计算电磁学作业_三)

合集下载

计算电磁学-第5章-时域有限差分法3

计算电磁学-第5章-时域有限差分法3

散射体
在一定入射角范围内 有较好的吸波效果, 吸收边界
散射体
这就要求吸收边界离
开散射体要有足够的 场区 2 距离。图5.6示出网格
空间的场区划分。
场区 1 图 56 网格空间场区划分
连接边界
场区1位于计算 网格空间内部,散 吸收边界
散射体
连接边界
射体设置在其中,
散射体
场区1中有入射波
及散射波。该区称 场区 2
H2 z|i|1/2, j 1/2,k
H 2 z|i1/2, j 1/2,k r
E n1 |i, j1/2,k
/ t / t
/2 /2
En |i, j 1/2,k
1
/ t
/2
n1
n 1
n 1
n 1
H 2 r|i, j1/2,k 1/2
H 2 r|i, j 1/2,k 1/2 z
一、计算机仿真中应用周期性边界条件
微纳光学领域内的光子晶体(Photonic Crystal) 、表面等离子体激元(Surface Plasmon)列阵结 构及超材料(Metamaterial)等; 这几种结构均由空间上周期性重复的散射体构成, 当计算透射率及能带结构时,常常可采用Floquet 周期边界将结构简化。
为精确地模拟散射体的形状和结构,网格单 元取得越小越好。但网格总数增加,计算机存 储和CPU时间也会随之增加。
解决这一问题的一般原则是,在基本满足计算 精度要求的情况下,尽量节省存储空间和计算 时间。与此同时,网格的空间步长对计算误差 也有影响。
从色散角度考虑,一般要求满足 s min / 10 。
H2 z|i|1/2, j 1/2,k
H 2 z|i1/2, j 1/2,k r

03 电磁学:第12、13章 习题课及部分习题解答-修订补充版

03 电磁学:第12、13章 习题课及部分习题解答-修订补充版

R

S
E ⋅ dS ⇒2πrlE =
R
q
ε0
r l
q=∫
0
2 Ar ⋅ 2πrldr = πAlR 3 3
3
AR E= 3ε 0 r
(r > R)
目录·电势的计算
作业册·第十三章 电势·第8题
Zhang Shihui
③ 内外电势分布 内部电势 U =

L
r R
Edr Ar AR dr + ∫ dr R 3ε r 3ε 0 0
dl = Rdθ
λ dl cos θ dEx = dE cos θ = 2 4πε 0 a
q q cos θ dθ = cos θ ⋅ adθ = 2 4πε 0 a θ 0 a 4πε 0 a 2θ 0 1
θ0
2
θ

θ0
2
θ0
2
dE
x
q 2 沿x正 E = ∫ θ0 dEx = (sin + sin ) = − 4πε 0 a 2θ 0 2 2 2πε 0 a 2θ 0 方向 2
均匀带电细棒垂面上场强
2.电势的计算
Zhang Shihui
① 叠加原理,取微 U = 元,直接求电势 ② 先利用高斯定理 求场强,再求电势
∑ 4πε r
0
qi
i
,U =∫
b a
dq 4πε 0 r
作业册 第13章电势 第1题 第8题 第2题
V

S
E ⋅ dS =
Q
ε0
, U a = ∫ E ⋅ dl
ΔS
O
ΔS
x
ρd = 2ε 0
−x
截面放大后

大学物理作业题(电磁学)

大学物理作业题(电磁学)

