线性代数 5-1 第5章1讲-特征值与特征向量(1)

合集下载

【学习】线性代数学习指导第五章矩阵的特征值与特征向量

【学习】线性代数学习指导第五章矩阵的特征值与特征向量

【关键字】学习第五章矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设是数域P上的n阶矩阵,若对于数域P中的数,存在数域P上的非零n维列向量X,使得则称为矩阵A的特征值,称X为矩阵A属于(或对应于)特征值的特征向量注意:1)是方阵;2)特征向量X 是非零列向量;3)方阵与特征值对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A的特征值与特征向量的步骤为:(1)计算n阶矩阵A的特征多项式|E-A|;(2)求出特征方程|E-A|=0的全部根,它们就是矩阵A的全部特征值;(3)设1 ,2 ,… ,s 是A的全部互异特征值。

对于每一个i,解齐次线性方程组0,求出它的一个根底解系,该根底解系的向量就是A属于特征值i的线性无关的特征向量,方程组的全体非零解向量就是A属于特征值i的全体特征向量.3.特征值和特征向量的性质性质1 (1)若X是矩阵A属于特征值的特征向量,则kX()也是A属于的特征向量;(2)若是矩阵A属于特征值的特征向量,则它们的非零线性组合也是A属于的特征向量;(3)若A是可逆矩阵,是A的一个特征值,则是A—1的一个特征值,是A*的一个特征值;(4)设是n阶矩阵A的一个特征值,f(x)= amxm + am-1xm-1 + … + a1x + a0为一个多项式,则是f(A)的一个特征值。

性质2(1)(2)性质3 n阶矩阵A和它的转置矩阵有相同的特征值性质4 n阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A、B为n阶矩阵,若存在可逆矩阵P,使得B=P―1AP则称A与B相似。

记作A∽B. 并称P为相似变换矩阵.矩阵的相似关系是等价关系,满足:1°反身性:A∽A.2°对称性:若A∽B,则B∽A.3°传递性:若A∽B,B∽C则A∽C.5.矩阵相似的性质:设A、B为n阶矩阵,若A∽B,则(1) ; (2) ;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,∽;(5)设f (x )= amxm + am-1xm-1 + … + a1x + a0 为一个多项式,则 f (A )∽ f (B ) ; 6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。

1、矩阵的特征值与特征向量及方阵的相似-2022年学习资料

1、矩阵的特征值与特征向量及方阵的相似-2022年学习资料

线性代数-同理对λ 2=23=-1,求相应线性方程组12E--Ax=0的一个基础解系:--4x1-2x2-4 3=0,--2x1-x2-2x3=0,-求解得此方程组的一基础解系:-C2=
线性代数-于是A的属于λ 2=入3=-1的全部特征向量为-k2a2+k3a3,-k2,k3是不全为零的实数而A的全部特征向量为11;k22+k3a3,这-里k1≠0为实数k2,k3是不全为零的实数-①⊙O
线性代数-∴.2E-P-1APP-ax-=P-12:E-APP-1a-=P2:E-Aa=0,-即P1APP a=:P-a,-故P-1au:是P-1AP属于;的特征向量-①,⊙O
线性代数-五、求方降A的特征多项式-例5-设A是n阶方阵,其特征多项式为-f42=2E-A=”+an-12 -1+…+a12+ao,-求:1求AT的特征多项式-2当A非奇异时,求A1的特征多项式-解1f2=2E-A 2E-AY-=2E-A=∫42,-·.A与AT有相同的特征多项式
线性代数-9和似拒降-定义设A,B都是n阶矩阵,若有可逆矩阵P,使-P-AP=B,-则称B是A的相似矩阵, 说矩阵A与B相似,-对A进行运算P-1AP称为对A进行相似变换,-可逆矩阵P称为把A变成B的相似变换矩阵。 矩阵之间的相似具有1自反性;2对称性;-3传递性.
线性代数-10-有芙和似拒降的性质-1喏A与B相似,则A与B的特征多项式-相同,从而A与B的特征值亦相同. 2若A与对角矩阵-λ 2-Λ =-n-相似,则1,元2,…,2m是A的n个特征值,
线性代数-三、特狃值与特狃向量的求法-第一步-计算A的特征多项式;-第二步-求出特征多项式的全部根,即得A 全部-特征值;-第三步将每一个特征值代入相应的线性方程组,-求出基础解系,即得该特征值的特征向量.

