大学物理练习题运动学动力学答案

合集下载

动力学期末考试题及答案

动力学期末考试题及答案

动力学期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪项是牛顿第一定律的内容?A. 物体不受力时,总保持静止状态或匀速直线运动状态B. 物体的加速度与作用力成正比,与质量成反比C. 物体的加速度与作用力成正比,与质量成正比D. 物体的加速度与作用力成反比,与质量成正比答案:A2. 根据牛顿第二定律,以下哪个公式是正确的?A. F = maB. F = mvC. F = m/aD. F = a/m答案:A3. 动量守恒定律适用于以下哪种情况?A. 只有重力作用的系统B. 只有摩擦力作用的系统C. 只有外力作用的系统D. 没有外力作用的系统答案:D4. 以下哪个选项是动能的正确表达式?A. E_k = 1/2 mv^2B. E_k = 1/2 mvC. E_k = mv^2D. E_k = m^2v答案:A5. 角动量守恒定律适用于以下哪种情况?A. 只有重力作用的系统B. 只有摩擦力作用的系统C. 只有外力作用的系统D. 没有外力矩作用的系统答案:D二、填空题(每题2分,共10分)1. 牛顿第三定律指出,作用力和反作用力大小________,方向________。

答案:相等,相反2. 根据动能定理,力在物体上所做的功等于物体动能的________。

答案:变化量3. 动量是矢量,其方向与物体运动的方向________。

答案:相同4. 角速度是描述物体绕轴旋转快慢的物理量,其单位是________。

答案:弧度每秒5. 根据能量守恒定律,一个系统的总能量在没有外力做功的情况下________。

答案:保持不变三、计算题(每题10分,共20分)1. 一辆质量为1000kg的汽车,以20m/s的速度行驶。

求汽车的动能。

答案:E_k = 1/2 * 1000kg * (20m/s)^2 = 2 * 10^5 J2. 一个质量为2kg的物体从静止开始,受到一个恒定的力F=10N作用,经过2秒后的速度是多少?答案:a = F/m = 10N / 2kg = 5m/s^2v = a * t = 5m/s^2 * 2s = 10m/s四、简答题(每题10分,共20分)1. 简述牛顿第一定律和牛顿第二定律的区别。

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

动力学课后习题答案

动力学课后习题答案

动力学课后习题答案动力学课后习题答案动力学是物理学中的一个重要分支,研究物体的运动以及运动的原因和规律。

在学习动力学的过程中,课后习题是巩固知识、检验理解的重要方式。

下面将为大家提供一些动力学课后习题的答案,希望能够帮助大家更好地理解和掌握动力学知识。

1. 一个物体以5m/s的速度匀速运动了10秒,求物体的位移是多少?答:位移等于速度乘以时间,即位移=速度×时间=5m/s×10s=50m。

2. 一个物体以2m/s²的加速度匀加速运动了8秒,求物体的位移是多少?答:位移等于初速度乘以时间再加上加速度乘以时间的平方的一半,即位移=初速度×时间+0.5×加速度×时间²=0×8s+0.5×2m/s²×(8s)²=64m。

3. 一个物体以10m/s的速度向上抛出,经过2秒后落地,求物体的最大高度是多少?答:物体的最大高度等于初速度的平方除以2倍的重力加速度,即最大高度=(初速度²)/(2×重力加速度)=(10m/s)²/(2×9.8m/s²)≈5.1m。

4. 一个物体以20m/s的速度水平抛出,求物体在2秒后的水平位移是多少?答:物体在水平方向的速度是恒定的,所以水平位移等于速度乘以时间,即水平位移=速度×时间=20m/s×2s=40m。

5. 一个物体以10m/s的速度水平抛出,求物体在2秒后的竖直位移是多少?答:物体在竖直方向上受到重力的作用,所以竖直位移等于初速度乘以时间再加上0.5倍的重力加速度乘以时间的平方,即竖直位移=初速度×时间+0.5×重力加速度×时间²=10m/s×2s+0.5×9.8m/s²×(2s)²=19.6m。

大学物理(第四版)课后习题及答案 动量

大学物理(第四版)课后习题及答案 动量

题3.1:质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。

若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。

题3.1分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。

由抛体运动规律可知,物体到达最高点的时间g v t αsin 01=∆,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍。

