究者全⾯了解医学信息受到时间和资源所限,所以产⽣了对原始⽂献的结果进⾏综合分析的需求。
Meta分析是对具有相同研究⽬的的多个独⽴研究结果进⾏系统分析的⼀种研究⽅法。
该⽅法源于1920年Fisher“合并P值”的思想,1976年⼼理学家Glass进⼀步将其发展为“合并统计量”,并⾸次将这类分析命名为“meta-analysis”。
meta分析是对⽂献资料进⾏系统评价的基本统计⽅法,有助于医⽣和研究者快速把握已有的医学研究信息,以便对已有的研究结论进⾏恰当理解和应⽤。
今天⼩编带⼤家看看⼀篇可谓范⽂的meta分析。
这是⼀篇2014年发表在BMJ上的meta分析:1、作者⾸先提出临床问题:在健康⽆症状感染⼈群中进⾏Hp根除治疗,是否可预防胃癌发⽣。
⽆疑,这是⼀个医学界⾮常关注的、有意义的问题。
2、制定⽂献的纳⼊、排除标准,作者设定了详细的⽂献纳⼊、排除标准:3、检索⽂献:规定检索范围(Medline(1946 to December 2013), Embase(1947 to December 2013), and the Cochranecentral register of controlled trials),并对会议论⽂集进⾏⼿⼯检索,选择可能符合条件的研究,联系这些只发表了会议摘要的研究者,要求他们提供完整的数据集或论⽂。
检索策略作者以单独的附件形式列出,共56条:……4、筛选⽂献:作者列出根据纳⼊、排除标准进⾏⽂献评价的流程图如下:5、提取数据:设定信息提取表,列出所要提取的信息,并进⾏敏感性分析。
6、对纳⼊的研究进⾏偏倚风险评价:这篇meta分析纳⼊的都是RCT研究,偏倚风险评价由两名研究者根据Cochrane⼿册独⽴完成,分歧通过讨论解决。
涉及随机化、随机⽅案隐藏、盲法实施、失访率等。
7、数据合并、统计学分析:作者应⽤随机效应模型以得到更保守和稳健的估计,并进⾏多个亚组分析。
《2024年Meta分析系列之六_间接比较及网状分析》范文
《Meta分析系列之六_间接比较及网状分析》篇一Meta分析系列之六_间接比较及网状分析Meta分析系列之六:间接比较及网状分析一、引言Meta分析是一种系统性的文献综述方法,用于整合和分析多个独立研究的结果。
在多个干预或治疗之间缺乏直接比较的研究背景下,间接比较及网状分析显得尤为重要。
本文将深入探讨间接比较和网状分析的概念、方法和实际应用,并给出高质量范文,以期为相关研究人员提供有价值的参考。
二、间接比较及网状分析概述1. 概念间接比较是一种通过比较多个研究的效应量来评估不同干预或治疗之间差异的方法。
当某些干预或治疗之间缺乏直接比较的研究时,可以通过间接比较来推断它们之间的差异。
而网状分析则是一种利用贝叶斯模型整合直接和间接证据的方法,可以更全面地评估多个干预或治疗之间的相对效果。
2. 方法间接比较主要依赖效应量的统计方法和森林图等可视化工具。
在进行间接比较时,应首先对每个研究的效应量进行标准化处理,以便进行比较。
网状分析则通过构建贝叶斯网络模型,将直接和间接证据整合在一起,通过马尔科夫链蒙特卡洛方法进行参数估计和模型验证。
三、高质量范文展示以下是一篇关于药物治疗与心理治疗在抑郁症患者中的效果比较的Meta分析文章:标题:药物治疗与心理治疗在抑郁症患者中的效果比较:一项网状分析一、引言抑郁症是一种常见的心理障碍,药物治疗和心理治疗是其主要的治疗手段。
然而,关于两者效果的直接比较研究较少。
本文通过网状分析方法,对相关研究进行间接比较和综合评估。
二、方法本研究采用网状分析方法,对药物治疗和心理治疗的相对效果进行评估。
首先,通过文献检索获取相关研究,并对研究的质量进行评估。
然后,提取各研究的效应量,包括治疗效果、复发率等指标。
接着,构建贝叶斯网络模型,将直接和间接证据整合在一起。
最后,通过马尔科夫链蒙特卡洛方法进行参数估计和模型验证。
三、结果经过对相关研究的综合分析,我们发现药物治疗和心理治疗在抑郁症患者中均有一定的效果。
meta分析范文
meta分析范文Meta-analysis is a statistical technique used to combine the results of multiple studies in order to provide a more comprehensive and accurate understanding of a particular research question. It allows researchers to synthesize the findings of various studies and draw more reliable conclusions than any single study could provide.In this paper, we will discuss the process of conducting a meta-analysis, its advantages, and its potentiallimitations.The first step in conducting a meta-analysis is todefine the research question and establish inclusion and exclusion criteria for the studies to be included in the analysis. This involves identifying the relevant literature, searching for studies that meet the criteria, and then selecting the studies that will be included in the analysis. Once the studies have been selected, the next step is to extract the relevant data from each study and convert itinto a common format that can be used for analysis.After the data has been extracted, the next step is to analyze the data using statistical techniques. Thistypically involves calculating effect sizes, which measure the strength of the relationship between variables, andthen combining the effect sizes from the individual studies to produce an overall estimate of the effect. This estimate can then be used to draw conclusions about the research question and to assess the overall strength of the evidence.One of the key advantages of meta-analysis is that it allows researchers to synthesize the findings of multiple studies, which can provide a more comprehensive andreliable understanding of a particular research question.By combining the results of multiple studies, researchers can increase the statistical power of their analysis and draw more reliable conclusions than any single study could provide. This can be particularly useful when individual studies have produced conflicting results, as meta-analysis can help to identify the sources of the discrepancies and provide a more accurate estimate of the true effect.Another advantage of meta-analysis is that it can help to identify patterns and trends that may not be apparent in individual studies. By combining the results of multiple studies, researchers can identify consistent findings and explore potential sources of variation across studies. This can help to generate new hypotheses and guide future research in the field.Despite its many advantages, meta-analysis also has some potential limitations that should be considered. One potential limitation is publication bias, which occurs when studies with positive results are more likely to be published than studies with negative results. This can lead to an overestimation of the true effect, as the published literature may not accurately reflect the full range of findings on a particular research question. To address this