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)

线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。

线性代数中的特征值与特征向量

线性代数中的特征值与特征向量

线性代数中的特征值与特征向量特征值和特征向量是线性代数中的重要概念,广泛应用于物理、经济、计算机科学等领域。

本文将介绍特征值和特征向量的定义、性质以及其在矩阵对角化和特征分解中的应用。

一、特征值与特征向量的定义在线性代数中,给定一个 n×n 的矩阵 A,我们称零向量v≠0 是矩阵A 的特征向量,如果存在一个实数λ,使得Av=λv。

特征值λ 是使得上述等式成立的实数。

特征向量与特征值是成对出现的,每个特征向量都有一个对应的特征值。

二、特征值与特征向量的性质1. 特征值与特征向量的数目相等对于一个 n×n 的矩阵 A,它最多能有 n 个线性无关的特征向量。

而特征值也最多有n 个。

一个特征值可以对应多个线性无关的特征向量。

2. 特征向量的积性质如果 v 是 A 的特征向量,那么对于任意实数 c,cv 也是 A 的特征向量,且特征值保持不变。

3. 特征向量的加性质如果 v1 和 v2 是 A 的特征向量,对应相同的特征值λ,那么 v1+v2也是 A 的特征向量,对应特征值λ。

三、特征值与特征向量的计算要计算一个矩阵的特征值和特征向量,我们需要求解方程Av=λv。

1. 寻找特征值对于一个 n×n 的矩阵 A,我们需要求解行列式 |A-λI|=0 的根,其中I 是 n 阶单位矩阵。

这样可以得到 A 的特征值。

2. 寻找特征向量对于每个特征值λ,我们需要求解方程组 (A-λI)v=0,其中 v 是特征向量。

解这个齐次方程组可以得到 A 的特征向量。

四、特征值与特征向量的应用1. 矩阵对角化如果一个 n×n 的矩阵 A 有 n 个线性无关的特征向量,那么可以找到对角矩阵 D 和可逆矩阵 P,使得 P^{-1}AP=D。

对角矩阵 D 中的对角元素就是特征值,P 中的列向量就是对应的特征向量。

2. 特征分解对于一个对称矩阵 A(A=A^T),可以进行特征分解,表示为A=QΛQ^T,其中 Q 是由 A 的特征向量组成的正交矩阵,Λ 是对角矩阵,其对角元素是 A 的特征值。

线性代数特征值与特征向量

线性代数特征值与特征向量

线性代数特征值与特征向量特征值与特征向量是线性代数中的重要概念,广泛应用于各个领域。

在本文中,我们将详细介绍特征值与特征向量的定义、性质以及应用。

一、特征值与特征向量的定义在线性代数中,给定一个n阶方阵A,如果存在一个非零向量v使得满足以下等式:Av = λv其中,v称为A的特征向量,λ称为A的特征值。

特征值与特征向量始终成对出现,不同特征向量对应的特征值可以相同,也可以不同。

二、特征值与特征向量的性质1. 特征向量的性质(1)特征向量可以进行线性组合。

即若v1和v2是矩阵A相应于特征值λ的特征向量,那么c1v1 + c2v2也是矩阵A相应于λ的特征向量(其中c1和c2为常数)。

(2)特征向量的数量最多为n。

对于一个n阶方阵A,它最多有n个线性无关的特征向量。

2. 特征值的性质(1)特征值具有可加性。

对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A+B的特征值为λ1+μ1。

(2)特征值具有可乘性。

对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A·B的特征值为λ1·μ1。

三、特征值与特征向量的求解方法特征值与特征向量的求解是通过解方程Av = λv来实现的。

常见的求解方法有以下两种:1. 特征方程法将Av = λv转化为(A-λI)v = 0,求解矩阵(A-λI)的零空间,即可得到特征向量v,然后代入Av = λv中求解λ。

2. 列主元法通过高斯消元法将矩阵A转化为上三角矩阵U,求解Ux = 0的基础解系,其中x即为特征向量,对应的主对角线元素即为特征值。

四、特征值与特征向量的应用特征值与特征向量在许多领域都有广泛的应用,以下是其中几个典型的应用案例:1. 矩阵对角化通过找到一个可逆矩阵P,使得P^-1AP = D,其中D是一个对角矩阵,对角线上的元素即为A的特征值。