这样,按冲量的定义即可求出结果。

另一种解的方法是根据过程的始、末动量,由动量定理求出。

解1:物体从出发到达最高点所需的时间为g v t αsin 01=∆ 则物体落回地面的时间为gv t t αsin 22012=∆=∆ 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111mv t mg t t -=∆-==⎰∆j j F I αsin 2d 0222mv t mg t t -=∆-==⎰∆解2:根据动量定理,物体由发射点O 运动到A 、B 的过程中,重力的冲量分别为j j j I αsin 00y Ay 1mv mv mv -=-= j j j I αsin 200y By 2mv mv mv -=-=题3.2:高空作业时系安全带是必要的,假如质量为51.0kg 的人不慎从高空掉下来,由于安全带的保护,使他最终被悬挂起来。

已知此时人离原处的距离为2米,安全带的缓冲作用时间为0.50秒。

求安全带对人的平均冲力。

题3.2解1:以人为研究对象,在自由落体运动过程中,人跌落至2 m 处时的速度为ghv 21= (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12mv mv t -=∆+P F (2)由(1)式、(2)式可得安全带对人的平均冲力大小为 ()N 1014.123⨯=∆+=∆∆+=tgh m mg t mv mg F解2:从整个过程来讨论,根据动量定理有N 1014.1/23⨯=+∆=mg g h tmgF 题 3.3:如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

(整理)全部动力学答案.

(整理)全部动力学答案.

1-3 解:运动方程:θtan l y =,其中kt =θ。

将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk y a =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知:aav v yn cos ==θ,所以: y v v a a n =将c v y =,ρ2n va =代入上式可得 ρc v a 3=证毕 1-7证明:因为n 2a v =ρ,v a a v a ⨯==θsin n 所以:va ⨯=3v ρ 证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s -= ,x x s s 22= ovovF N Fg myθxo由此解得:xsv x 0-= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F ym F mg xm +-=-=θθsin cos其中:2222sin ,cos l x l lx x +=+=θθ0,3220=-=y x l v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x lxl v g m F ++= 1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a ) 因为x R x 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22R x xRv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得:222222)(x R R x xω=-将上式两边对时间求导可得:x x R x x R x xx 2232222)(2ω=--将上式消去x 2后,可求得:22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F xm N -+=-=θθsin cos其中:x R x xR22cos ,sin -==θθ, 0,)(22242=--=y R x x R x ω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x x R m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。

大学物理课后习题答案(上)

大学物理课后习题答案(上)

1、26t i dt r d v+==,j i v 61+= ,j i tr r v 261331+=-=-∆ , j v v a 24131331=--=-2、0202212110v Kt v Ktdt v dv t Kv dt dv t v v +=⇒-⎰=⎰⇒-= 所以选(C ) 3、因为位移00==v r ∆,又因为,v 0≠∆0≠a 。

所以选(B )4、选(C )5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,⎰⎰=vtmvdv Pdt 0积分得:mPtv 2=(2)因为m Pt dtdx v 2==,即:dt m Ptdx tx ⎰⎰=002,有:2398t mP x = 练习二 质点运动学 (二)1、平抛的运动方程为2021gt y tv x ==,两边求导数有:gtv v v y x ==0,那么2220t g v v +=,222022t g v tg dt dv a t +==,=-=22t n a g a 2220tg v gv +。

2、 2241442s /m .a ;s /m .a n n ==3、 (B )4、(A )1、0232332223x kt x ;tk )t (a ;)k s (t +=== 2、0321`=++v v v 3、(B ) 4、(C )练习四 质点动力学(一)1、m x ;i v 912==2、(A )3、(C )4、(A )练习五 质点动力学(二)1、m'm muv )m 'm (v V +-+-=002、(A )3、(B )4、(C )5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 17621212024=-=练习六、质点动力学(三)1、J 9002、)R R R R (m Gm A E 2121-=3、(B )4、(D )5、)(21222B A m -ω练习七 质点动力学(四)1、)m m (l Gm v 212212+=2、动量、动能、功3、(B )4、(B )练习八 刚体绕定轴的转动(一)1、πωω806000.,.解:(1)摩擦力矩为恒力矩,轮子作匀变速转动 因为00120180ωωωββωω..t -=-=⇒+=;同理有00260ωβωω.t =+=。