limitation, researchers can use statistical techniques such as funnel plots to assess the presence of publication bias and adjust their estimates accordingly.Another potential limitation of meta-analysis is the risk of including low-quality studies, which can bias theoverall estimate of the effect. To address this limitation, researchers can use inclusion criteria to select only high-quality studies for inclusion in the analysis and conduct sensitivity analyses to assess the robustness of their findings.In conclusion, meta-analysis is a powerful tool that can provide a more comprehensive and reliable understanding of a particular research question by synthesizing the findings of multiple studies. By combining the results of individual studies, researchers can increase thestatistical power of their analysis, identify patterns and trends, and draw more reliable conclusions than any single study could provide. However, it is important to consider the potential limitations of meta-analysis and take steps to address them in order to ensure the reliability and validity of the findings.。
《2024年Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件》范文
《Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件》篇一Meta分析系列之五_贝叶斯Meta分析与WinBUGS软件Meta 分析系列之五:贝叶斯Meta分析与WinBUGS软件的高质量范文一、引言随着现代统计学的发展,Meta分析已经成为评估大量独立研究结果和合成信息的重要方法。
而贝叶斯Meta分析则因其考虑了参数的不确定性以及潜在信息(例如:先前研究的结果、数据先验分布等)的融入,受到了广泛的关注。
本篇将探讨贝叶斯Meta 分析的基本原理、步骤,以及使用WinBUGS软件进行实际操作。
二、贝叶斯Meta分析概述贝叶斯Meta分析是基于贝叶斯定理,利用已知信息(先验信息)和样本数据(后验信息)共同决定未知参数的概率分布。
它考虑了每个研究的权重和效应的随机性,能更好地解决不同研究中异质性的问题。
与传统的频数方法相比,贝叶斯方法可以更好地利用和整合已有的信息和不确定性,提供了更全面的统计推断。
三、贝叶斯Meta分析的步骤1. 确定研究问题和目标:明确Meta分析的目的和问题,选择合适的数据库和文献来源。
2. 文献筛选与数据提取:根据研究问题和目标,筛选相关文献并提取所需数据。
3. 构建模型:根据数据的性质和特点,选择合适的模型(如随机效应模型或固定效应模型)。
4. 参数设置:确定效应参数的先验分布和其他必要参数。
5. 运行分析和结果解释:利用贝叶斯软件进行参数估计、后验推断以及预测等分析。
四、WinBUGS软件的使用WinBUGS软件是用于贝叶斯分析的专业工具,具有良好的图形界面和广泛的应用领域。
使用WinBUGS软件进行贝叶斯Meta分析的具体步骤如下:1. 安装和启动WinBUGS软件。
2. 导入数据:将提取的数据导入WinBUGS软件中。
3. 构建模型:根据数据特点选择合适的模型,并设置参数的先验分布。
4. 运行模型:设置迭代次数、保存间隔等参数,运行模型进行参数估计和后验推断。
《2024年Meta分析系列之十五_Meta分析的进展与思考》范文
《Meta分析系列之十五_Meta分析的进展与思考》篇一Meta分析系列之十五_Meta分析的进展与思考Meta分析系列之十五:Meta分析的进展与思考一、引言随着科学研究的深入发展,Meta分析作为一种重要的统计方法,在整合、分析和解释多个独立研究结果方面发挥着越来越重要的作用。
本文旨在探讨Meta分析的进展、现状及其在科学研究中的应用与思考。
二、Meta分析的进展(一)定义与起源Meta分析,又称元分析,是一种统计方法,用于整合和分析多个独立研究的结果。
它起源于20世纪70年代,最初主要用于医学领域,现已广泛应用于心理学、社会科学等多个领域。
(二)技术发展随着计算机技术的进步和大数据时代的到来,Meta分析的技术手段也在不断更新。
从最初的简单统计整合到现代的多变量模型、贝叶斯方法等,Meta分析的精确性和可靠性得到了显著提高。
(三)应用领域拓展除了医学和心理学领域,Meta分析在社会科学、教育学、经济等多个领域的应用也在逐步扩大。
在学术研究中,它有助于评估研究的质量和价值,进而为学术决策提供参考依据。
三、Meta分析在科学研究中的应用与思考(一)在文献综述中的作用Meta分析有助于提高文献综述的准确性。
通过整合多个独立研究的结果,我们可以更全面地了解某一研究领域的现状和趋势,从而为决策提供有力的依据。
(二)对科学研究的启示1. 验证研究假设:通过Meta分析,我们可以验证之前的研究假设是否成立,从而为新的研究提供方向。
2. 评估研究质量:通过整合多个研究的结果,我们可以对单个研究的质量进行评估,进而提高整个研究领域的水平。
3. 优化研究设计:根据Meta分析的结果,我们可以对现有的研究设计进行优化,以提高研究的效率和准确性。
(三)思考与展望虽然Meta分析在科学研究中发挥了重要作用,但仍存在一些局限性。
例如,如何选择合适的统计方法和模型、如何处理异质性等问题仍需进一步研究和探讨。
此外,随着大数据时代的到来,如何利用Meta分析对海量数据进行有效整合和分析也是一个重要的研究方向。
《2024年Meta分析系列之六_间接比较及网状分析》范文
《Meta分析系列之六_间接比较及网状分析》篇一Meta分析系列之六_间接比较及网状分析Meta分析系列之六:间接比较及网状分析的高质量范文一、引言随着临床研究在各领域日益发展,多种治疗方法和手段相继涌现,给医学工作者和临床医生带来了许多困惑。
为解答这些问题,越来越多的学者利用Meta分析的方法,以汇总和分析不同的临床试验数据,以期提供更具信度和说服力的证据。
在Meta分析中,间接比较及网状分析是重要的研究方法之一。
本文将通过一个高质量的范文,详细介绍间接比较及网状分析的步骤、方法和注意事项。
二、研究背景本文以某类慢性疾病的治疗方法为研究对象,通过对已发表的随机对照试验进行Meta分析,探讨不同治疗方法之间的疗效差异。
由于该领域涉及多种药物、手术、非药物治疗等多种方法,直接比较各种治疗方法可能存在困难,因此采用间接比较及网状分析方法进行探讨。
三、方法(一)文献检索根据研究主题,使用专业数据库(如Cochrane图书馆、PubMed等)检索相关文献。
选取关键时间范围、试验类型(如随机对照试验)、语言等关键词进行筛选。
(二)纳入与排除标准明确纳入与排除标准,如试验设计类型、患者类型、治疗方法等。
选择高质量的研究,并排除低质量或存在较大偏倚的研究。
(三)数据提取与整理对符合纳入标准的研究进行数据提取,包括研究设计、试验组和对照组的治疗方法、患者人数、样本量、随访时间、结局指标等。
将数据进行整理,以便进行Meta分析。
(四)间接比较及网状分析利用统计软件进行间接比较及网状分析。
首先建立网状模型,将各种治疗方法及其相关数据连接起来。
然后,采用贝叶斯法或其他相关方法对模型进行计算,以得到不同治疗方法之间的疗效差异和排序概率。
最后,绘制网状图和森林图等图表,直观地展示研究结果。
四、结果通过Meta分析,得到了不同治疗方法之间的疗效差异及其排序概率。
在网状图中,各节点代表不同的治疗方法,节点之间的连线表示治疗方法之间的比较和差异。
一篇标准meta分析范文中文
一篇标准meta分析范文中文一、标题1 题目:点明主题。
题目一般可定为****Meta分析或****效果评价。
二、摘要2摘要:尽量简明扼要。
包含以下部分:目的、方法、结果、结论。
按照各自需求可适量加上背景、资料来源、纳入标准、研究人群、干预措施、质量评价方法和限制、对主要结果的分析等。
三、关键词3 关键词:为此文章的关键字,能点出文章的主题。
一般为3-4个词,不宜过多。
四、引言4引言:对此文章主题的简要介绍、发展近况、新颖性、有何意义等等。
五、资料与方法5 纳入标准:使用纳入研究的方法学特征(如试验方法,随访时间)和报告特征(如发表年份、语言、发表状态)作为可靠、合理的标准6 信息来源:在检索策略中列出所有的信息来源(如使用的数据库、与研究作者联系获得详细信息)和最后检索日期。
一般英文检索可用Pubmed数据库,中文检索可用我们学校的CNKI数据库及万方数据库等。
7 检索:至少提供一个数据库的完整检索方式,包括对检索的限制,检索词,这个策略是否能被重复使用。
8 研究筛选:表明研究筛选过程,提供检索、纳入标准、质量评价后的纳入研究的数目,每个阶段给出排除理由,最好提供流程图。
9 统计分析方法:所用的分析软件和分析方法,一般有Stata软件或Revman软件。
六、结果10 资料提取:从研究中提取资料,列出所有的文献的研究特征,如发表年份、来源地区、作者、实验数据、随访时间、质量评价等。
该部分用表格的方式给出。
11 单个研究的偏倚:描述用于评价每个研究的偏倚危险的方法(提供是在实施阶段或结局阶段),在数据合成过程中是如何使用这些方法的12 合成方法:描述主要的合成方法(如危险度、均差)13 合成结果:描述数据处理方法和合成的结果,在每个Meta分析中进行异质性检验(I?),不存在异质性则采用固定效应模型,否则用随机效应模型。