矩阵对角化可以简化矩阵的运算,提高计算效率。

2. 矩阵压缩在图像处理和数据压缩中,特征值与特征向量可以用来进行矩阵的压缩。

线性代数 第5章 特征值

线性代数  第5章 特征值

n , 则有
(1) 1 2 n a11 a22 ann ;
( 2) 12 n A .

i 1 i 1
n
2
n a11 a22 ann aii
i 1
n
tr ( A)称为A的迹.
4
3 1 . 例1 求A 的特征值和特征向量 1 3 解 A的特征多项式为 3 1 2 (3 ) 1 1 3 8 6 2 (4 )( 2 )
k 2 p2 k 3 p3
( k 2 , k 3 不同时为 ). 0
12
例4 证明:若 是矩阵A的特征值,x 是A的属于 的特征向量,则 (1) m是Am的特征值m是任意常数.
(2) 当A可逆时, 1是A1的特征值.
证明
1 Ax x A 2 x 2 x A Ax Ax Ax x
(1) 由 A E 2 2
m 2 次,就得 Am x m x 再继续施行上述步骤
故 m 是矩阵Am的特征值, 且 x 是 Am 对应于m的特 征向量.
13
2 当A可逆时, 0,
1
由Ax x可得 A 1 x 1 x
Ax A1 x A1 x A
的特征向量.
3. 对于特征值 i , 求齐次方程组
A i E x 0
的非零解, 就是对应于 i的特征向量.
18
5.2 方阵的相似变换 一、相似矩阵与相似变换的概念
定义1 设A, B都是n阶矩阵, 若有可逆矩阵P , 使 P AP B , 则称B是A的相似矩阵, 或说矩阵A与B相似.对A进 行运算 P 1 AP称为对A进行相似变换, 可逆矩阵P 称为把A变成B的相似变换矩阵 .

特征值与特征向量课件课件

特征值与特征向量课件课件

就是属于特征值 0 的一个特征向量. 于是可得求
线性变换 A 的特征值与特征向量的步骤如下:
Step 1 :在线性空间 V 中取一组基1 , 2 , …,
n ,写出 A 在这组基下的矩阵 A ;
Step 2 :计算 A 的特征多项式,并求出特征
方程在数域 P 中的所有根. 设矩阵 A 有 s 个不同 的特征值 1 , 2 , …, s ,它们也就是线性变换 A 的全部特征值.
第3页,幻灯片共40页
二、几何意义
在几何向量空间 R2 和 R3 中,线性变换 A 的
特征值与特征向量的几何意义是:
特征向量 ( 起
点在坐标原点) 与其像 A 同向(或反向),同向时,
特征值 0 > 0,反向时, 0 < 0,且 0 的绝对值等 于 | A | 与 | | 之比值; 如果特征值 0 = 0,则特
a22 a22
an1 an2 ann
称为 A 的特征多项式, 这是数域 P 上的一个 n
次多项式.
第12页,幻灯片共40页
上面的分析说明,如果 0 是线性变换 A 的特
征值,那么 0 一定是矩阵 A 的特征多项式的一个
根; 反过来,如果 0 是矩阵 A 的特征多项式在数
域 P 中的一个根,即 |0E - A | = 0,那么齐次线性
关于特征值与特征向 量课件
第1页,幻灯片共40页
一、定义
我们知道,在有限维线性空间中,取了一组基 之后,线性变换就可以用矩阵来表示. 为了利用矩 阵来研究线性变换,对于每个给定的线性变换,我 们希望能找到一组基使得它的矩阵具有最简单的形
式. 从现在开始,我们主要来讨论,在适当的选择
基之后,一个线性变换的矩阵可以化成什么样的简 单形式. 为了这个目的,先介绍特征值和特征向量