静止电荷的电场一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.02εP+q 0(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别 为σA =_______________, σB =____________________.10. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).qABE 0E 0/3E 0/3+σ+σ+σABCD11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所 示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.15. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2)答 案一、1-8 CBACADDC 二、9. -2ε0E 0 / 3; 4ε0E 0 / 310. -3σ / (2ε0); -σ / (2ε0); σ / (2ε0); 3σ / (2ε0) 11.()30220824R qdd R R qd εεπ≈-ππ; 从O 点指向缺口中心点.12. Q / ε0;a E =0,()20018/5R r Q E b επ=三、13. 解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R Rq E 00204d sin 4d d εφφλεπ=π= 3分 在x 、y 轴上的二个分量 d E x =-d E cos φy Rxφ d φd E xd E yφO d Ed qaa aaxzyOd E y =-d E sin φ对各分量分别求和 ⎰ππ=00d cos sin 4φφφελR E x =0 RR E y 0002008d sin 4ελφφελ-=π=⎰π ∴ j Rj E i E E y x008ελ-=+= 14. 解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为 θελελd 22d d 020RR E π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x =d E sin θ , d E y =-d E cos θ对各分量分别积分 R R E x 02002d sin 2ελθθελππ=π=⎰ 0d cos 2002=π-=⎰πθθελRE y 场强 i Rj E i E E y x02ελπ=+= 15. 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里. 在球体外作一半径为r 的同心高斯球面,按高斯定理有0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里.16. 解:设闭合面内包含净电荷为Q.因场强只有x分量不为零,故只是二个垂直于x轴的平面上电场强度通量不为零.由高斯定理得:-E1S1+ E2S2=Q / ε0( S1 = S2 =S ) 3分则Q = ε0S(E2- E1) = ε0Sb(x2- x1)= ε0ba2(2a-a) =ε0ba3 = 8.85×10-12 C电势班级:_____________ 姓名:_____________ 学号:_____________一、选择题1.(1019) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A)a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Qε.(C) E =204r Q επ,U =r Q04επ (D) E =204r Q επ,U =104R Q επ.[ ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取. (D) 电势值的正负取决于产生电场的电荷的正负. [ ]4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A7.(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D)rq04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(A)d S q q 0212ε+. (B) d Sq q 0214ε+. (C)d S q q 0212ε-. (D) d Sq q 0214ε-. [ ] 8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.BAS q 1q 2三、计算题13. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.16. 有两根半径都是R 的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d ≥2R ),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.答案一、1-8 DBCDDACB 二、9. 10cm 10.⎪⎭⎫⎝⎛π∆-π20414R SR Q ε 11. Q / (4πε0R 2); 0 ; Q / (4πε0R ); Q / (4πε0r 2)12. 0d =⋅⎰Ll E单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零 有势(或保守力) 三、13. 解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i x R xE E E 220212+=+=εσ该点电势为 ()22002202d 2x R R x R x x U x +-=+=⎰εσεσ 14. 解: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U .在球层内取半径为r →r +d r 的薄球层.其电荷为 d q = ρ 4πr 2d r该薄层电荷在球心处产生的电势为 ()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()212200002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 若根据电势定义⎰⋅=l E Ud 计算同样给分.15.解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2)两球的电势差⎰⎰π==212120124d R R R R r dr Qr E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 CO x P16. 解:设原点O 在左边导线的轴线上,x 轴通过两导线轴线并与之垂直.在两轴线组成的平面上,在R <x <(d -R )区域内,离原点距离x 处的P 点场强为()x d x E E E -π+π=+=-+0022ελελ 则两导线间的电势差 ⎰-=R d Rx E U d ⎰-⎪⎭⎫ ⎝⎛-+π=Rd Rx x d x d 1120ελ()[]R d Rx d x ---π=ln ln 20ελ⎪⎭⎫ ⎝⎛---π=R d R R R d ln ln 20ελ RR d -π=ln 0ελ+λ导体和电介质一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C)SQ 01ε. (D) S Q Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地(地面负电荷进入导体). (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.+Q 2B6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ](A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场 能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.+Q14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球相联后导体球所带电荷q.15. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.参考答案一、1-8 CBBBDBCB 二、9. λ/(2πr );λ/(2π ε0 εr r ) 10. ,1,r r εε 11.1r ε;1rε12. 无极分子;电偶极子 三、13. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+ 14. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=内球壳电势: 10114R q Q U επ-=2024R Q επ+二者等电势,即 r q04επ1014R q Q επ-=2024R Q επ+ 解得 )()(122112r R R Q R Q R r q ++=15. 解:(1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为R qU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能 q RqW A d 4d d 0επ== (2) 带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR q q A A 004d d πεR Q 028επ=16. 解:设内外圆筒沿轴向单位长度上分别带有电荷+λ和-λ, 根据高斯定理可求得两圆筒间任一点的电场强度为 rE r εελ02π=则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅解得 120ln 2R R Ur εελπ=于是可求得A点的电场强度为 A E )/ln(12R R R U== 998 V/m 方向沿径向向外A 点与外筒间的电势差: ⎰⎰=='22d )/ln(d 12RR R Rr rR R U r E U RR R R U212ln )/ln(== 12.5 V。

电磁学练习题电场强度与电势差计算题目

电磁学练习题电场强度与电势差计算题目

电磁学练习题电场强度与电势差计算题目电磁学练习题:电场强度与电势差计算题目在电磁学中,电场强度和电势差是两个基本概念,它们描述了电场中的电荷相互作用和能量转化的关系。

掌握计算电场强度和电势差的方法对于理解和解决实际问题非常重要。

本文将通过一系列练习题,帮助读者巩固和运用相关知识。

练习题一:均匀带电细杆的电场强度和电势差计算假设存在一根长度为L、线密度为λ的无限长均匀带电细杆,电势零点位于无穷远处。

我们需要求出在距离杆上不同位置的点A和点B处的电场强度和电势差。

解答:1. 电场强度的计算由于带电细杆是无限长的,我们可以假设它仅存在于x轴上。

考虑杆上一小段长度dx,它对点A处的电场强度贡献为dE,根据库仑定律,dE的大小可以表示为:\[ dE = \frac{1}{4πε_0} \frac{dq}{r^2} \]其中dq是这段长度dx上的电荷量,r是杆上的电荷到点A的距离。