14 研究的结果:对于所有呈现的结局(危害、有益):①每个干预组的简单总结表;②估计效应值和置信区间。
医学mate分析范文
医学mate分析范文一、前言。
大家好!今天咱们来唠唠关于[具体疾病名称]的那些事儿。
你说这病吧,就像个小恶魔,老是折腾患者。
不过呢,现在医学上有好几种治疗方法,可到底哪种最有效呢?这就像在一堆宝藏里找最闪亮的那颗钻石一样,得好好研究研究。
所以呢,咱们就来做个Meta分析,把那些关于这些治疗方法的研究都汇总汇总,看看能不能得出个靠谱的结论。
二、资料与方法。
# (一)资料来源。
咱就像个小侦探一样,在各大医学数据库里搜索相关的研究。
像PubMed、Web of Science、知网这些地方,都被我们翻了个遍。
搜索的关键词就是[疾病名称]和各种相关的治疗方法,比如说[治疗方法1]、[治疗方法2]之类的。
# (二)纳入与排除标准。
这就像是在挑选参赛选手一样。
纳入的研究得是专门针对[具体疾病名称]的,而且得明确提到使用了我们感兴趣的那些治疗方法,还得有一些关键的数据,像治疗后的有效率啊、不良反应这些。
那排除的呢,就是那些数据不全的,或者研究质量特别差的,就像那些没好好准备就来参赛的选手,可不能要。
# (三)数据提取与质量评价。
从那些入选的研究里提取数据可不容易,就像从一堆乱麻里抽出有用的线一样。
我们得仔细地把每个研究里关于患者的基本情况、治疗方法的具体细节、治疗效果这些数据都找出来。
然后呢,还要对这些研究的质量进行评价。
这就好比是给选手打分,看看这个研究设计得合理不合理,有没有什么漏洞。
我们用的是[具体的质量评价工具]来打分的。
三、结果。
# (一)研究的基本情况。
经过一番搜索和筛选,我们总共找到了[X]项研究符合要求。
这些研究来自不同的国家和地区,就像世界各地的小伙伴都来参加这个关于[具体疾病名称]治疗的大讨论一样。
患者的年龄啊、性别啊、病情严重程度这些也都有一定的差异。
# (二)治疗效果的Meta分析。
1. [治疗方法1]咱们先来看[治疗方法1]。
把这些使用[治疗方法1]的研究数据汇总起来分析,发现它的总体有效率大概是[X]%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The effect of fructose consumption on plasma cholesterol in adults: a meta-analysis of controlled feeding trials1,2,3Tao An4,5, Rong Cheng Zhang4,5, Yu Hui Zhang4, Qiong Zhou4, Yan Huang4, Jian Zhang4, *.4 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China5Tao An and Rong Cheng Zhang contributed equally to this study.3 Supplemental Table 1 and supplemental Figures 1-4 are available as Online Supporting Material with the online posting of this paper at RUNNING TITLE: Fructose and cholesterolWORD COUNT: 5618; NUMBER OF FIGUREA: 3; NUMBER OF TABLES: 2 SUPPLEMENTARY MATERIAL: Online Supporting Materials: 5AUTHOR LIST FOR INDEXING: An, Zhang, Zhang, Zhou, Huang, Zhang1 The study was supported by the Ministry of Science and Technology of China with grant of the National High-tech Research and Development Program of China to Dr Jian Zhang.2 Author disclosures: T. An, R.C. Zhang, Y.H. Zhang, Q. Zhou, Y. Hung, J. Zhanghave no conflicts of interest.* To whom correspondence should be addressed. Mailing address: Heart FailureCenter, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, 167 Beilishilu, Beijing, China; Zip code: 100000; Telephone number: 86-10-88396180; Fax number: 86-10-88396180; E-mail: Fwzhangjian62163.PROSPERO REGISTRATION NUMBERS: CRD1ABSTRACT2Fructose is widely used as a sweetener in production of many foods, yet the relation 3between fructose intake and cholesterol remains uncertain. We performed a systematic 4review and meta-analysis of human controlled feeding trials of isocaloric fructose 5exchange for other carbohydrates to quantify the effects of fructose on total 6cholesterol (TC), LDL cholesterol (LDL-C), and HDL cholesterol (HDL-C) in adult 7humans. Weighted mean differences were calculated for changes from baseline 8cholesterol concentrations by using generic inverse variance random-effects models. 9The Heyland Methodological Quality was used to assess study quality. Subgroup 10analyses and meta-regression were conducted to explore possible influence of study 11characteristics. Twenty-four trials (with a total of 474 subjects) were included in our 12meta-analysis. In an overall pooled estimate, fructose exerted no effect on TC, LDL-C 13and HDL-C. Meta-regression analysis indicated that fructose dose was positively 14correlated with the effect sizes of TC and LDL-C. Subgroup analyses showed that 15isocaloric fructose exchange for carbohydrates could significantly increase TC by 1612.97 mg/dL (95%CI: 4.66, 21.29; P = 0.002) and LDL-C by 11.59 mg/dL (95%CI: 174.39, 18.78; P = 0.002) at >100g fructose/d but had no effect on TC and LDL-C when 18fructose intake was ≤100g/d. In conclusion, very high fructose intake (>100g/d) 19could lead to significantly increase in serum LDL-C and TC. Larger, longer and 20higher-quality human controlled feeding trials are needed to confirm these results.21Key words: fructose, cholesterol, meta-analysis2223INTRODUCTION24Hyperlipidemia is a common risk factor for coronary heart disease (CHD), with 2544.4% of adults in the United States having abnormal TC values and 32% having 26elevated LDL-C levels (1). Compared to subjects with normal blood lipid, those with 27hyperlipidemia have a 3-fold risk of heart attacks (2). Lifestyle modification should be 28initiated in conjunction both primary and secondary prevention of CHD. More 29consideration exists as to what constitutes healthy eating.30Fructose is the most naturally occurring monosaccharide, and has become a major 31constituent of our modern diet. Fruit, vegetables, and other natural sources