(完整版)全等三角形几种类型总结
2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
全等三角形模型总结
全等三角形模型总结
1. 简介
全等三角形模型是一种描述人际交往的模型,它将人际交往分为三种基本形式。
它以三角形来代表三种基本形式,每个角都代表一种形式,分别为:被动、主动和中间形式。
2. 概念
(1)被动形式:被动形式一般又称“受控形式”,指一方以放弃自己的利益来保护自己。
它反映出受控者的恐惧感和自我抑制。
(2)主动形式:主动形式是指一方通过展示自己的力量来追求自己的目标。
它反映出主动者不顾对方感受努力去实现自己的利益。
(3)中间形式:中间形式是指双方都保护自己的利益,但是又保持关系的和谐,通过互相理解和讨论来达成最终的共识。
3. 特点
(1)它是一种抽象性的模型,不给出完整的语言技巧和行动指南,可以为个体和群体提供思考的空间;
(2)它将人际交往视作一种动态的过程,强调在不断变化的情况下如何通过合作。
它指出,当处理复杂问题时,每个人都有责任和义务,以促进社会的和谐与发展;
(3)它倡导思想性的观念,指出以理性的行为代替受控或主导的行为,支持道德和礼仪,为人际交往建立可持续的理性精神基础。
4. 应用
全等三角形模型可以用于提高孩子的人际交往能力,以及增强社
会沟通技巧。
它也可以用于帮助企业和员工更好地协调关系,促进成功的团队建设,更好地处理挑战和危机,以及提高工作效率。
全等三角形几种类型总结
全等三角形几种类型总结1. SSS 全等三角形(Side-Side-Side):在两个三角形中,各对应的边长都相等。
当三边分别对应相等时,可以得出两个三角形是全等的。
2. SAS 全等三角形(Side-Angle-Side):在两个三角形中,两个对应的边和夹角分别相等。
当两个对应的边长和夹角对应相等时,可以得出两个三角形是全等的。
3. ASA 全等三角形(Angle-Side-Angle):在两个三角形中,两个对应的角和一个对应的边相等。
当两个对应的角和一个对应的边对应相等时,可以得出两个三角形是全等的。
4. AAS 全等三角形(Angle-Angle-Side):在两个三角形中,两个对应的角和另一个对应的旁边相等。
当两个对应的角和另一个对应的旁边对应相等时,可以得出两个三角形是全等的。
5. RHS 全等三角形(Right Angle-Hypotenuse-Side):在两个三角形中,其中一个是直角三角形,且两个对应的斜边和另一个对应的边相等。
当一个三角形是直角三角形,且两个对应的斜边和另一个对应的边对应相等时,可以得出两个三角形是全等的。
这些全等三角形的概念和性质可以帮助我们在解决几何问题时判断两个三角形是否全等。
通过观察给定的条件,我们可以确定适当的全等三角形的类型,然后使用这些方法来解决问题。
例如,如果我们知道两个三角形的三个边长相等,则可以判断这两个三角形是SSS全等三角形。
如果我们只知道两个三角形的两个边对应相等,并且这两个边之间的夹角也相等,则可以判断这两个三角形是SAS全等三角形。
同样地,我们可以通过已知条件和全等三角形的类型来确定两个三角形是否全等。
总之,全等三角形是非常重要且有用的概念,它们帮助我们在解决几何问题时确定两个三角形是否全等。
理解和掌握这些全等三角形的类型和性质将有助于解决各种与三角形有关的问题。
全等三角形几种类型总结(供参考)
全等三角形与角平分线全等图形:能够完全重合的两个图形就是全等图形.全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角•全等多边形的对应边、对应角分别相等•如下图,两个全等的五边形,记作:五边形ABCQE里五边形A'B'C'D'E' .这里符号徑"表示全等,读作"全等于"•全等三角形:能够完全重合的三角形就是全等三角形•全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等•全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形•能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角•全等符号为“空‘ •全尊三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等•寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角•(5)有对顶角的,对顶角常是对应角•全等三角形的判定方法:(1)边角边走理(SAS):两边和它们的夹角对应相等的两个三角形全等•⑵角边角走理(ASA):两角和它们的夹边对应相等的两个三角形全等•(3)边边边走理(SSS):三边对应相等的两个三角形全等•(4)角角边走理(MS):两个角和其中一个角的对边对应相等的两个三角形全等•(5)斜边、直角边定理(HD :斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:找夹角TSAS已知两边找直角THL找另一边TSSS边为角的对边一找任意一角一A4S找这条边上的另一角一ASA 找这条边上的对角一AAS 找该角的另一边一SAS全等三角形的图形归纳起来有以下几种典型形式:已知一边一角《边就是角的一条边已知两角<找两角的夹边T ASA 找任意一边T AAS(1)平移全等型⑴角的平分线上的点到这个角的两边的距离相等•⑵到一个角的两边的距离相同的点,在这个角的平分线上•⑶等腰三角形的性质走理:等腰三角形的两个底角相等(即等边对等角)•⑷等腰三角形的顶角平分线、底边上的中线底边上的高互相重合•⑸等腰三角形的判走走理如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹线段垂直平分线上的点和这条线段两个端点的距离相等•(7)和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等;⑵到角的两边距离相等的点在角的平分线上•它们具有互逆性•角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式:1 •由角平分线上的一点向角的两边作垂线,2・过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,3 . OA = OB ,这种对称的图形应用得也较为普遍,三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:彫吉三角形两边中点的线段叫做三角形的中位线•三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半•中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边•中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无^是倍长中线以及中位线走理(以后还要学习中线长公式),尤其是在涉及线段的等臺关系时,倍长中线的应用更是较为常见•【例1】在初、AC 上各取一点E. D, ^AE = AD 9连接3D 、CE 相交于O 再连结AO . BC 9若Z1 = Z2,则图中全等三角形共有哪几对?并简单说明理由・【巩固】如图所示,AB = AD 9 BC = DC, E 、尸在AC 上,AC 与BQ 相交于P.图中有几对全等三 角形?请一一找出来,并简述全等的理由.【例2】(2008年巴中市髙中阶段教育学校招生考试)如图,AC//DE 9 BC 〃 EF , AC = DE.求证: AF=BD ・【例3】(2008年宜宾市)已知:如图,AD = BC, AC = BD,求证:ZC = ZD ・【巩固】如图,AC. 3D 相交于O 点,RAC = BD 9 AB = CD 9求证:OA = OD.板块二、三角形全等的判定与应用【例4】(哈尔滨市2008年初中升学考试)已知:如图,B.E.F.C 四点在同一条直线上,AB = DC 9 BE = CF ■ = 求证:OA= OD.A I)【例5】 已知,如图,AB = AC 9 CE 丄AB 9 BF 丄AC 9求证:BF = CE.【例6】E 、F 分别是正方形ABCQ 的CQ 边上的点,且BE = CF •求证:AE 丄BF ・【巩固】E. F. G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE 丄EF, GE = EF.求证:BG + CF = BC ・【例7】 在凸五边形中,Zfi = ZE, ZC = ZD, BC = DE , M 为CD 中点.求证:AM 丄CD.I) C板块三、截长补短类【例1】如图,点M为正三角形的边加所在直线上的任意一点(点3除外),作ZDMV = 60。
全等三角形八大模型归纳
全等三角形八大模型归纳全等三角形是初中数学中重要的概念之一,它是指两个三角形的对应边相等且对应角相等。
全等三角形具有许多性质和特点,可以归纳为八大模型,分别是SSS、SAS、ASA、AAS、HL、LLL、LLA、LAL。
下面将分别介绍这八种模型的特点和应用。
第一种模型是SSS,即三边全等。
当两个三角形的三条边分别相等时,这两个三角形就是全等的。
这种模型在实际生活中的应用非常广泛,比如在建筑、工程设计中,需要测量房屋的各个边长是否相等,以确保建筑物的稳定性和均衡性。
第二种模型是SAS,即两边夹角边全等。
当两个三角形的两边和夹角分别相等时,这两个三角形就是全等的。
这种模型常常用于证明两个三角形全等的情况,可以通过辅助线的引入来简化证明过程。
第三种模型是ASA,即两角边角全等。
当两个三角形的两个角和夹边分别相等时,这两个三角形就是全等的。
这种模型在解题过程中也经常用到,特别是在证明题中,可以根据已知条件找到相等的角和边,从而得出结论。
第四种模型是AAS,即两角边角全等。
当两个三角形的两个角和一边分别相等时,这两个三角形也是全等的。
这种情况在证明过程中比较常见,可以通过找到两个角和一边相等来得出结论。
第五种模型是HL,即斜边和直角边全等。
当两个直角三角形的斜边和一个直角边分别相等时,这两个三角形就是全等的。
这种情况在解决直角三角形的问题时经常用到,可以利用勾股定理和全等三角形的性质来求解。
第六种模型是LLL,即三边全等。
这种模型和SSS模型类似,只不过LLL模型更加具体,强调了三个边全部相等的情况。
在实际问题中,可以通过测量三角形的三边长度来判断两个三角形是否全等。
第七种模型是LLA,即两边和一个角全等。
当两个三角形的两个边和一个非夹角的角相等时,这两个三角形是全等的。
这种情况在解题过程中也会经常遇到,可以通过找到两个边和一个非夹角的角相等来证明两个三角形全等。
第八种模型是LAL,即一边和两个角全等。
当两个三角形的一条边和两个角分别相等时,这两个三角形也是全等的。
全等三角形的常见类型归纳
全等三角形的常见类型全等三角形是初中平面几何的一个重要内容,也是中考必考的内容之一。
识别两个三角形全等一般有边角边(SAS)、角边角(ASA)、角角边(AAS)、边边边(SSS)四种方法。
全等三角形的题目很多,但不外乎以下四种类型:一、轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称。
把△ABC沿直线L翻折后,能与△A”B”C”重合,则称它们是轴对称型全等三角形。
下图是常见的轴对称型全等三角形,其对称轴L是对称点所连线段的垂直平分线。
识别轴对称三角形全等要注意题中的一些隐含条件,例如有些具有公共边(如图(1)中的AC,图(4)中的AA”),有些具有公共角或对顶角(如图(2)中的∠BAC=∠B”AC”,图(3)中的∠ACB=∠A”CB”)。
例1.如下图,在∠A的两边截取AB=AC,又截取AD=AE,连CD、BE交于F。
试说明:AF平分∠A。
二、平移型全等三角形 把△ABC沿着某一条直线L平行移动,所得△A”B”C”与△ABC称为平移型全等三角形。