根据线密度λ的定义(λ=Q/L,Q是细杆上的总电荷量),我们可以得到:\[ dq = λdx = \frac{Q}{L}dx \]将dq的表达式代入dE的计算公式,我们可以得到整根细杆对点A 处的电场强度E_A:\[ E_A = \frac{1}{4πε_0} \int \frac{Q}{L} \frac{dx}{x^2} \]进行积分计算,可得:\[ E_A = \frac{Q}{4πε_0L} \int \frac{dx}{x^2} = \frac{Q}{4πε_0L} \left( -\frac{1}{x} \right) \Bigg|_{-\infty}^{x} = \frac{Q}{4πε_0Lx} \]同样的方法,我们可以计算出点B处的电场强度E_B:\[ E_B = \frac{Q}{4πε_0Lx} \]2. 电势差的计算电势差是从参考点(电势零点)到某点的电势能增加的量。

在本题中,我们让电势零点位于无穷远处,所以点A和点B的电势差可以定义为:\[ V_{AB} = - \int_A^B E \cdot dl \]其中,E是电场强度,dl是微小位移矢量。

2021届高考物理考前特训: 电磁学计算 (解析版)

2021届高考物理考前特训: 电磁学计算  (解析版)

电磁学计算【原卷】1.麦克斯韦电磁理论认为:变化的磁场会在其周围空间激发一种电场,这种电场与静电场不同,称为感生电场或涡旋电场,如图甲所示.(1)若图甲中磁场B随时间t按B=B0+kt(B0、k均为正常数)规律变化,形成涡旋电场的电场线是一系列同心圆,单个圆上形成的电场场强大小处处相等.将一个半径为r的闭合环形导体置于相同半径的电场线位置处,导体中的自由电荷就会在感生电场的作用下做定向运动,产生感应电流,或者说导体中产生了感应电动势.求:a. 环形导体中感应电动势E感大小;b. 环形导体位置处电场强度E大小.(2)电子感应加速器是利用感生电场使电子加速的设备.它的基本原理如图乙所示,图的上部分为侧视图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动.图的下部分为真空室的俯视图,电子从电子枪右端逸出,当电磁铁线圈电流的大小与方向变化满足相应的要求时,电子在真空室中沿虚线圆轨迹运动,不断地被加速.若某次加速过程中,电子圆周运动轨迹的半径为R,圆形轨迹上的磁场为B1,圆形轨迹区域内磁场的平均值记为B(由于圆形轨迹区域内各处磁场2分布可能不均匀,B即为穿过圆形轨道区域内的磁通量与圆的面积比2值).电磁铁中通有如图丙所示的正弦交变电流,设图乙装置中标出的电流方向为正方向.a. 在交变电流变化一个周期的时间内,分析说明电子被加速的时间范围;b. 若使电子被控制在圆形轨道上不断被加速,B 1与2B 之间应满足B 1=12 2B 的关系,请写出你的证明过程.2.如图所示,光滑导轨MN 、PQ 固定在同一水平面上,两导轨间距L 、N 、Q 两端接有定值电阻R 。

在两导轨之间有一边长为0.5L 的正方形区域abcd ,该区域内分布着方向竖直向下、磁感应强度大小为B 的匀强磁场。

一。

粗细均匀、质量为m 的金属杆静止在ab 处,金属杆接入两导轨之间的电阻也为R 。

现用一恒力F 沿水平方向拉杆,使之由静止向右运动,且杆在穿出磁场前已做匀速运动。

计算电磁学3-有限元法、里兹法、伽辽金法、矩量法

计算电磁学3-有限元法、里兹法、伽辽金法、矩量法
群体竞争淘汰的变异子群种群婚配种群淘汰的个体新种群淘汰选择交配变异群体父代染色体1父代染色体2子代染色体1子代染色体2生物进化过程遗传基因重组过程北京理工大学信息与电子学院电磁仿真中心centerelectromagneticsimulationcems北京理工大学beijinginstitute有电磁学自身特色的计算机程序计算电磁商业软件的使用fdtdfemmom理论学习编程实践内容不是那么完备风格不是那么学术要能coulombslaw库仑定律12121212实验得到经过数学简化形式通信饮食娱乐遥感探测医疗军事全波数值方法算法原理算法优点算法缺点适合求解问题时域有方法fdtd算法简单剖分简单程序通用易于上手

电磁波方程


Yee格式及蛙跳机制
电磁波方程的离散


激励源
Mur吸收边界条件

解的数值稳定性
Yee格式及蛙跳机制
n d 2 l E dl = 0 dt A H dS 1 = 0 H n1 dS H n dS A A t d H d l = E dA J dA 0 l A dt A
t H x 0
E
n 1 z i , j , k 1/2
Hx z
n 1 2 i , j 1/2, k 1/2

Hz
n 1 2 i 1/2, j 1/2, k
Hz x
n 1 2 i 1/2, j 1/2, k
n 1 2 J Source _y
f x x
xi
1 2 f x x f x x O x i i 2x
离散
计算机处理
1.积分 f xi x