provide 32nearly one-third of dietary fructose, and two-thirds come from beverages and foods in 33the diets (eg, candies, jam, syrups, etc) (3). Fructose is preferred by many people, 34especially those with diabetes mellitus because of its low glycemic index (23% versus 35glucose 100%) (4). After intestinal uptake, fructose is mainly removed from the blood 36stream by the liver in an insulin-independent manner, and is used for intrahepatic 37production of glucose, fatty acids or lactate. Cross-sectional studies in human suggest 38that excessive fructose consumption can lead to adverse metabolic effects, such as 39dyslipidemia and increased visceral adiposity (5-7). The Dietary Guidelines for 40Americans, 2010, point out that it is lack of sufficient evidence to set a tolerable upper 41intake of carbohydrates for adults (8). Although The Candian Diabetes Association 42suggests consumption of no more than 60g of added fructose per day by people with 43diabetes for its triglyceride-raising effect (9), the threshold dose of fructose at which 44the adverse influence on cholesterol is controversial.45To determine the effect of fructose on cholesterol, a substantial number of clinical 46trials have been performed on adult humans with different health status (diabetic, 47obese, overweight, hyperinsulinemic, impaired glucose-tolerant and healthy). These 48trials used various intake levels of fructose and different protocols. Thus, it is difficult 49to reach a consistent conclusion across these studies. Therefore, we conducted a 50systematic review of the scientific literature and meta-analysis of controlled feeding 51trials to evaluate the effect of isocaloric oral fructose exchange for carbohydrates on 52cholesterol and to clarify the active factors of fructose.53Materials and Methods54This meta-analysis followed the Preferred Reporting Items for Systematic Reviews 55and Meta-analyses (PRISMA) criteria (10).56Search strategy.We searched PubMed (/pubmed; from 1966 to 57December 2012), Embase (.embase.; from 1966 to December 2012) and the Cochrane 58Library database () by using the following search terms: fructose and 59(lipemia or lipaemia or lipids or cholesterol or “total cholesterol”or “LDL 60cholesterol” or “HDL cholesterol”) in English. We also searched China National 61Knowledge Infrastructure () and Wangfang database () in 62Chinese according to the search strategy. The search was restricted to reports of trials 63on humans.64Study selection.All clinical trials using fructose and indexed within the above 65databases were collected. Two independent reviewers (T.A., R.C.Z) screened the 66abstracts and titles for initial inclusion. If this was not sufficient, full texts articles 67were obtained and reviewed by at least two independent reviewers (T.A., R.C.Z, Q.Z., 68Y.H.). The reference lists of retrieved articles also used to supplement the database.69Any disagreements were resolved through discussion. We included controlled feeding 70trials investigating the chronic effect of fructose on blood cholesterol, from both 71randomized and nonrandomized studies, if they met the following criteria: subjects 72must have been administered fructose for at least 2 weeks; studies investigated the 73effect of oral free (unbound, monosaccharide) fructose when compared with isocaloric 74control diet with another carbohydrate in place of fructose; studies were performed in 75human adults with either a parallel or crossover design; subjects in both experimental 76groups and control groups were instructed to consume isocaloric diets. If the study 77reported any comparisons, we included all such comparisons in the meta-analysis.78Data extraction and quality assessment.Two reviewers (T.A., R.C.Z) independently 79extracted relevant data from eligible studies. Disagreements were resolved by one of 80the two authors (Y.H.Z., J.Z.). These data included information on study features 81(author, year of publication, study design, randomization, blinding, sample size, 82comparator, fructose form, dose, follow-up and macronutrient profile of the 83background diet), participant characteristics (gender, age and healthy status) and 84baseline and final concentrations or net changes of total cholesterol, LDL-C and 85HDL-C. Data initially extracted were converted to system international unit (eg, TC: 1 86mmol/L converted to 38.6 mg/dL). For multi-arm studies, only intervention groups 87that met inclusion criteria were used in this analysis. If blood lipid concentrations 88were measured several times at different