有时这条直线就是△ABC的某一条边所在直线。
下图是常见的平移型全等三角形。
图(1)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”。
图(2)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”,BC∥B”C”,BC=B”C”。
例2. 如下图,△ABC中,∠A=90°,AD⊥BC于D点,∠C的平分线CE交AB、AD于E、F,过F作FG∥BC交AB于G点。
试说明:AE=BG。
三、旋转型全等三角形 将△ABC绕顶点A旋转角后,到达△AB”C”的位置,则称△ABC和△AB”C”为旋转型全等三角形。
如下图所示,这些是常见的旋转型全等三角形。
识别旋转型全等三角形时,要注意图(1)(2)(3)中以点A、B、B”和点A、C、C”为顶点的三角形都是顶角为的等腰三角形,∠BAC和∠B”AC”隐含着一个等量减(加)等量的条件,通常用边角边(SAS)来识别两个三角形全等。
三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)
三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。
全等三角形几种类型
全等三角形几种类型1.SSS(边边边)全等:如果两个三角形的三边分别相等,则它们是全等的。
这是全等三角形最基本的类型。
例如,如果两个三角形的边长分别是AB=DE,AC=DF,BC=EF,则三角形ABC和DEF是全等的。
2.SAS(边角边)全等:如果两个三角形的两边和夹角分别相等,则它们是全等的。
例如,如果两个三角形的边长和夹角分别是AB=DE,AC=DF,且∠BAC=∠EDF,则三角形ABC和DEF是全等的。
3.ASA(角边角)全等:如果两个三角形的两角和一边分别相等,则它们是全等的。
例如,如果两个三角形的两角和一边分别是∠BAC=∠EDF,∠ABC=∠DEF,AC=EF,则三角形ABC和DEF是全等的。
4.AAS(角角边)全等:如果两个三角形的两角和一边的对应边分别相等,则它们是全等的。
例如,如果两个三角形的两角和一边的对应边分别是∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,则三角形ABC和DEF是全等的。
5.RHS(直角边斜边)全等:如果两个三角形的其中一个角是直角,且另外两边分别相等,则它们是全等的。
例如,如果两个三角形的其中一个角是直角ABC,且边AC=DE,BC=EF,则三角形ABC和DEF是全等的。
在这些全等三角形类型中,SSS和SAS是最基本的类型,其他类型都可以由它们推导出来。
此外,这些全等性质不仅适用于平面内的三角形,也适用于三维空间中的三角形。
全等三角形在几何中具有重要的应用,例如在证明几何定理和解决几何问题时,可以通过使用全等三角形来得到更多的结论。
全等三角形还可以帮助我们计算形状的未知尺寸,以及在建筑、工程和计算机图形学等领域中的实际应用。
总结起来,全等三角形有SSS、SAS、ASA、AAS和RHS五种类型。
根据这些类型,我们可以根据给定的信息判断三角形的全等关系,并利用这些关系解决各种几何问题。
全等三角形经典模型总结
全等三角形经典模型总结1.S-A-S(边-角-边)全等法则:当一个三角形的两边和夹角分别等于另一个三角形的两边和夹角时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,∠ABC=∠DEF,并且BC=EF,那么三角形ABC全等于三角形DEF。
2.A-S-A(角-边-角)全等法则:当一个三角形的两角和夹边分别等于另一个三角形的两角和夹边时,两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,BC=EF,并且∠BCA=∠EFD,那么三角形ABC全等于三角形DEF。
3.S-S-S(边-边-边)全等法则:当两个三角形的三边分别对应相等时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且AC=DF,那么三角形ABC全等于三角形DEF。
4.H-L(高-底)全等法则:如果两个三角形的高和底分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果h1是三角形ABC的高,b1是它的底,h2是三角形DEF的高,b2是它的底,如果h1=h2,b1=b2,则三角形ABC全等于三角形DEF。
5.A-A-S’(角-角-边)全等法则:若三角形的两个角和两个边分别与另一三角形的两个相对角和边对应,则两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,∠BCA=∠EFD,并且AC/DF=BC/EF,那么三角形ABC全等于三角形DEF。
6.1-1-1全等法则:如果两个三角形的边长度分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,AC=DF,并且BC=EF,那么三角形ABC全等于三角形DEF。
7.1-1-边(边-边)全等法则:如果两个三角形的两个边和一个夹角分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且∠ABC=∠DEF,那么三角形ABC全等于三角形DEF。
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
全等三角形的几种情况
全等三角形的几种情况
全等三角形是指具有相同形状和相等对应边角的三角形。
以下是全等三角形的几种情况:
1. SSS准则(边边边):如果两个三角形的三条边分别相等,则它们是全等三角形。
即,如果三角形ABC的边长与三角形DEF的边长相等,即AB = DE,BC = EF,AC = DF,则三角形ABC和DEF是全等的。