电磁学练习题电流和电阻的计算

电磁学练习题电流和电阻的计算

电磁学练习题电流和电阻的计算电磁学是物理学的一个分支,研究电荷之间相互作用的现象和规律。

在电磁学中,电流和电阻是两个重要的概念。

本文将通过一些练习题来探讨电流和电阻的计算方法。

一、电流的计算电流是单位时间内通过导体横截面的电量。

根据安培定律,电流的计算公式为:I = Q / t,其中I表示电流强度,Q表示通过导体横截面的电量,t表示单位时间。

例如,如果5 秒内通过导体横截面的电量为10 库仑(C),那么电流强度可以如下计算:I = 10 C / 5 s = 2 A所以,通过这个导体横截面的电流强度为2 安培(A)。

二、电阻的计算电阻是指导体抵抗电流流动的程度。

根据欧姆定律,电阻的计算公式为:R = U / I,其中R表示电阻,U表示导体两端的电压,I表示通过导体的电流强度。

例如,如果一个导体两端的电压为10 伏特(V),通过该导体的电流强度为2 安培(A),那么电阻可以如下计算:R = 10 V / 2 A = 5 Ω所以,该导体的电阻为5 欧姆(Ω)。

三、电流和电阻的综合计算有时候,我们需要通过已知的电流和电阻来计算其他未知量。

根据欧姆定律,可以推导出另外两个公式:U = I * R (计算电压)Q = I * t (计算电荷量)举例来说,如果一个电路中的电流为3 安培(A),电阻为4 欧姆(Ω),我们可以用这两个公式来计算电压和电荷量。

首先,计算电压:U = 3 A * 4 Ω = 12 V其次,计算电荷量:Q = 3 A * 5 s = 15 C所以,该电路中的电压为12 伏特(V),电荷量为15 库仑(C)。

综上所述,电磁学中电流和电阻的计算是非常基础和重要的。

我们可以通过电流和电阻的公式,以及欧姆定律,来计算电路中的各种电学量。

了解这些基本的计算方法对于电磁学的学习和实践非常有帮助。

总结一下:- 电流的计算公式为:I = Q / t- 电阻的计算公式为:R = U / I- 电压的计算公式为:U = I * R- 电荷量的计算公式为:Q = I * t以上是电磁学练习题中电流和电阻的计算方法。

初中物理中考电磁学专项练习(计算题)201-300(含答案解析)

初中物理中考电磁学专项练习(计算题)201-300(含答案解析)

初中物理中考电磁学专项练习(计算题)201-300(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.如图甲所示,电源电压恒定,R0为定值电阻.将滑动变阻器的滑片从a端滑到b端的过程中,电压表示数U与电流表示数I间的关系图象如图乙所示.求:(1)滑动变阻器R的最大阻值;(2)R0的阻值及电源电压;(3)当滑片滑到滑动变阻器的中点时,电阻R0消耗的功率.2.如图所示的电路中,只闭合S1时,通过R2的电流是1.5 A,R1=30 Ω,R2=20 Ω.求:(1)电源电压是多大;(2)只闭合S2时,通电20 s电流通过R1产生的电热是多少;(3)使开关通断情况发生变化,整个电路消耗的最小电功率P和最大电功率P′之比是多少.3.如图所示的电路中,小灯泡上标有“6V 3.6W”字样,滑动变阻器R1的最大电阻为40Ω.当只闭合S、S2,滑动变阻器的滑片P在中点时,小灯泡正常发光;当所有开关都闭合,滑片滑到A端时,A1、A2的示数之比是3:1(灯的电阻保持不变).求:(1)电源电压.(2)当只闭合S 、S 2,滑动变阻器的滑片P 在A 端时,小灯泡两端的实际电压.(3)小灯泡消耗的最小电功率(不能为0).4.小明将规格为“220 V 1 210 W”的电热水器单独接入电路中,测得在2 min 内电能表的转盘转过40转(电能表表盘上标有1 200 r/ kW·h 字样),求: (1)该电热水器的实际功率;(2)电路中的实际电压;(3)若该电热水器加热效率为90%,求在该电压下将5 kg 、25 ℃的水加热到55 ℃需要的时间.5.如图甲所示,滑动变阻器R 2标有“50Ω 1A”字样,电源电压为8V 且保持不变。

当开关S 闭合时,电流表A 1和A 2的指针偏转情况如图乙所示。

求:(1)电阻R 1的阻值(2)通电100s ,电流通过电阻R 1产生的热量;(3)再次移动滑动变阻器R 2的滑片P ,使两电流表指针偏离零刻度的角度相同,此时滑动变阻器R 2消耗的电功率P 2。

电磁学复习计算题(附问题详解)

电磁学复习计算题(附问题详解)

《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯EqLq P面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧ABR ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:dσAσBA Bq ∞∞ -λ +λ(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线均匀分布.试在图示的坐标系中求出xdd/2 d/2轴上两导线之间区域]25,21[a a 磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F 的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 a bc d O RR x yI I 30° 45° I ∆l 1I ∆l 2心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0=4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB1 mI是铝导线,铝线电阻率为ρ1 =2.50×10-8 Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