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。

求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。

求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。

1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。

解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。

大学物理力学运动学答案(清华大学出版社)

大学物理力学运动学答案(清华大学出版社)
2 v0 gcosα
r g
− g sin θ g cos θ
2 v0 cos 2 α g cos 3 θ
r g
g sinα g cosα
2 v0 gcosα
r g
0
g
2 v0 cos 2α g
3
牛顿运动定律答案
一、选择题:1、C 2、C 二、填空题: 1、 1 : cos
2
3、A
4、D
θ
2 g + kv0 1 2、 ln g 2k
v2 : 法向加速度的大小, 加速度矢量在自然坐标系的法向分量, 反映速度方向的变化快慢。 R
⎡⎛ d v ⎞ 2 ⎛ v 4 ⎞⎤ ⎟ +⎜ ⎢⎜ ⎜ R2 ⎟ ⎟⎥ d t ⎠ ⎝ ⎢ ⎝ ⎠⎥ ⎣ ⎦
5、
1/ 2
= a :在自然坐标下的瞬时加速度的大小表示。
r g
− g sin α
g cosα
v v0
0
v v v v ∴ v − v 0 = 2ti − 4t 3 j v v v v v v 3 3 v = v 0 + 2ti − 4t j = (3 + 2t )i + (4 − 4t ) j v v v 1 = 5i 沿 x 轴 当 t = 1 s 时, v v v 故这时, a n = a y = −12 j v v v Fn = ma n = −24 j (SI)
2、解:(1) 子弹进入沙土后受力为-Kv,由牛顿定律
− Kv = m
∴ ∴ (2) 求最大深度 解法一:
dv dt
K dv − dt = , m v
v = v 0 e − Kt / m
K dv − ∫ dt = ∫ m v 0 v0

大学物理力学题库及答案

大学物理力学题库及答案

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m. (C) 0. (D) -2 m . (E) -5 m. [ ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ]5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]8、 以下五种运动形式中,a 保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.-12a p(E) 圆锥摆运动. [ ]9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ]10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是(A) g t 0v v -. (B) gt 20v v - . (C)()g t 2/1202v v -. (D) ()g t 22/1202v v - . [ ] 13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°.(C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. [ ]a 122、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g . (B) g M m . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ ]23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定.[ ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g m m + (B) .)(21g m m - (C) .22121g m m m m + (D) .42121g m m m m + [ ]27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg . (B) θsin mg .(C) θcos mg . (D) θsin mg . [ ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N应有 (A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F. [ ]129、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ ]30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ ]31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) R g μ (D)R g [ ]32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l . (B)g l θcos . (C) g l π2. (D) g l θπcos 2 . [ ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg . (B) θtg Rg .(C) θθ2sin cos Rg . (D) θctg Rg [ ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤. (B) R g s 23μω≤. (C) R g s μω3≤. (D) Rg s μω2≤. [ ]36、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B)m v . (C) m v . (D) 2m v .[ ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m/s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C) 与水平夹角37°向上.(D) 与水平夹角37°向下. [ ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ]40、质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]2343、A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2.(C) 2. (D) 2.[ ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ ]45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI) 其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ ]49、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率是:(A)21)2(gh mg . (B)21)2(cos gh mg θ.(C)21)21(sin gh mg θ. (D)1)2(sin gh mg θ. [ ]51、已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ ]53、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ ]54、作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ ]56、 考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d .(D) 条件不足无法判定. [ ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同.(B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等.(B) 弹性力作的功相等,重力作的功也相等.(C) 弹性力作的功不相等,重力作的功相等.(D) 弹性力作的功不相等,重力作的功也不相等. [ ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功. [ ]65、两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ ] 66、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωR m J J +. (C) 02ωmR J . (D) 0ω. [ ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转6568、69、动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ]72、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ] 73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ] 74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A)12v l . (B) l 32v . (C) l 43v . (D) lv3. [ ]78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) ML m 23v.(C) ML m 35v . (D) MLm 47v. [ ]79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L 54v.(C) L 76v . (D) L 98v.(E) L712v. [ ]80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0. [ ]二、填空题:81、一物体质量为M ,置于光滑水平地板上.今用一水平力F通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速78、v 俯视图79、O v 俯视图81度为a =______________________,m 1与m 2间绳子的张力T =________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________.84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max =_______________________________________.85、一物体质量M =2 kg ,在合外力i t F)23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.88、两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg ,水的阻力不计.现在站在第83、872一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2) 地面对小球的水平冲量的大小为________________________.91、质量为M 的平板车,以速度v在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________.93、一质量为m 的物体,以初速0v从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________.94、如图所示,流水以初速度1v进入弯管,流出时的速度为2v,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.y 21y97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。