2. SAS准则(边角边):如果两个三角形的两边和夹角分别相等,则它们是全等三角形。
即,如果三角形ABC的两边AB和AC与三角形DEF的两边DE和DF相等,并且夹角BAC等于夹角EDF,则三角形ABC 和DEF是全等的。
3. ASA准则(角边角):如果两个三角形的两角和一边分别相等,则它们是全等三角形。
即,如果三角形ABC的两角∠BAC和∠BCA与三角形DEF的两角∠EDF和∠EFD相等,并且边AC等于边DF,则三角形ABC和DEF是全等的。
4. RHS准则(直角边斜边):如果两个直角三角形的一条直角边和斜边分别相等,则它们是全等三角形。
即,如果直角三角形ABC的一条直角边AB和斜边AC与直角三角形DEF的一条直角边DE和斜边DF相等,则三角形ABC和DEF是全等的。
需要注意的是,这些准则是根据欧几里得几何的基本原理得出的。
当满足这些准则时,可以确定两个三角形是全等的。
这些准则提供了判定全等三角形的方法,在解决三角形的问题中起着重要的作用。
1/ 1。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
全等三角形几种类型总结
全等三角形几种类型总结全等三角形是高中几何学中重要的概念之一,它在理论研究和实际应用中都有着广泛的运用。
全等三角形指的是两个三角形的所有对应角度相等且对应边长相等。
在几何学中,全等三角形的性质和判定方法是学生必须掌握的基本知识之一。
本文将从角度和边长两个方面进行总结和归纳,介绍全等三角形的各种类型。
一、角度相等的全等三角形1. 直角全等三角形直角全等三角形是指两个直角三角形的对应角度相等,且对应边长相等。
根据勾股定理,直角全等三角形的两直角边长度相等,斜边长度也相等。
这种三角形常见于解决直角三角形的题目,具有重要的应用价值。
2. 等腰全等三角形等腰全等三角形是指两个等腰三角形的对应角度相等,且对应边长相等。
等腰全等三角形的底边长度相等,顶角也相等。
这种三角形在解决等腰三角形相关问题时经常出现,具有一定的特殊性。
3. 等边全等三角形等边全等三角形是指两个等边三角形的对应角度相等,且对应边长相等。
等边全等三角形的三个边长均相等,三个内角均为60度。
它是最特殊的全等三角形,具有对称性和稳定性,常用于解决等边三角形相关问题。
二、边长相等的全等三角形1. 边边边(SSS)全等三角形SSS全等三角形是指两个三角形的对应边长相等。
当两个三角形的三条边长度各个对应相等时,可判定这两个三角形全等。
这是最基本的全等三角形判定方法,在实际运用中非常常见。
2. 边角边(SAS)全等三角形SAS全等三角形是指两个三角形的一个对应边长和两个对应角度相等。
当两个三角形的一条边和两个夹角各个对应相等时,可判定这两个三角形全等。
这种判定方法在实际应用中较为常见。
3. 角边角(ASA)全等三角形ASA全等三角形是指两个三角形的两个对应角度和一个对应边长相等。
当两个三角形的两个角度及一边对应相等时,可判定这两个三角形全等。
ASA判定方法在解决三角形全等问题时也是常用的一种方法。
三、其他全等三角形的特殊情况1. 等腰直角全等三角形等腰直角全等三角形是指一个直角三角形的斜边与一个等腰三角形的两个等边分别相等。
(完整版)全等三角形题型归纳(经典完整)
1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。
熟悉全等三角形的几种常见类型
熟悉三角形全等的几种常见类型一般地,一个图形经过平移、翻折、旋转等位置后变化了,由于形状、大小都没有发生改变,因此三角形经过平移、翻折、旋转后所得三角形与原三角形全等.然而全等三角形的位置虽然各异,但从基本图形的构造上划分,主要有:平移全等型、翻折全等型、旋转全等型这三种类型,了解这些基本类型不仅可以增强我们分辨图形的能力,而且可以提高我们分析和解决问题的能力.现归纳分析如下:一、平移全等型平移全等型可视为由对应相等的边沿同一方向移动所构成的全等三角形,它是全等三角形中较简单的一类,其对应边、对应角、对应顶点比较明显.证明平移全等型对应边的全等关系常常会由同一直线上线段和(或差)证线段相等.如图1:若已知AD=BE,则AD+AE=BE+AE,即DE=AB.图1 图2 图3二、翻折全等型翻折全等型特征是有对应相等的边(角或顶点)重合,可沿某一直线翻折且直线两旁的部分能完全重合.因此,其重合的边是对应边,重合的角是对应角,重合的顶点为对应点.图4 图5 图6 图7 图8三、旋转全等型旋转全等型的特征是以三角形某一顶点为中心旋转所构成,如图和图都以A为旋转中心,或旋转之后再进行平移.常常有一对相等的角隐含于对顶角、平行线、某些角的和(或差)之中.图9 图10 图11 图12你能写出以上各图中的全等三角形吗?请你写一写,要注意对应的元素哟!!参考答案:图1:△ABC≌△DEF;图2△ABC≌△DAE;图3△ABC≌△DEF;图4:△ABC≌△DBC(BC为公共边);图5:△ABC≌△DCB(BC为公共边);图6:△ABC≌△DEF;图7 :△ABC≌△AED;图8:△ABC≌△AED;图9:△ABC≌△ADE;图10:△ABC≌△CDA;图11:△ABC≌△DEF;图12:△ABC≌△ADE.。
(完整版)全等三角形题型总结