计算电磁学习题集

计算电磁学习题集

计算电磁学习题集1.麦克斯韦方程是根据那些电磁现象的实验定律创建的?概述这些实验的过程和意义(画出实验的原理示意图)。

2.试由矢量场的旋度和散度积分式推导出矢量场的旋度和散度微分式。

3.麦克斯韦方程组的四个微分方程之间虽有具有一定的关系(根据亥姆霍兹定理,矢量场同时要由其旋度和散度才能唯一确定)。

可在四个微分方程和电流连续性方程中,只有三个方程是独立的。

试证明由麦克斯韦方程组的两个散度方程和电流连续性方程可以推导出两个旋度方程。

4.试推证导电媒质中欧姆定律的微分形式EJσ=。

5.虚拟了磁荷和磁流的观念后,对应于导电媒质中欧姆定律的微分形式E J σ=,有导磁媒质中欧姆定律的微分形式H J mm σ=,其中m σ称为磁导率。

试推导m σ的量纲表达。

6.对于时谐电磁场的电场表达式:)t )cos((2)t )cos((2t),(y x ϕωϕω+++=r E e r E e r E y y x x )t )cos((2z ϕω++r E e z z 试画示意图阐述这样表达的合理性。

7.利用傅里叶变换,由麦克斯韦方程的瞬时形式(时域)推导其复数形式(频域)。

8.试从微观上分别阐述媒质在电磁场中极化和磁化的过程(画示意图),解释极化强度和磁化强度的物理涵义。

9.对于高频系统和微波系统来说,电流的时谐表示一般为:)sin(r k J J 0⋅−=t ω。

试结合电流连续性方程t -∂∂=⋅∇t),(t),(r r ρJ ,论证:高频系统和微波系统中到处都进行着充、放电的过程。

10.在非均匀介质中,ε和µ是坐标位置的函数。

试对于无源区导出:(1)只含E 和H 的麦克斯韦方程;(2)E 和H 的波动方程。

11.推导在导电媒质中的波动方程和矢量位方程。

12.利用麦克斯韦积分方程推导两种媒质边界上的边界条件:s ρ=−⋅)(21n D D e ms ρ=−⋅)(21n B B e msJ E E e 21n −=−×)(s21n JH H e =−×)(13.在各向异性媒质中,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=→→0,0,2j,1,0j,01,0εε,当:(1)x E e E 0=;(2)y E e E 0=;(3)z E e E 0=;(4))y x E e (e E0+=;(5))2y z E e e (E 0+=;(6))z y x E e e (e E 0−+=;求D 。

电磁学复习练习题作业(答案)

电磁学复习练习题作业(答案)

第一次作业(库仑定律和电场强度叠加原理)一 选择题[ C ]1下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E / 定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.[ C ]2 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A)2012a Q . (B) 206a Q.(C)203a Q . (D)20a Q.[ B ]3图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a 02 . (C) i a 04 . (D) j i a04 . 【提示】根据)sin (sin 4120 a E x )cos (cos 4210aE y对+ 均匀带电直线2,021对— 均匀带电直线0,221在(0,a )点的场强是4个场强的矢量和[ A ]4电荷面密度分别为+ 和- 的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x 变化的关系曲线为:(设场强方向 向右为正、向左为负)O +- x y (0, a ) O x -a a y+ -O -a +a 0/x(A)EO E -a +a 02/ x (B)OE -a +a 02/ x(C)-02/OE -a +a2/ x(D)/ 02/【提示】依据02E 及场强叠加 二.填空题5. 电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.4N / C 2分 向上 1分6. 电荷均为+q 的两个点电荷分别位于x 轴上的+a 和-a 位置,如图所示.则y 轴上各点电场强度的表示式为E=j y a qy2/322042 , (j为y 方向单位矢量) ,场强最大值的位置在y =2/a7.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为 1和 2如图所示,则场强等于零的点与直线1的距离a 为d 211三计算题8.如图所示,一电荷面密度为 的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.解:电荷面密度为 的无限大均匀带电平面在任意点的场强大小为E = / (2 0) 2分以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = 2 r d r 2分它在距离平面为a 的一点处产生的场强+q +q -a+aO xy12a daR O E2/32202d ra ardrE2分则半径为R 的圆面积内的电荷在该点的场强为R r a r r a E 02/3220d 222012R a a 2分 由题意,令E = / (40),得到R =a 32分9.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为 =q / L ,在x 处取一电荷元d q = d x = q d x / L ,它在P 点的场强: 204d d x d L q E204d x d L L xq 2分总场强为 Lx d L xL q E 020)(d 4- d L d q 043分 方向沿x 轴,即杆的延长线方向.10.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度. 解:把所有电荷都当作正电荷处理.在 处取微小电荷 d q = d l = 2Q d /它在O 处产生场强d 24d d 20220RQR q E2分按 角变化,将d E 分解成二个分量:d sin 2sin d d 202RQ E E xOd cos 2cos d d 202R Q E E y3分对各分量分别积分,积分时考虑到一半是负电荷2/2/0202d sin d sin 2R QE x =0 2分 2022/2/0202d cos d cos 2R QR Q E y2分 所以j RQ j E i E E y x2021分 第三次作业答案(高斯定理和电势2)1. 以下各种说法是否正确?(回答时需说明理由)(1)场强为零的地方,电势也一定为零。