大学物理课后习题答案详解

大学物理课后习题答案详解

⼤学物理课后习题答案详解第⼀章质点运动学1、(习题 1.1):⼀质点在xOy 平⾯内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道⽅程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置: 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2):质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动⽅程)(t x x =.解:kv dtdv -= ??-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -??=000 )1(0t k e k v x --=3、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ?=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020= x 2= t 3 /3+10 (SI)4、⼀质量为m 的⼩球在⾼度h 处以初速度0v ⽔平抛出,求:(1)⼩球的运动⽅程;(2)⼩球在落地之前的轨迹⽅程;(3)落地前瞬时⼩球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联⽴式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = ⽽落地所⽤时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、已知质点位⽮随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任⼀时刻的速度和加速度;(2)任⼀时刻的切向加速度和法向加速度。

高等动力学习题答案

高等动力学习题答案

高等动力学习题答案高等动力学习题答案动力学是物理学中的一个重要分支,研究物体运动的原因和规律。

在学习动力学的过程中,我们经常会遇到各种各样的问题和题目。

解答这些问题需要运用动力学的基本原理和公式,同时也需要一定的思考和推理能力。

在这篇文章中,我将为大家提供一些高等动力学学习题的答案,希望能对大家的学习有所帮助。

1. 一个质点在力F作用下做直线运动,其运动方程为x = A sin(ωt + φ),其中A、ω和φ分别为常数。

求该质点的加速度。

解答:根据题目给出的运动方程,我们可以得到质点的速度和加速度分别为v= Aωcos(ωt + φ)和a = -Aω²sin(ωt + φ)。

因此,该质点的加速度为a = -Aω²sin(ωt + φ)。

2. 一个质点在力F作用下做直线运动,其运动方程为x = At² + Bt + C,其中A、B和C分别为常数。

求该质点的速度和加速度。

解答:根据题目给出的运动方程,我们可以得到质点的速度和加速度分别为v= 2At + B和a = 2A。

因此,该质点的速度为v = 2At + B,加速度为a = 2A。

3. 一个质点在力F作用下做直线运动,其速度随时间的变化满足v = At + B,其中A和B为常数。

求该质点的位移和加速度。

解答:根据题目给出的速度-时间关系,我们可以得到质点的位移和加速度分别为x = (A/2)t² + Bt + C和a = A。

因此,该质点的位移为x = (A/2)t² + Bt + C,加速度为a = A。

4. 一个质点在力F作用下做直线运动,其加速度随时间的变化满足a = At + B,其中A和B为常数。

求该质点的速度和位移。

解答:根据题目给出的加速度-时间关系,我们可以得到质点的速度和位移分别为v = (A/2)t² + Bt + C和x = (A/6)t³ + (B/2)t² + Ct + D,其中C和D为常数。

大学物理第四章习题及答案

大学物理第四章习题及答案

大学物理第四章习题及答案大学物理第四章习题及答案第四章是大学物理课程中的重要章节,主要涉及力学和运动学的内容。

在这一章中,学生将学习到关于运动的基本概念和原理,以及如何应用这些知识解决实际问题。

为了帮助学生更好地理解和掌握这一章节的知识,以下是一些常见的习题及其答案。

习题一:一个物体以10 m/s的速度从10 m高的斜面上滑下,滑到底部时的速度是多少?解答:根据能量守恒定律,物体在滑下过程中,其机械能守恒。

由于没有外力做功,物体的机械能在滑下过程中保持不变。

因此,物体在滑到底部时的机械能等于初始机械能。

初始机械能 = 动能 + 重力势能= 1/2 mv^2 + mgh根据题目给出的条件,可得:1/2 mv^2 + mgh = 1/2 m(10)^2 + m(10)(10)= 50m + 100m= 150m因此,滑到底部时的速度为10 m/s。

习题二:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的时间是多少?解答:根据运动学中的运动方程,可以求解物体滑下斜面所用的时间。