全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC , 在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( ) (2)有两边和其中一边上的高对应相等的两个三角形全等.( ) (3)有两边和第三边上的高对应相等的两个三角形全等.( )(答案)(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.(答案与解析)证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BFDEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC. (点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt△CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线, 过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD . (2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN =又∵AC =BD ∴PM =PN又∵PM⊥OA,PN⊥OB ∴OP平分∠AOB(点评)观察已知条件中提到的三角形△PAC与△PBD,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.(答案)证明:在线段AD上取AF=AB,连接EF,∵AE是∠BAD的角平分线,∴∠1=∠2,∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°,又∵∠DFE+∠AFE=180°,∴∠C=∠DFE,∵DE是∠ADC的平分线,∴∠3=∠4,又∵DE=DE,∴△CDE≌△FDE,∴DF=DC,∵AD=DF+AF,∴AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.(答案)证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (SAS)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(答案)证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD. (1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD. ∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA. ∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM. ∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD. (3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCM G HDCBAEDC BA2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.(答案与解析)证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AECAM EAMAM AM=⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.(答案与解析)证明:作ME⊥AF于M,连接EF.∵四边形ABCD为正方形,∴∠C=∠D=∠EMA=90°.又∵∠DAE=∠FAE,∴AE为∠FAD的平分线,∴ME=DE.在Rt△AME与Rt△ADE中,()()AE AEDE ME=⎧⎨=⎩公用边,已证,∴Rt△AME≌Rt△ADE(HL).∴AD=AM(全等三角形对应边相等).又∵E为CD中点,∴DE=EC.∴ME=EC.在Rt△EMF与Rt△ECF中,()(ME CEEF EF=⎧⎨=⎩已证,公用边),∴Rt△EMF≌Rt△ECF(HL).∴MF=FC(全等三角形对应边相等).由图可知:AF=AM+MF,∴AF=AD+FC(等量代换).(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD=,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90°∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF2、如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS) ∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
全等三角形13种基本模型
序号
模型名称
描述与判定方法
1
边边边(SSS)
三边对应相等的两个三角形全等。
2
边角边(SAS/边-角-边)
两边பைடு நூலகம்它们之间的夹角对应相等的两个三角形全等。
3
角边角(ASA/角-边-角)
两角及它们之间的夹边对应相等的两个三角形全等。
4
角角边(AAS/角-角-边)
两角及其中一角的对边对应相等的两个三角形全等。
12
“构造等腰三角形”型全等
通过添加辅助线构造等腰三角形,利用等腰三角形的性质证明全等。
13
“构造平行四边形”型全等
通过添加辅助线构造平行四边形,利用平行四边形的性质(对边相等、对角相等)证明全等。
5
斜边、直角边(HL/直角三角形的HL)
在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等(仅适用于直角三角形)。
6
“K”型全等
通过构造辅助线,形成两个具有公共边的三角形,利用SAS或ASA证明全等。
7
“X”型全等
通过两条相交线形成的四个三角形,利用对顶角相等和公共边证明全等。
8
“中线”型全等
利用三角形中线性质(中线将对边平分),结合其他条件证明全等。
9
“角平分线”型全等
利用角平分线性质(角平分线上的点到角两边距离相等),结合其他条件证明全等。
10
“高”型全等
利用三角形高(从顶点垂直于对边或对边的延长线)的性质证明全等。
11
“中位线”型全等
利用三角形中位线性质(中位线平行于第三边且等于第三边的一半),结合其他条件证明全等。
全等三角形八大基本模型
全等三角形八大基本模型摘要:1.全等三角形的定义与性质2.全等三角形的八大基本模型1.手拉手模型2.一线三垂直模型3.一线三等角模型4.等腰三角形中边边角模型5.背对背模型6.半角旋转模型7.角分线模型8.正方形手拉手模型正文:全等三角形是指两个三角形的对应边和对应角分别相等的三角形。