第5章 特征值与特征向量

第5章 特征值与特征向量

则k1x1+ k2x2(k1, k2不全为0)是A的属于1的全部特征向量。
对于2= 2,求解(2IA) x =0, 得基础解系: x3=(1, 2, 1)T
3 1 1 x1 0 即 2 0 2 x2 0 1 1 1 x3 0
对于矩阵A, 若存在可逆矩阵P,使 P1AP= , 称A为可对角化矩阵. 主要解决的问题: 1。可对角化的条件 2。矩阵可对角化时P=?, 对角阵 =?
定理5.5 n 阶矩阵A与对角阵相似的充要条件是A有n个 线性无关的特征向量。 证 必要性 设P1AP= diag(1, 2,, n) =, 即 AP=P 将矩阵P 按列分块为 P =(x1, x2,, xn), (1)式即为
例3 设
1 1 1 A 2 2 2 1 1 1
(1) 求A的特征值和特征向量;
(2) 求可逆矩阵P,使P1AP为对角阵。
解 (1)
1 0 1 1 0 1 1 1 1 I A 2 2 2 2 2 2 2 3 0 3 1 1 1 1 1
k+1 ( 1) (2) 得 a1(k+1 1) x1+ a2 (k+1 2)x2+…+ ak (k+1 k)xk=0
A1(A x)= A1( x)= (A1 x), 所以, (A1 x)= 1 x。
由性质1可证: 若是A的特征值, x 是A的属于 的特征向 量。则f()是f(A)的特征值,x 仍然是f(A)的对应于特征值 f()
的特征向量。
性质2 矩阵A和AT的特征值相同。 证: det(I A) =det ( I A)T = det (( I)TAT)= det ( I A T)

大学线性代数第五章第一节矩阵的特征值与特征向量

大学线性代数第五章第一节矩阵的特征值与特征向量
通过找到一个矩阵的特征值和特征向量,我们可以了解该矩阵所代表的线性变换的性质,例如对称性、 旋转、缩放等。
在解决实际问题时,特征值和特征向量可以帮助我们理解数据的变化趋势和模式,例如在图像处理、信 号处理等领域有广泛应用。
在矩阵分解中的应用
01
矩阵分解是将一个复杂的矩阵 分解为几个简单的、易于处理 的矩阵,例如三角矩阵、对角 矩阵等。
矩阵的分解,如三角分解、 QR分解等,都涉及到特征值 和特征向量的应用,它们是构 造这些分解的基础。
02
矩阵的特征值与特征向量的定义
特征值的概念
特征值是指一个矩阵在某个非零常数倍下的不变性,即当矩阵A 乘以一个非零向量x得到0时,称该非零向量x为矩阵A的对应于 特征值λ的特征向量。
特征值可以通过求解矩阵的特征多项式得到,即|λE-A|=0。
密切的关系。
02
特征值和特征向量的关系可以通过矩阵的行列式、转
置、共轭等运算得到进一步的理解。
03
特征值和特征向量的关系性质在解决实际问题中具有
广泛的应用,如信号处理、控制系统等领域。
05ห้องสมุดไป่ตู้
矩阵特征值与特征向量的应用
在线性变换中的应用
矩阵特征值与特征向量是线性变换的一个重要工具,它们可以描述一个线性变换对一个向量空间的影 响。
特征值和特征向量在解决线性方程组、矩阵的相似变换、矩阵的 分解等领域有广泛应用。
矩阵特征值与特征向量的重要性
在解决线性方程组时,特征值 和特征向量可以提供一种有效 的解法,特别是对于一些特殊 类型的线性方程组。
在矩阵的相似变换中,特征值 和特征向量是确定相似变换的 关键,有助于理解矩阵的性质 和行为。
大学线性代数第五章第一节矩 阵的特征值与特征向量