在这个问题中,物体的初速度为0,加速度为重力加速度g,位移为斜面的长度L。

根据运动方程:S = ut + 1/2 at^2L = 0 + 1/2 gt^22L = gt^2t^2 = 2L/gt = sqrt(2L/g)根据题目给出的条件,斜面的长度L为10 m,重力加速度g为10 m/s^2,代入上述公式可得:t = sqrt(2(10)/10)= sqrt(2)≈ 1.414 s因此,滑到底部时的时间约为1.414秒。

习题三:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的加速度是多少?解答:根据牛顿第二定律,物体在斜面上滑动时受到的合力等于物体的质量乘以加速度。

在这个问题中,物体的质量为m,斜面的倾角为θ,重力加速度为g。

合力 = m * 加速度m * g * sinθ = m * 加速度加速度= g * sinθ根据题目给出的条件,斜面的倾角θ为30度,重力加速度g为10 m/s^2,代入上述公式可得:加速度= 10 * sin(30°)≈ 5 m/s^2因此,滑到底部时的加速度约为5 m/s^2。

大学物理_质点运动学、动力学力学习题解答

大学物理_质点运动学、动力学力学习题解答

质点运动学和动力学习题解答一、选择题1、 D ,位移()m x x x s t s t 313-=-=∆==;()⎰⎰=+-=-==32205,42m vdt vdt s t xv 。

2、 B ,3、 B ,4 、C ,020==∆∆=t t rv;tR t R t s v ππ224==∆=。

5、 B ,A B a a 2=,B A T T 2=,对A 、B 两物体应用牛顿运动定律:A A ma T =,B B ma T mg =-,联立上述各式可得g a B54=。

6、 D ,绳中张力为零时,物体仅受重力和支持力的作用。

由于物体的加速度方向水平向右,可知支持力的竖直分量刚好与重力抵消,水平分量使得物体有了水平方向的加速度,因此可得物体的加速度为θgtg 。

7、 D , 8、 A ,设绳中张力为T ,则弹簧秤的读数为T 2,因为A 、B 两物体的加速度大小相等,方向相反,可设加速度大小为a ,对A 、B 两物体应用牛顿运动定律:a m T g m 11=-,a m g m T 22=-,可得g m m m m T 21212+=。

二、填空题1.tS ∆ ;0 ;tV ∆-2 。

2.大小;方向;n a a an+=ττ 。

3.3002310Ct V V dt Ct dV adt dV dt dV at V V +=⇒=⇒=⇒=⎰⎰;400030121310Ct t V x x dt Ct V dx Vdt dx dt dx V t x x ++=⇒⎪⎭⎫⎝⎛+=⇒=⇒=⎰⎰。

4.t R a 4.2==θτ ,()28.42-⋅==s m s t a τ;4224.14t R R a n ===θω ,由a a 21=τ可得τa a n 3=,633=t ,rad t 15.33322423=+=+=θ。

5.30023ct dt ct Vdt ds Vdt ds dt ds V s t ===⇒=⇒=⎰⎰⎰;ct dtdV a 6==τ;R t c R V a n 4229==。

大学物理练习一

大学物理练习一

练习一 力学(质点和刚体、运动学和动力学)一、选择题:1.某质点的运动方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿X 轴正方向. (B)匀加速直线运动,加速度沿X 轴负方向. (C)变加速直线运动,加速度沿X 轴正方向.(D)变加速直线运动,加速度沿X 轴负方向. 2.某物体的运动规律为t kv t v 2d d -=,式中的k 为大于零的常数.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是(A)0221v kt v +=(B)0221v kt v +-= (C)021211v kt v += (D)021211v kt v +-=.3.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A)θcos mg . (B)θsin mg . (C)θcos mg . (D) θsin mg. 4.如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A)g . (B)2/g . (C)3/g . (D)5/4g . 5.对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒?(A)合外力为0. (B)合外力不作功.(C)外力和非保守内力都不作功. (D)外力和保守内力都不作功.6.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G .则当它从距地球中心1R 处下降到2R 处时,飞船增加的动能应等于 (A)2R GMm (B)22R GMm(C)2121R R R R GMm - (D)2121R R R GMm - (E)222121R R R R GMm - 7.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A)动能不变,动量改变. (B)动量不变,动能改变. (C)角动量不变,动量不变.(D)角动量改变,动量改变. (E)角动量不变,动能、动量都改变.8.光滑的水平桌面上有长为l 2、质量为m 的匀质细杆,可绕过其中点O 且垂直于桌面的竖直固定轴自由转动。