stages of trials, only final records of lipid 89concentrations at the end of the trials were extracted for this meta-analysis.90The quality of each study was assessed with the Heyland Methodological Quality 91Score (MQS) (11), generalized as follows: randomization; analysis; blinding; patient 92selection; comparability of groups at baseline; extent of follow up; treatment protocol;93co-intervention; outcomes. The highest score for each area was two points. Higher 94numbers represented a better quality (MQS≥8).95Data synthesis.Statistical analyses were performed with Stata software (version 11.0;96StataCorporation, TX, USA) and REVMAN software (version 5.2; Cochrane 97Collaboration, Oxford, United Kingdom). Separate pooled analyses were conducted 98by using the generic inverse variance random-effects models even where there was no 99evidence of between-study heterogeneity because these models give more 100conservative summary effect estimates in the presence of undetected residual 101heterogeneity than fixed-effects models. The different changes from baseline between 102fructose and carbohydrate comparators for total cholesterol, LDL cholesterol and 103HDL cholesterol were used to estimate the principle effect. We applied paired 104analyses to all crossover trials according to the methods of Elbourne and colleagues 105(12). Weighted mean differences of fructose consumption on cholesterol 106concentrations and corresponding 95% CIs were calculated. A 2-sided P value <0.05 107was set as the level of significance for an effect. The variances for net changes in 108serum cholesterol were only reported directly in two trials (29, 31). We calculate net 109changes for other studies by using the means±SDs cholesterol concentrations at 110baseline and at the end of intervention period (13). SDs were calculated from SEs 111when they were not directly given. If these data were unavailable, we extrapolated 112missing SDs by borrowing SDs derived from other trials in this meta-analysis (14). In 113addition, we assumed a conservative degree of correlation of 0.5 to impute the 114change-from-baseline SDs, with sensitivity analyses performed across a range of 115possible correlation coefficients (0.25 and 0.75) (13). For crossover trials in which 116only final measurements were included, the differences in mean final measurements 117were assumed on average to be the same as the differences in mean change scores 118(13). Inter-study heterogeneity was tested by the Cochrane’s Q-test (P < 0.1), and was 119quantified by the I2statistic, where I2 ≥ 50% was evidence of substantial heterogeneity. 120To explore the potential effects of factors on the primary outcomes and investigate the 121possible sources of heterogeneity, we performed meta-regressions and predefined 122subgroup analyses stratified by comparator, dose, study duration, randomization, 123health status, study design and study quality. As for studies used a range of fructose 124doses, the average doses calculated on the basis of the average reported energy intake 125or weight of participants (28.5 calories per kilogram of body weight). Sensitivity 126analyses were also performed according to the Cochrane Handbook for Systemic 127Review. Funnel plots and Egger’s linear regression test were conducted to detect 128publication bias.129RESULTS130Based on our search criteria, 1602 eligible studies were identified, and 1565 131studies were excluded on review of the titles and abstracts. The remaining 37 studies 132were retrieved and fully reviewed. Fifteen of these did not meet the inclusion criteria 133and were excluded in the final analysis. A total of 22 studies (providing data for 24 134trials) involving 474 subjects (15-36) were included in the meta-analysis 135(Supplemental Fig. 1, Table 1).136The reports of Koh and Reiser (22, 23) included two trials (bringing the total 137number of trials to 24). Eleven trials were randomized (17, 18, 20, 21, 25, 27-29, 31, 13834, 36). Nineteen trials used crossover (15-19, 21-32), and five used parallel designs 139(20, 33-36). As for the 19 cross-over trials, 10 trials have reported the washout period 140(16, 18, 22, 25, 27-31), 9 trials did not have washout period (15, 17, 19, 21, 23, 24, 26, 14132). The trials varied in size, from 8 to131 subjects. The mean age of trial participants 142ranged from 26.7 to 64.4 years. Seventeen trials (15, 17-23, 25, 27, 28, 30, 31, 34, 36) 143were performed in outpatient settings, 3 trials (26, 29, 32) in inpatient settings, and 4 144trials in both outpatient and inpatient settings (16, 24, 33, 35). Nine trials were 145conducted on diabetic subjects (19-21, 24-27, 29, 30), 8 trials in healthy subjects (17, 14618, 22, 23, 28, 31, 34, 35), 3 trials in overweight/obese subjects (32, 33, 36), 2 trials in 147hyperinsulinemic subjects (16, 23), 1 trial in those who were impaired 148glucose-tolerant (22), and 1 trial in subjects with type IV hyperlipoproteinaemia (HLP) 149(15). Background diets were 42-55% carbohydrate, 25-38% fat, and 13-20% protein. 