(电磁学03)电容器和电介质

(电磁学03)电容器和电介质

二、电容器的串联 设各极板的电荷带电量为Q 设各极板的电荷带电量为Q
C1 C2 U Cn
Q Q U1 = , U2 = ,⋯ C1 C2
1 1 1 U = U1 +U2 +⋯+Un = + C C +⋯+ C Q 2 n 1
等效电容: 等效电容:
1 U 1 1 1 = = + +⋯+ C Q C1 C 2 Cn
RB RA + d d d ln = ln = ln1+ ≈ R R RA RA A A
2πε o L 2πε o LR A ε o S C≈ = = d RA d d
3、球形电容器
E=
Q 4πεor
RB
RA
2
RB
Qdr Q 1 1 − UAB = ∫ = RA 4 πεor2 4πεo RA RB
∑q0i
∫ ε ε E⋅ dS = ∑q 令
S r 0 0i
令 ε = εoεr
称为: εr 称为:相对介电常数 称为: ε 称为:介电常数 或
D = εoεr E
D = εE
E=
D
ε
介质中的高斯定理: 在任何静电场中, 介质中的高斯定理: 在任何静电场中,通过任意 闭合曲面的电位移通量等于该曲面所包围的自由 电荷的代数和。 电荷的代数和。
O-H+
-q H+
+ H2O
=
+q
(2)、非极性分子: (2)、非极性分子: 分子的正、负电荷中心在无外场时 分子的正、 重合。不存在固有分子电偶极矩。 重合。不存在固有分子电偶极矩。

计算电磁学课程作业_十_

计算电磁学课程作业_十_

计算电磁学课程作业(十)
1.目前对散射体表面电场积分方程(EFIE)和磁场积分方程(MFIE)
的建立主要有以下几种途径:
(1)利用电磁场的Stratton-Chu积分公式建立;
(2)直接利用散射体边界条件建立;
(3)利用等效原理建立。

试对由Stratton-Chu积分公式建立的电场积分方程(参看高
等电磁理论,傅君眉著,75页)(EFIE)和磁场积分方程
(MFIE)和由利用散射体边界条件(参看计算电磁学要论,
盛新庆著,8页-11页)建立的理想导体表面电场积分方程
(EFIE)和磁场积分方程(MFIE)进行对比讨论。

2.RWG基函数是Glisson于1978年在博士论文中提出的一种分域基
函数(参见后面两篇所附文献)。

简述RWG基函数建立的基本思路和基本特点。

(1)SADASIVA M. RAO,DONALD R.WILTON,AND ALLEN W.
GLISSON,“Electromagnetic Scattering by Surfaces of Arbitrary Shape”,IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-30, NO. 3, pp.409-418, MAY 1982. (2)ALLEN W. GLISSON,“Electromagnetic scattering by arbitrarily shaped surfaces with impedance boundary conditions”, Radio Science, Volume 27, Number 6, Pages 935-943, November-December 1992.。

电磁学计算题题库(附答案)

电磁学计算题题库(附答案)