大学物理一、二章练习题

大学物理一、二章练习题

质点运动学及动力学练习题一 判断题1.质点作圆周运动,其加速度一定与速度垂直。

( ) 2.物体作直线运动,法向加速度必为零。

( )3.物体作曲线运动,法向加速度必不为零,且轨道最弯处,法向加速度最大。

( ) 4.某时刻质点速度为零,切向加速度必为零。

( ) 5.在单摆和抛体运动中,加速度保持不变。

( )6.某人器自行车以速率V 向正东方向行驶,遇到由北向南刮来的风,(设风速也为V ),则他感到风是从东北方向吹来的。

( )7.质点沿x 方向作直线运动,其 v - t 图象为一抛物线,如图所示。

判断下列说法的正误:(1)21t t时加速度为零。

( )(2)在0 ~ t 2 秒内的位移可用图中v – t 曲线与t 轴所围面积表示,t 轴上、下部分的面积均取正值。

( )(3)在0 ~ t 2 秒内的路程可用图中v – t 曲线与t 轴所围面积表示,t 轴上、下部分的面积均取正值。

( )8.某质点的运动方程为 x =3t -5t 3+6 (SI) ,则该质点作变加速直线运动,加速度沿X 负方向。

( )9.物体的运动方向和合外力方向一定相同。

( ) 10.物体受到几个力的作用,一定产生加速度。

( ) 11.物体运动的速度很大,所受到的合外力也很大。

( ) 12.物体运动的速率不变,所受到的合外力为零。

( )13.小力作用在一个静止的物体上,只能使它产生小的速度。

( )14.小球从距地面高为h 处以初速度v 0水平抛出,与地面碰撞后又反弹回同样的高度,速度仍为水平方向,大小为v 0 在这一过程中小球的动量受恒。

( ) 15.物体m 被放在斜面M 上,如把m 和M 看成一个系统,判断在下列何种情形下,系统的水平方向分动量是守恒的?(1)m 与M 间无摩擦,而M 与地面间有摩擦。

( )vtt 2t 1t 1/2(2)m 与M 间无摩擦,而M 与地面间无摩擦。

( ) (3)两处都没有摩擦。

大学物理第二章质点动力学习题解答

大学物理第二章质点动力学习题解答

2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为 m 1,m 2的物体(m 1M m 2),天平右端的托盘上放有砝码.问天平托盘和 砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴 承摩擦,绳不伸长。

解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用 牛顿第二定律:第二章习题解答2-17质量为2kg 的质点的运动学方程为r (6t 2 1)? (3t 2 3t 1)?(单位:米,秒),求证质点受恒力而运动,并求力的方 向大小。

解:T a d 2r/dt 2 12? 6?, F ma 24? 12?为一与时间无关的恒矢量, 质点受恒力而运动。

F=(242+122)1/2=12 ■ 5N ,力与x 轴之间夹角为:arctgF y / F xarctg 0.526 34'2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:r acos t ? bsin t ?, a,b,3为正常数,证明作用于质点的合力总指向原点证明:•.• a d 2r /dt 22(acos t? bsin tp) 2rF ma m 2r , •••作用于质点的合力总指向原点2-19在图示的装置中两物体的质量各为 m 1,m 2,物体之间及物 体与桌面间的摩擦系数都为卩,求在力F 的作用下两物体的加速度 及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离 m 1,m 2,受力及运动情况 如图示,其中:f 1=卩N 1=卩m 1g , f 2=卩N 2=卩(N 1+m 2g)=卩(m 1+m 2)g.在水平方向对 两个质点应用牛二定律:①+②可求得:a F 2 m 1ggm 1 m 2JlN 1 T ---------------- * f 11Fm1ga 亠T m g m 1a ① F m 1g (m 1 m 2)g T m 2a ②将a 代入①中,可求得:Tm 1(F 2 mg) m 1 m 2仃N 1 ‘‘ m2ga -N 1a 1一 1 • f 1 I'm 1gT' m 1 g m 1a ① m 2g T' m ?a ②T 2T' 由①②可求得:T' 2m 1m 2g T m 1 m 2 '2mim 2g m 1 m 22-21 一个机械装置如图所示,人的质量为m 仁60kg ,人所站的底 板的质量为m 2=30kg 。