线性代数 5-1方阵的特征值与特征向量

线性代数 5-1方阵的特征值与特征向量

解题步骤!
⎛ −2 −2 −2 ⎞ ⎛ 1 (-E-A)= ⎜ −2 −2 2 ⎟ → ⎜ 0 ⎜ ⎟ ⎜ ⎜ 2 ⎟ ⎜0 2 − 2 ⎝ ⎠ ⎝
机动
1 0 0
0⎞ ⎟ 1⎟ 0⎟ ⎠
下页
目录
上页
返回
结束
x1=-x2 ∴ x3=0
: X1=(1,-1,0)T 令x2=1得基础解系 得基础解系:
1的全部特征向量为 k1(1,-1,0)T ∴A的属于特征值- 的属于特征值-1 (k1≠0) 对 λ2 = 1 ,齐次线性方程组(E-A)X=O的系数矩阵
2. 特征向量与特征值相对应 ,求特征向量必须先求特 2.特征向量与特征值相对应 特征向量与特征值相对应, , 再将它代入齐次线性方程组 (λ0 E − A) X = O 求 征值 征值, 非零 解(必存在 !用基础解系线性表示 .) 出所有 出所有非零 非零解 必存在!用基础解系线性表示 !用基础解系线性表示.)
⎛ 0 −2 −2 ⎞ ⎛ 1 1 0 ⎞ ⎛ 1 1 0⎞ ⎜ ⎟ (E-A)= ⎜ −2 0 2 ⎟ → ⎜ 0 1 1 ⎟ → ⎜ 0 1 1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 2 ⎟ ⎟ ⎜ 0 0 0⎟ 2 0⎠ ⎜ 2 2 0 ⎝ ⎝ ⎠ ⎝ ⎠ x1=-x2

T : 令 =- 得基础解系 得基础解系: = - x X 1 (1, 1,1) 2 2 x3=-x2
机动 目录 上页 下页 返回 结束
⎛ a11 ⎜ a21 ⎜ A= ⎜ ⋮ ⎜ ⎝ an1
a12 ⋯ a1n ⎞ a22 ⋯ a2n ⎟ ⎟ ⋮ ⎟ ⎟ an2 ⋯ ann ⎠
λ − a11 −a12 ⋯ −a1n −a21 λ − a22 ⋯ −a2n f (λ) = ⋮ ⋮ −an1 −an2 ⋯ λ − ann

线性代数第5章 特征值及特征向量

线性代数第5章 特征值及特征向量

A 123 2, A A A1 2 A1
( A) A 3 A 2 E 2 A1 3 A 2 E
的三个特征值为 (i ) 21 3i 2 ( i 1,2,3) i 计算得 (1) 1, ( 1) 3, ( 2) 3
B 的特征值为 1 3, 2 3 3
对于 1 3 ,解方程组 (1 E B ) x 0
4 2 2 1 0 1 1 E B 3 E B 3 4 1 0 1 1 2 2 4 0 0 0
解 (1) a+2+2=4+1+1 |A|=4*1*1 (2) |A-4E|=0
|A-2E|=0
a 2 . b 1 a 3 . b 0
4 40 a 2 2 a 0 b 1 3 b 0
的特征值。
例1

设n阶方阵A有n个特征值1,2,….,n,求|A+3E|.
则 设A有特征值 , A 3E
3
所以,A+3E的特征值: 4,5,…..,n+3
(n 3)! | A 3E | 3!
例2 设3阶矩阵A的三个特征值为 1,1,2
求 A 3 A 2 E 解 A的特征值全不为零,故A可逆。
第一节 方阵的特征值与特征向量
一、特征值与特征向量的定义 二、特征值与特征向量的性质 三、特征值与特征向量的求法
一、特征值与特征向量的定义 定义1 设 A 是 n 阶方阵,
若数 和 n维非零列向量 X,使得
注意
AX X 成立,则称 是方阵 A 的一个特征值, X 为方阵 A 的对应于特征值 的一个特征向量。 (1) A 是方阵

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .

线性代数特征值与特征向量

线性代数特征值与特征向量
为f(A)的全部特征值。
5
§1 特征值与特征向量
例6(P107)
例5
:
设A
1 0
2
3
,
求B

A2
2A
3I的特征值
解:三角阵A的特征值为它的对角元1和3,
由B A2 2A 3I可知对应的多项式为
f (x) x2 2x 3,
B的特征值为f (1) 2, f (3) 6.
6
§1 特征值与特征向量
的一个特征向量。
把 Ap p 改写成 (In A)p 0 ,则特征向量p就是齐次线性方程组 (In A)x 0 的任意一个非零解。显然,它有非零解当且仅当它的系数 行列式为零: In A 0 。这就是特征值 必须满足的方程。
2
§1 特征值与特征向量
一、定义
把 In A 称为A的特征方阵;行列式
特征值与特征向量
§1 特征值与特征向量
一、定义
设A为n阶方阵,p为n维非零列向量,通常,Ap未必与p线性相关。
如果Ap与p线性相关,则有 Ap p 。
定义1(P103) 设 A (aij ) 为n阶方阵,如果存在某个数 和某个n维非零 列向量p满足,则称 是A的一个特征值,成p是A的属于这个特征值
9
练习 P117 2.(矩阵相似)
3. (矩阵相似条件,并求特征向量)
10
谢谢!
11
定理1(P113) 相似方阵有相同的特征多项式。因而有相同的特征值,有 相同的迹和相同的行列式。 例4(P113) -- 运用定理1。
8
§2 方阵的相似变换
定理2(P114) n阶方阵A相似于对角阵A有n个线性无关的特征向量。 定理3(P115) 属于n阶方阵A的两两不同特征值的特征向量组一定为线性 无关组。 推论(P116) ① 任意一个没有重特征值的方阵一定相似于对角阵。 ② 对角元两两不同的三角阵一定相似于对角阵。