在解决全等三角形问题时,我们需要了解全等三角形的定义和性质,同时掌握一些常用的模型。
本文将介绍全等三角形的八大基本模型,希望能帮助大家更好地理解和解决全等三角形问题。
1.手拉手模型:两个三角形通过一个公共边,并且这个公共边的两个相邻角分别相等。
2.一线三垂直模型:两个三角形有一个公共边,并且这个公共边的两个相邻角分别相等,同时还有另一条公共边上的一个角与另一个角的补角相等。
3.一线三等角模型:两个三角形有一个公共边,并且这个公共边上的三个角分别相等。
4.等腰三角形中边边角模型:两个等腰三角形,其中一个等腰三角形的底边与另一个等腰三角形的腰相等,同时这两个等腰三角形的底角分别相等。
5.背对背模型:两个三角形分别有一个角和另一个角的补角相等,且这两个三角形的另一条边分别相等。
6.半角旋转模型:两个三角形有一个公共边,并且这个公共边的两个相邻角中有一个角是另一个角的一半。
7.角分线模型:两个三角形有一个公共边,并且这个公共边上的一个角平分另一个角。
8.正方形手拉手模型:两个正方形,其中一个正方形的边与另一个正方形的对角线相等。
在解决全等三角形问题时,我们可以根据题目所给的条件,结合全等三角形的性质和八大基本模型,通过适当的变换和推理,证明两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形与角平分线全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩ 找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等. ⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,AB OPPOB AA BOP三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.例题精讲板块一、全等三角形的认识与性质【例1】 在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.21E ODCBA【巩固】如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.板块二、三角形全等的判定与应用【例2】 (2008年巴中市高中阶段教育学校招生考试)如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.FEDCBA【例3】 (2008年宜宾市)已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.ODCBA【巩固】如图,AC 、BD 相交于O 点,且AC BD =,AB CD =,求证:OA OD =.FAE P DCBABCO【例4】 (哈尔滨市2008 年初中升学考试)已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.F E ODCB A【例5】 已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例6】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA【巩固】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BCDEF【例7】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.M EDC B板块三、截长补短类【例1】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?NEB M A D【巩固】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A【例2】 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB的长为 ( )A . aB . kC .2k h+ D . h MDCBA【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .FEDCBA【例4】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA【例5】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDECEDB A板块四、与角平分线有关的全等问题【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.ADOC BD CBA【例3】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.ED CB A【例4】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA【例5】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A4321【例6】 (“希望杯”竞赛试题)长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F ,则EF =__________.FEDCBA【例7】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B【巩固】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC ∠的角平分线.F GE DCBA【巩固】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.CD B PA【例8】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A【例9】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD⊥且交AD 的延长线于F ,求证()12MF AC AB =-.MFD CB A【巩固】如图所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,求证DE AB ∥ 且1()2DE AB AC =+.E DCB A【巩固】如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA【例10】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE⊥于E .