150The carbohydrate comparators choose starch in 13 trials (15, 16, 21, 23-25, 27-30, 32, 15136), glucose in 6 trials (22, 31, 33-35), sucrose in 3 trials (17, 18, 26), and mixed 152carbohydrates in two trials (19, 20). Four trials used fructose in crystalline (16, 18, 20, 15321), 5 trials in liquid (19, 32-35), and 15 trials in mixed form (15, 17, 22-31). The 154reported mean baseline serum TC ranged from 170 to 230.8 mg/dl, LDL-C ranged 155from 90.7 to 157 mg/dl, and HDL-C ranged from 35.1 to 57.1 mg/dl. Nineteen trials 156reported the fructose intake among background diet was not different between the 157fructose and control groups, in which 15 trials reported the background fructose intake 158account for ≤3% of total energy (9 to 24g) (15-23, 29, 32, 33, 35), while 4 trials did 159not report the proportion of it (24, 25, 26, 34). Four trials used background fructose ≤3% 160(3.2 to 18g) of total energy in the control groups, but put total fructose into 161consideration in the fructose group (27, 28, 30-31). Only o ne trial reported less than 16220g (4.3 % of total energy) fructose was consumed among basal diet (36). The baseline 163values were not provided in 5 trials (19, 22, 23). The median fructose dose in the 164available trials included in our meta-analysis was 79.25 g/d (range: 30-182 g/d), and 165the duration varied from 2 to 26 weeks.166The quality scores of each study ranged from 6 to 9. Fifteen trials were classified 167as high quality (MQS≥8),and 8 trials were of low quality (17, 19, 26, 30, 32-35). 168Only three trials were blinded, one single-blinded (34) and 2 double-blinded (29, 35). 169Eight trials (19, 21, 24, 26-30) received industry funding. Three studies with four 170trials (15, 16, 22) did not report any information about financial conflicts of interest. 171Effect of fructose on cholesterol172Total cholesterol.Twenty-two trials (16-34, 36) reported the value of TC, and the 173pooled estimate was 2.47 mg/dL (95% CI: -3.04, 7.98; P = 0.38) without statistically 174heterogeneity (heterogeneity Chi2 = 28.14, I2= 25%, P = 0.14) (Fig. 1). The residual 175sources of heterogeneity were investigated by meta-regression models. Univariate 176meta-regression showed that the fructose dose was positively related to TC, even after 177adjusted for study duration and health status(regression coefficient = 0.18; 95% CI: 1780.06, 0.31, P = 0.008)(Table 2). The dose-response relation between fructose 179consumption and TC largely explained the residual heterogeneity of the effect. 180Subsequently, we stratified fructose dose ≤60, >60 to 100, and >100 as moderate, 181high, and very high, respectively, according to Candian Diabetes Association and 182reference ranges for fructose (9, 37, 38). Fructose could significantly increase TC by 18312.97 mg/dL (95%CI: 4.66, 21.29; P= 0.002) when fructose intakes were >100g/d 184but had no effect on TC if fructose was given lower than 100g. Predefined subgroup 185analyses were conducted by study characteristics (Supplemental Table 1). Sensitivity 186analyses according to possible correlation coefficients (0.25 and 0.75) and 187systematically removal of each individual trial did not alter the overall analysis and 188analyses stratified by dose.189LDL cholesterol.The mean change for LDL cholesterol in nineteen trials (15, 16, 18, 19020, 22, 23, 25-35) was 3.76 mg/dL (95% CI: -1.07, 8.6; P = 0.13) without statistically 191heterogeneity (heterogeneity Chi2 = 19.85, I2= 9%, P = 0.34) (Fig. 2). The residual 192sources of heterogeneity were investigated by meta-regression models. Univariate 193meta-regression showed that the fructose dose was positively related to LDL-C, even 194after adjusted for comparators, study duration and health status(regression coefficient 195= 0.15; 95% CI: 0.03, 0.28, P = 0.02)(Table 2). The dose-response relation between 196fructose consumption and LDL-C largely explained the residual heterogeneity of the 197effect. We stratified fructose dose according to CDA and reference ranges for fructose 198(9, 37, 38). Fructose intake >100g/d