线性代数(慕课版)第五章 矩阵的特征值与特征向量

线性代数(慕课版)第五章  矩阵的特征值与特征向量

解得x 4.
故应填 4
14
有关特征值的性质
性质5.2 矩阵A与AT 有相同的特征值.
证 AT E ( A E)T A E
性质5.3 设A 是n 阶可逆矩阵, 为其特征值,则(1) 0;
(2) 1 是A1 的特征值.
证 (1) 假设 0,则由定义知A 0 0.
而矩阵A可逆,故上式两端同时左乘A1 得 A10 0.
(1) 12 n A ; (2) 1 2 n a11 a22 ann.
定义5.2 设矩阵A aij nn ,称a11 a22 ann为矩阵A 的迹.
7 4 1
例1
已知三阶矩阵A
4
7 1 有特征值1 2 3,
4 4 x
3 =12,则x ______ .
解 1 2 3 a11 a22 a33, 即3 3 12 7 7 x,
这与特征向量 0矛盾,故 0.
(2) 由条件知有非零向量 满足A ,两边左乘以A1 得 A1
因 0,于是有 A1 1 ①
所以 1 为A1的特征值.
15
有关特征值的性质
性质5.4 若是A 的特征值,则f ()是f ( A) 的特征值.
代数多项式 f (x) am xm am1xm1 a1x a,0 矩阵多项式 f ( A) am Am am1Am1 a1A a0E. 例2 已知三阶矩阵A 的特征值 1,1,2,求 A3 5A2 .
7
特征值与特征向量的定义
2 1 1
求矩阵的特征值与特征向量:A
0
2 0.
4 1 3
对2 3 2,解方程组( A 2E) X 0,
4 1 1 4 1 1
A
2E
0
0
0

线性代数 第五章第一节 矩阵的特征值与特征向量

线性代数 第五章第一节 矩阵的特征值与特征向量
0 1 1 A 1 0 1 1 1 0
第一步:写出矩阵A的特征方程,求出全 部特征值(注明重数).

l 1 1 lE A 1 l 1 (l 2)( l 1) 2 1 1 l
l 代入齐次线性方程组
所以A的特征值为 l1 2, l2 l3 1.
第二步:对每个特征值
2 1 1 2 1 1 2 E A 1 2 1 1 2 1 1 1 2 0 0 0
A l E x 0, 求基础解系。 当l1 2 时,解方程组 (2 E A) x 0 . 由
1 1ቤተ መጻሕፍቲ ባይዱ
故l0 是矩阵A 的特征值, 且X 0是A
1
1
1
对应于l0 的特征向量.
1
如何求得矩阵A的特征值和特征 向量呢? 式子AX=lX(lE-A)X=0. 由于X是非零向量, 故齐次线性方 程组(lE-A)X=0有非零解, 而这等 价于 |λE-A|=0.
定义 称
为A的特征多项式, 它是以l为未知数的一 元n次多项式, 也记为f(l). 称|lEA|=0为A的特征方程. λE-A称为A的 特征矩阵。
若l0,使得 A(X 1 X 2) l0 X 1 X 2) (
则有
(l1 l0)X 1 l2 l0)X 2 0 (
A左乘 λ1左乘
式两端:l1 l0)l1 X 1 l0 l2)l2 X 2 0 ( ( ( ( 式两端:l1 l0)l1 X 1 l0 l2)l1 X 2 0
(l0 l2)l2 X 2 l0 l2)l1 X 2 (
l2 l1 , X 2 0
l0 l2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
2 0.
4 1 3
2 1 1