电磁学计算题题库(附答案)《电磁学》练习题(附答案)1. 如图所⽰,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ?的点与电荷为+q 的点电荷相距多远?(2) 若选⽆穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. ⼀带有电荷q =3×10-9C 的粒⼦,位于均匀电场中,电场⽅向如图所⽰.当该粒⼦沿⽔平⽅向向右⽅运动5 cm 时,外⼒作功6×10-5 J ,粒⼦动能的增量为4.5×10-5J .求:(1) 粒⼦运动过程中电场⼒作功多少?(2) 该电场的场强多⼤?3. 如图所⽰,真空中⼀长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的⼀端距离为d 的P 点的电场强度.4. ⼀半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) ,ρ =0 (r >R )A 为⼀常量.试求球体外的场强分布.5. 若电荷以相同的⾯密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同⼼球⾯上,设⽆穷远处电势为零,已知球⼼电势为300 V ,试求两球⾯的电荷⾯密度σ的值. (ε0=8.85×10-12C 2 / N ·m2 ) 6. 真空中⼀⽴⽅体形的⾼斯⾯,边长a =0.1 m ,位于图中所⽰位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该⾼斯⾯的电通量. 7. ⼀电偶极⼦由电荷q =1.0×10-6C 的两个异号点电荷组成,两(2) 电偶极⼦从受最⼤⼒矩的位置转到平衡位置过程中,电场⼒作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的⽴⽅盒⼦的六个⾯,分别平⾏于xOy 、yOz 和xOz 平⾯.盒⼦的⼀⾓在坐标原点处.在此区域有⼀静电场,场强为j i E ?300200+= .试求穿过各⾯的电通量.10. 图中虚线所⽰为⼀⽴⽅形的⾼斯⾯,已知空间的场强分布为: E x =bx , E y =0, E z =0.⾼斯⾯边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合⾯中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有⼀电荷⾯密度为σ的“⽆限⼤”均匀带电平⾯.若以该平⾯处为电势零点,试求带电平⾯周围空间的电势分布.12. 如图所⽰,在电矩为p ?的电偶极⼦的电场中,将⼀电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆⼼与电偶极⼦中⼼重合,R >>电偶极⼦正负电荷之间距离)移到B 点,求此过程中电场⼒所作的功.13. ⼀均匀电场,场强⼤⼩为E =5×104 N/C ,⽅向竖直朝上,把⼀电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所⽰.求此点电荷在下列过程中电场⼒作的功.(1) 沿半圆路径Ⅰ移到右⽅同⾼度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上⽅向移到d 点,ad =260 cm(与⽔平⽅向成45°⾓).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所⽰, A 、B 为真空中两个平⾏的“⽆限⼤”均匀带电平⾯,A ⾯上电荷⾯密度σA =-17.7×10-8 C ·m -2,B ⾯的电荷⾯密度σB =35.4 ×10-8 C ·m -2.试计算两平⾯之间和两平⾯外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. ⼀段半径为a 的细圆弧,对圆⼼的⾓为θ0,其上均匀分布有正电荷q ,如图所⽰.试以a ,q ,θ0表⽰出圆⼼O 处的电场强度.17. 电荷线密度为λ的“⽆限长”均匀带电细线,弯成图⽰形状.若E ?qLqⅡ daσA∞半圆弧AB的半径为R,试求圆⼼O点的场强.18. 真空中两条平⾏的“⽆限长”均匀带电直线相距为a,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平⾯上,两线间任⼀点的电场强度(选Ox轴如图所⽰,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引⼒.19. ⼀平⾏板电容器,极板间距离为10 cm,其间有⼀半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空⽓,如图所⽰.当两极间电势差为100 V时,试分别求空⽓中和介质中的电位移⽮量和电场强度⽮量.(真空介电常量ε0=8.85×10-12 C2·N-1·m-2)20. 若将27个具有相同半径并带相同电荷的球状⼩⽔滴聚集成⼀个球状的⼤⽔滴,此⼤⽔滴的电势将为⼩⽔滴电势的多少倍?(设电荷分布在⽔滴表⾯上,⽔滴聚集时总电荷⽆损失.)21. 假想从⽆限远处陆续移来微量电荷使⼀半径为R的导体球带电.(1) 当球上已带有电荷q时,再将⼀个电荷元d q从⽆限远处移到球上的过程中,外⼒作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外⼒共作多少功?22. ⼀绝缘⾦属物体,在真空中充电达某⼀电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr的⽆限⼤的各向同性均匀液态电介质中,问这时电场总能量有多⼤?23. ⼀空⽓平板电容器,极板A、B的⾯积都是S,极板间距离为d.接上电源后,A板电势U A=V,B板电势U B=0.现将⼀带有电荷q、⾯积也是S⽽厚度可忽略的导体⽚C平⾏插在两极板的中间位置,如图所⽰,试求导体⽚C的电势.24. ⼀导体球带电荷Q.球外同⼼地有两层各向同性均匀电介质球壳,相对介电常量分别为εr1和εr2,分界⾯处半径为R,如图所⽰.求两层介质分界⾯上的极化电荷⾯密度.25. 半径分别为1.0 cm与2.0 cm的两个球形导体,各带电荷1.0×10-8 C,两球相距很远.若⽤细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/Cm9=πε)26. 