could significantly increase LDL-C by 11.59 199mg/dL (95%CI: 4.39, 18.78; P= 0.002). Predefined subgroup analyses were 200conducted by other study characteristics (Supplemental Table 1). Sensitivity analyses 201across possible correlation coefficients (0.25 and 0.75) did not alter the overall 202analysis and analyses stratified by dose. The removal of Cybulska et al resulted in a 203significant LDL-C-raising effect in the overall analysis (P = 0.03).204HDL cholesterol.The result of HDL cholesterol was calculated based on 24 trials 205(15-36), the mean difference was -0.56 mg/dL (95% CI: -2.05, 0.93; P = 0.46) without 206heterogeneity (heterogeneity Chi2 = 21.85, I2= 0%, P= 0.53) (Fig. 3). 207Meta-regression analysis did not show significant effect modifier of HDL-C. 208Predefined subgroup analyses were conducted by study characteristics (Supplemental 209Table 1). Sensitivity analyses according to possible correlation coefficients (0.25 and 2100.75) and systematically removal of each individual trial did not alter the overall 211analysis.212Publication bias213Funnel plots and Egger’s test indicated no significant publication bi as in the 214meta-analyses of TC, LDL cholesterol, and HDL cholesterol (TC Egger’s test: P= 2150.881; LDL cholesterol Egger’s test: P= 0.815; HDL cholesterol Egger’s test: P= 2160.484) (Supplemental Figs. 2-4).217DISCUSSION218This meta-analysis of 24 controlled feeding trials with 477 subjects found no 219effect on TC, LDL-C and HDL-C when fructose was substituted for other 220carbohydrates. Residual heterogeneity was detected by meta-regression for this 221outcome that fructose dose was positively correlated with the effect sizes of TC and 222LDL-C.223The present meta-analysis is consistent with a prospective 2-year trial on chronic 224effect of fructose from Turku sugar studies XI, which did not report any change in 225cholesterol for those individuals who consumed more than 100g fructose/d (39). 226Aeberli et al reported another prospective, randomized, 3-week controlled crossover 227trial in which healthy young men were fed 80 g/d free fructose, and found a 228significant atherogenic LDL subclass distribution (40). However, there was an average 229of 34g combined fructose consumed among basal foods in this study, which meant 230subjects consumed fructose over 110g/d. The median dose of fructose available in our 231meta-analysis was ≈79.25 g/d, it was higher than 90th percentile (78 g/d) and lower 232than 95th percentile (87 g/d) in the United States, reported by the National and Health 233and Nutrition Examination Survey III (41). As for subjects with diabetic mellitus, 234Sievenpiper et al did not report cholesterol-raising effect if the fructose dose was >60 235g/d (median: 97.5 g/d) in their meta-analysis (42). The result of our study and 236intervention trials may be supported the idea that fructose did not increase cholesterol 237for the subjects with generalizable levels of exposure.238The results of subgroup analyses showed that the effects of fructose intake on TC 239and LDL-C were significant as the fructose dose > 100g/d. An intake of 100g/d is 240approximately equal to 400kcal/d or 20% of energy intake for a sedentary person with 241an energy requirement of 2000 kcal/d. The doses for cholesterol-raising effect account 242for less than 10 percent of intake in males and females aged 19 to 22 years, the group 243with the highest level of exposure in the United States (41). Another study found that 244the upper quintile of Americans consume more than 110g fructose daily as added 245sugar or as high-fructose corn syrup (43). Although a small number of people 246consume fructose at very high dose, it is necessary to advise them to change their 247lifestyle.248The dose-dependent effect on triglyceride was also reported in a recent 249meta-analysis that concluded the same dose threshold of 100g/d for a 250triglyceride-increasing effect of fructose on fasting triglyceride level in adult humans 251(38). For healthy subjects who consumed 150g of fructose/day, endogenous 252cholesterol synthesis and the fat content of viscera and liver have been shown to 253increase (44). All evidences have proved that fructose is proposed to have adverse 254effects at very high or excessive doses. The mechanism of the cholesterol increase by 255fructose might be due to increased levels of advanced glycation end products, which 256cause damage to LDL and make it poorly recognized by lipoprotein receptors and 257scavenger receptors (45). Furthermore, excess exposure to