大学物理 - 1-6章练习附答案

大学物理 - 1-6章练习附答案

第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。

解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。

质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。

解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。

质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。

解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题1:质点运动学和动力学
一、判断题(每题2分,共20分)
1.物体做匀速圆周运动,由于速率大小不变,所以加速度为零。

(×)
2.质点的位置矢量方向不变,质点一定作直线运动。

(√)
3. 物体匀速率运动,加速度必定为零。

( × )
4. 对于一个运动的质点,具有恒定速率,但可能有变化的速度。

( √ )
5. 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。

( √ )
6.质点运动经一闭合路径,保守力对质点作的功为零。

(√)
7.一个系统如果只受到保守内力的作用,此系统机械能守恒。

(√)
8.质量为 M 的木块静止在光滑水平面上,一质量为 m的子弹水平地射入木块后又穿出木块,则在子弹射穿木块的过程中,子弹和木块组成的系统动量守恒。

(√)
9. 子弹分别打在固定的软和硬的两块木块内,则木块受到的冲量相同,但硬木块的平均作用力大。

(√)
10. 一对内力作功之和必为零。

(×)
二、选择题(每题2分,共20分)
1.当物体的加速度不为零时,则:( B )
(A)对该物体必须做功;(B)对该物体必须施力,且合力不会为零;
(C)它的速率必然增大;(D)它的动能必然增大。

2. 质点在O−xy平面内运动,其运动方程为r⃗=2ti⃗+(4−t2)j⃗ (SI),则当t=2S时,质点的速度是 ( A )
(A) (2i ⃗−4j ⃗)m s ⁄ (B) (−2i ⃗)m s ⁄ (C) (−4j ⃗)m s ⁄ (D) (2i ⃗+4j ⃗)m s ⁄
3、下列几种运动形式,哪一种运动是加速度矢量a ⃗⃗保持不变的运动?( C )。

A 、单摆运动;
B 、匀速度圆周运动;
C 、抛体运动;
D 、以上三种运动都是a ⃗⃗保持不变的运动。

4. 一个质点在做圆周运动时,则有( B )
(A) 切向加速度一定改变,法向加速度也改变;
(B) 切向加速度可能不变,法向加速度一定改变;
(C) 切向加速度可能不变,法向加速度不变;
(D) 切向加速度一定改变,法向加速度不变。

5. 质点作半径为R 的变速圆周运动的加速度大小为( D )
(A)/dv dt (B)2/v r (C)2//dv dt v r + (D)
6. 质点系统不受外力作用的非弹性碰撞过程中 ( C )
(A) 动能和动量都守恒; (B) 动能和动量都不守恒;
(C) 动能不守恒,动量守恒; (D) 动能守恒,动量不守恒。

7. 质点的内力可以改变 ( C )
(A) 系统的总质量; (B) 系统的总动量; (C) 系统的总动能; (D) 系统的总角动量。

8. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则 ( B )
(A) 它的加速度方向永远指向圆心,其速率保持不变;
(B) 它受到的轨道的作用力的大小不断增加;
(C) 它受到的合外力大小变化,方向永远指向圆心;
(D) 它受到的合外力大小不变,其速率不断增加。

9. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体( C )
(A) 动量守恒,合外力为零;
(B) 动量守恒,合外力不为零;
(C) 动量变化为零,合外力不为零, 合外力的冲量为零;
(D) 动量变化为零,合外力为零。

10. 子弹射入光滑水平面上静止的木块而不穿出,地面为参考系,下列说法中正确的是( C )
(A)子弹的动能转变为木块的动能;
(B) 子弹与木块系统的机械能守恒;
(C) 子弹动能的减少等于子弹克服木块阻力所作的功;
(D) 子弹克服木块阻力所作的功等于这一过程中产生的热。

三、计算题(每题10分,共60分)
1. 质点在oxy 平面内运动,其运动方程22(6)r ti t j =--(SI ), 求(1)质点的轨迹方程;(2)t=3 s 时速度。