求证:AD AE =.HG D AB C E【巩固】已知:AD 和BE 分别是ABC △的CAB ∠和CBA ∠的外角平分线,CD AD ⊥,CE BE ⊥,求证:⑴ DE AB ∥;⑵ ()12DE AB BC CA =++.EBA D C【例11】 在ABC ∆中,MB 、NC 分别是三角形的外角ABE ∠、ACF ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++FEN M CBA【巩固】在ABC ∆中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-N MCBA【巩固】(北京市中考模拟题)如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作E AB CE 于⊥,并且)(21AD AB AE +=,则ADC ABC ∠+∠等于多少?EDCBA【例12】 如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCB A版块一、倍长中线【例1】 已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.MCB A【巩固】(2002年通化市中考题)在ABC ∆中,5,9AB AC ==,则BC 边上的中线AD 的长的取值范围是什么?【例2】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.DCBA【例3】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FEDC BA【例4】 已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .GEDCBA【例5】 已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.MFECBA【例6】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?F EDCBA【巩固】如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.NMDCBA【例7】 (2008年四川省初中数学联赛复赛·初二组)在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.FEDCBA版块二、中位线的应用【例8】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =.FADE CB【例9】 如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.EDCB A【巩固】已知△ABC 中,AB =AC ,BD 为AB 的延长线,且BD =AB ,CE 为△ABC 的AB 边上的中线.求证CD =2CEE DB CA【例10】 已知:ABCD 是凸四边形,且AC <BD . E 、F 分别是AD 、BC 的中点,EF 交AC 于M ;EF交BD 于N ,AC 和BD 交于G 点. 求证:∠GMN >∠GNM .NM GFEDCBA【例11】 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例12】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA【例13】 (“祖冲之杯”数学竞赛试题,中国国家集训队试题)如图所示,P 是ABC ∆内的一点,PAC PBC ∠=∠,过P 作PM AC ⊥于M ,PL BC ⊥于L ,D 为AB 的中点,求证DM DL =.LPMD CBA【例14】 (全国数学联合竞赛试题) 如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1) DEM FDN ∆∆≌; (2) PAE PBF ∠=∠.MADEPFE家庭作业【习题1】如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.DC BA【习题2】点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .NM DCBA【习题3】在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.C EDB A【习题4】如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A【习题5】如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.DFECBA【习题6】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?FED CBA【习题7】如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.。