fructose can damage the 258function of adipocytes and may reduce the recycling of cholesterol extracted from 259serum LDL. Studies have shown that elevated uric acid might contribute to LDL-C 260increases, and this effect can be reduced by allopurinol (46).261Based on the composition of added sugars in the United States where the fructose: 262glucose ratio is close to 0.43, and the NHANES 1999–2004 estimates (41), the 263increase of fructose consumption is always accompanied with an increase in total 264energy intake. Persons consuming >100g/d of sugars are potentially eating in excess 265of their energy requirement (47), and then overweight and obesity could result. So we 266can not suggest that it is safe to only limit fructose to <100g/d in coronary heart 267disease management and prevention. It may need to take into account the other 268components of foods that accompany the fructose. This dose threshold effects on TG 269and LDL-C can only help better inform nutritional guidance and avoid inappropriate 270marketing of carbohydrates.271Our meta-analysis did not show significant effect of fructose on HDL-C. 272However, Perez-Pozo et al (46) reported a significant HDL-C-lowing effect in 74 273adult men fed with 200g fructose/d in a randomized, 2-week crossover trial, 274suggesting that excessive fructose dose intake can also affect HDL-C. Further trials 275are needed to find the threshold of fructose on HDL-C.276There are several limitations to our work. First, many trials had a relatively small 277sample size, and most of them were funded by industry which can affect the quality of 278studies. Second, the change of fructose in the background diet can affect the practical 279utility of the outcomes of meta-analyses. However, most of trials used the background 280diet with ≤ 3% of total energy derived from fructose (15-23, 27-33, 35), others trials 281did not report the proportion of fructose in the background (24, 25, 26, 34). It was 282hard to make sure the dose of background fructose in every trial. Third, the data 283provided by Reiser et al (23) must be interpreted with caution. Although this study 284met all of our inclusion criteria, they choose a low P:S (polyunsaturated : saturated) 285rate of the fat as the background diet, which might change the metabolism of fructose 286as diets high in saturated fatty acids can enhance intestinal fructose absorption (48). 287Fourth, some of included trials lack test statistics, baseline values and SDs. We 288overcame these problems according to the methods proposed by Cochrane Handbook 289for Systematic Reviews of Interventions. Finally, it is difficult to differentiate effects of 290other modifiers, such as exercise and age, from those included trials. These factors can 291also influence the final result. Fructose can indeed be metabolized during exercise, 292and the rate of metabolism is different between exercise and sedentary lifestyle. Most 293of participants were requested to follow a designed regiment at home, but it is not 294easy to maintain the activity intensity. On the plus size, the age of participants in our 295meta-analysis ranged from 18 to 72 years old. Evidence from animal experiments 296shows that fructose absorption may affected by age, as older rats showed decreased 297fructose absorption (49). However, no human trial has been done to assess the 298difference in fructose effect among different age groups. Therefore, further studies 299should attempt to limit or isolate the degree of heterogeneity present in the study 300population to better assess the effect of age.301In conclusion, our meta-analysis shows that fructose used as a sweetener in 302isocaloric exchange for other carbohydrates has significant increasing effects on TC 303and LDL-C in individuals with very high fructose (>100g). This effect seems not to be 304dose-dependent when fructose is given at moderate or high dose of fructose (<100g). 305Further studies should concentrate on larger, longer and higher-quality human 306controlled feeding trials, which provide a better assessment of the effect of fructose on 307cholesterol.308Acknowledgements309Tao An, Rong Cheng Zhang and Jian Zhang designed the research; Tao An, Rong 310Cheng Zhang, Yu Hui Zhang and Jian Zhang preformed the research; Tao An and 311Rong Cheng Zhang summarized the data and had primary responsibility for the 312accuracy of the analysis; Rong Cheng Zhang wrote the manuscript. All the authors 313had full access to the data. None of the authors declared a conflict of interest.314。