(1)将运动方程矢量写成分量形式:2
2,(6)x t y t ==--,消去参数t ,得质点轨迹方程:2
64x y =-+
(2)对运动方程求导得速度表达式:22v i tj =+,t=3时,26v i j =+,大小v =,与x 轴成角度arctg 3。

2. 一质点直线运动,速度为22v t t =-(SI ),初始位置坐标为x 0求质点运动的轨道和加速度.
解:对速度表达式积分下223122d 23
x t t t t t c =-=-+⎰,其中,t=0时x=x 0,的c=x 0,故质点运动 轨道为2230122d 23
x t t t t t x =-=-+⎰。

对速度表达式求导得加速度14t α=-。

3.一质点沿半径为1 m 的圆周运动,它通过的弧长s 按s =t 2+2的规律变化.问它在2 s 末的速率、切向加速度、法向加速度各是多少?
解:对弧长表达式求导,得圆周运动的切向速度大小为v =2t m/s ,为匀加速圆周运动。

2s 末的速率v =4 m/s 。

对切向速率求导,得切向加速度大小t α=2 m/s 2,任何时间内切向加速度大小保持不变,方向沿运动的切线方向。

2s 末法向加速度大小22
4161
n v R α=== m/s 2。

方向指向圆心。

4.一质量为10 kg 的物体沿x 轴无摩擦运动,t=0时物体静止于原点。

(1)若物体在力F=3+4t(N)的作用下运动了3 s ,它的冲量增为多大?(2)物体在力F=3+4x (N )作用下移动了3 m ,它的速度增为多大?
解:(1)根据冲量定义d I F t =⎰,3秒内冲量增量为3323
000
d 34d [32]27I F t t t t t ==+=+=⎰⎰ kg ·m/s 。

(2) 在力的作用下运动3m ,做功3
2300Fd 34d [32]27W x x x x x ==+=+=⎰⎰ J. 因为物体时从零开
始运动故力做功等于其动能增加,21272W mv == J ,则:5v =m/s
5.大炮在发射时炮身会发生反冲现象。

设炮身的仰角为θ, 炮弹和炮身的质量分别为m 和M, 炮弹在离开炮口时的速率为v, 若忽略炮身反冲时与地面的摩擦力, 求炮身的反冲速率。

解:设x 轴沿水平祥右,根据动量守恒定律得
所以炮身的反冲速率为
6.如图所示一绳长为L 的单摆,A 端固定,可在竖直平面内摆动,一小钉 B 固定在与竖直平面平行的墙面上。

摆球自摆线水平位置C 释放,恰能绕B 做圆周运动,问B 与A 的距离d 是多少? 解 设BD=R,由分析可得摆球和地球组成的系统机械能守恒。

圆周运动
M v m v '+=cos θ0'=-v mv M cos θR mg mv mgl E 2221+=R v m mg E 2=⇒gR
v E =l R 52=l R l d 5
3 =-=∴
附加题(每题10分,共20分)
7.质点在oxy 平面内运动,其运动方程x=2t+5,
12232y t t -=+- (SI)。

(1)写出质点位置矢量表达式;(2)计算t=4s 时的速度和加速度。

解:(1)位置矢量表达式:21(25)(32)2
r t i t t j =+++-。

(2)对未知矢量求导得速度表达式:2(3)v i t j =+
+,t=4s 时,27v i j =+,大小v =,方
向与x 轴成角度27
arctg 。

再对速度求导,得质点加速度j α=,大小为1m/s 2,方向沿y 轴。

8.质量为M =1.5 kg 的物体,用一根长L=3 m 的轻质细绳悬挂在天花板上,有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹速度为v =50 m/s ,设穿透时间极短。

求(1)子弹刚穿出时绳子的张力N 大小;(2)子弹在穿透过程中所受的冲量。

解:(1)根据动量定理,子弹穿出物块过程中子弹和物块组成的系统动量守恒(设子弹穿出时子弹和物块的速度分别为12,v v ),则
01223mv mv Mv v =+⇒= m/s ,
根据受力分析和圆周运动法向加速度公式:
2
18v N Mg N L
-=⇒= N 。

(2)根据动量定理,子弹受到的冲量等于其动量变化:
104.5
I P mv mv
=∆=-=- kg·m/s,
即:动量变化大小为4.5 kg·m/s,方向与子弹运动方向相反。

相关文档
最新文档