AE 0
2
2 0 (2 )
1 ( 1)( 2)2
4 3
4 1 3
1 1,2 3 2.
1 1 1 1 0 1
对1 1,解( A E) X 0
A
E
0
3 0 0 1
0
4 1 4 0 0 0
同解方程组为
x1 x2
x3 0
p2 (1,1, 0)T;
2 3 2对应的线性无关特征向量
p2 (0,1, 1)T ,p3 (1, 0, 4)T
9
特征值与特征向量的定义
例3 设n 阶矩阵A 的元素全为1,则A 的n 个特征值为 ______ .
1 1 1 1
1 1 11
1 1 1 1
1 1 1 1
解 A E 1 1 1 1 (n ) 1 1 1 1
0 0 1
对2 3 2,解( A 2E) X 0
1 1 1 1 1 0
A
2E
1
1
0
0
0
1
0 0 1 0 0 0
Hale Waihona Puke 得基础解系为 p2 (1,1, 0)T,
x1 x3
x2 0
其全部特征向量为k2 p2 (k2不为零).
6
特征值与特征向量的定义
2 1 1
例2
求矩阵的特征值与特征向量:A
(2) 一个特征值对应无数个特征向量; A A(k) (k)
(3) 每个特征向量对应一个特征值;
(4) 求特征值就是解 A E 0 ; (5) 齐次线性方程组( A E) X O的非零解即为特征向量.
3
特征值与特征向量的定义
求特征值与特征向量的步骤:
1 解 A E 0求出 的值;即得到特征值;
求特征向量:(E 1 E)X 0,即解方程组0 X 0, 所以任意n 维非零列向量均为n 阶单位矩阵E 的特征向量.
11
基础解系为p1 (1, 0,1)T,
全部特征向量为k1 p1(k1 0).
7
特征值与特征向量的定义
2 1 1
求矩阵的特征值与特征向量:A
0
2 0.
4 1 3
对2 3 2,解方程组( A 2E) X 0,
4 1 1 4 1 1
A
2E
0
0
0
0
0 0,
4 1 1 0 0 0
同解方程组为4x1 x2 x3, 基础解系为p2 (0,1, 1)T ,p3 (1, 0, 4)T ,
全部特征向量为k2 p2 k3 p3 (k2 , k3不全为零).
8
特征值与特征向量的定义
对比
1 1 1 例1 A 1 3 0
0 0 1
1 1对应的线性无关特征向量
p1 (2,1,1)T ,
2 1 1
例2
A
0
2 0.
4 1 3
1 1对应的线性无关特征向量
p1 (1, 0,1)T ,
2 3 2对应的线性无关特征向量
OPTION
2 对每一个,求方程组( A E) X O 的基础解系;即得到属于这个特征值
OPTION
的线性无关的特征向量.
4
特征值与特征向量的定义
1 1 1 例1 求矩阵A 1 3 0 的特征值与特征向量.
0 0 1
1 1 1

A E 1 3 0 1 22
0 0 1
1 1,2 3 2.
对1 1,解( A E) X 0
0 1 1 1 2 0 A E 1 2 0 0 1 1
0 0 0 0 0 0
x1 x2
2 x3
x2
得基础解系为 p1 (2,1,1)T , 其全部特征向量为k1 p1 (k1不为零).
5
特征值与特征向量的定义
1 1 1 求矩阵A 1 3 0 的特征值与特征向量.
1 1 1 1
1 1 1 1
1 1 11
0 0 0 (n ) 0 0 0 (n )()n1 0
0 0 0
n1个
故1 n, 2 n 0, 即A 的n 个特征值为n, 0, 0,0.
10
特征值与特征向量的定义
例4 求n阶单位矩阵E 的特征值与特征向量.
解 求特征值:|E E| |(1 )E | (1 )n 0 1 2 n 1
线性代数(慕课版)
第五章 矩阵的特征值与特征向量
第一讲 特征值与特征向量(1)
主讲教师 |
本讲内容
特征值与特征向量的定义
特征值与特征向量的定义
定义5.1 设A是n 阶矩阵,为一个数,若存在非零向量,使A ,则称数 为矩阵A 的特征值,非零向量 为矩阵A 的对应于特征值 的特征向量.
注 (1) 特征向量为非零向量;
相关文档
最新文档