如图所⽰,有两根平⾏放置的长直载流导线.它们的直径为a,反向流过相同⼤⼩的电流I,电流在导线均匀分布.试在图⽰的坐标系中求出x轴上两导线之间区域]25,21[aa磁感强度的分布.27. 如图所⽰,在xOy平⾯(即纸⾯)有⼀载流线圈abcd a,其中bc弧和da弧皆为以O为圆⼼半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向为沿abcd a的绕向.设线圈处于B = 8.0×10-2 T,⽅向与a→b的⽅向相⼀致的均匀磁场中,试求:(1) 图中电流元I?l1和I?l2所受安培⼒1F和2F的⽅向和⼤⼩,设?l1 =l2 =0.10 mm;(2) 线圈上直线段ab和cd所受的安培⼒ab的⼤⼩和⽅向;(3) 线圈上圆弧段bc弧和da弧所受的安培⼒bcF和daF的⼤⼩和⽅向.28. 如图所⽰,在xOy平⾯(即纸⾯)有⼀载流线圈abcda,其中b c弧和da弧皆为以O为圆⼼半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B⽅向沿x轴正⽅向.试求:(1) 图中电流元I?l1和I?l2所受安培⼒1F和2F的⼤⼩和⽅向,设?l1 =l2 =0.10 mm;(2) 线圈上直线段ab和cd所受到的安培⼒abF和的⼤⼩和⽅向;(3) 线圈上圆弧段bc弧和da弧所受到的安培⼒bcF和daF的⼤⼩和⽅向.29. AA'和CC'为两个正交地放置的圆形线圈,其圆⼼相重合.AA'线圈半径为20.0 cm,共10匝,通有电流10.0 A;⽽CC'线圈的半径为10.0 cm,共20匝,通有电流5.0 A.求两线圈公共中⼼O点的磁感强度的⼤⼩和⽅向.(µ0 =4π×10-7 N·A-2)abcdORRxyII30°45°I?l1I?l2abcdORRxyII30°45°I?l1 I?l230. 真空中有⼀边长为l 的正三⾓形导体框架.另有相互平⾏并与三⾓形的bc 边平⾏的长直导线1和2分别在a 点和b 点与三⾓形导体框架相连(如图).已知直导线中的电流为I ,三⾓形框的每⼀边长为l ,求正三⾓形中⼼点O 处的磁感强度B ?.31. 半径为R 的⽆限长圆筒上有⼀层均匀分布的⾯电流,这些电流环绕着轴线沿螺旋线流动并与轴线⽅向成α⾓.设⾯电流密度(沿筒⾯垂直电流⽅向单位长度的电流)为i ,求轴线上的磁感强度.33. 横截⾯为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯⼦材料的磁导率为µ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯⼦中的B 值和芯⼦截⾯的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. ⼀⽆限长圆柱形铜导体(磁导率µ0),半径为R ,通有均匀分布的电流I .今取⼀矩形平⾯S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所⽰,求通过该矩形平⾯的磁通量.35. 质⼦和电⼦以相同的速度垂直飞⼊磁感强度为B ?的匀强磁场中,试求质⼦轨道半径R 1与电⼦轨道半径R 2的⽐值.36. 在真空中,电流由长直导线1沿底边ac ⽅向经a 点流⼊⼀由电阻均匀的导线构成的正三⾓形线框,再由b 点沿平⾏底边ac ⽅向从三⾓形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三⾓形框的每⼀边长为l ,求正三⾓形中⼼O 处的磁感强度B ?.37. 在真空中将⼀根细长导线弯成如图所⽰的形状(在同⼀平⾯,由实线表⽰),R EF AB ==,⼤圆弧BC的半径为R ,⼩圆弧DE 的半径为R 21,求圆⼼O 处的磁感强度B ?的⼤⼩和⽅向.38. 有⼀条载有电流I 的导线弯成如图⽰abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、39.,地球半径为R =6.37×106 m .µ0 =4π×10-7 H/m .试⽤毕奥-萨伐尔定律求该电流环的磁矩⼤⼩.40. 在氢原⼦中,电⼦沿着某⼀圆轨道绕核运动.求等效圆电流的磁矩m p ?与电⼦轨道运动的动量矩L ?⼤⼩之⽐,并指出m p ?和L ?⽅向间的关系.(电⼦电荷为e ,电⼦质量为m)41. 两根导线沿半径⽅向接到⼀半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截⾯积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆⼼O 点处磁感强度B 的⼤⼩.(真空磁导率µ0 =4π×10-7 T ·m/A) 42. ⼀根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作⼀平⾯S ,S 的⼀个边是导线的中⼼轴线,另⼀边是S 平⾯与导线表⾯的交线,如图所⽰.试计算通过沿导线长度⽅向长为1m 的⼀段S 平⾯的磁通量.(真空的磁导率µ0 =4π×10-7 T ·m/A ,铜的相对磁导率µr ≈1)43. 两个⽆穷⼤平⾏平⾯上都有均匀分布的⾯电流,⾯电流密度分别为i 1和i 2,若i 1和i 2之间夹⾓为θ,如图,求:(1) 两⾯之间的磁感强度的值B i . (2) 两⾯之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图⽰相距为a 通电流为I 1和I 2的两根⽆限长平⾏载流直导线.(1) 写出电流元11d l I ?对电流元22d l I ?的作⽤⼒的数学表达式;(2) 推出载流导线单位长度上所受⼒的公式.45. ⼀⽆限长导线弯成如图形状,弯曲部分是⼀半径为R 的半圆,两直线部分平⾏且与半圆平⾯垂直,如在导线上通有电流I ,⽅II I 21d l I 22d l I ?向如图.(半圆导线所在平⾯与两直导线所在平⾯垂直)求圆⼼O 处的磁感强度.46. 如图,在球⾯上互相垂直的三个线圈 1、2、3,通有相等的电流,电流⽅向如箭头所⽰.试求出球⼼O 点的磁感强度的⽅向.(写出在直⾓坐标系中的⽅向余弦⾓)47. ⼀根半径为R 的长直导线载有电流I ,作⼀宽为R 、长为l 的假想平⾯S ,如图所⽰。

大学物理电磁学综合练习题(含答案)

大学物理电磁学综合练习题(含答案)

解:选择电流元
d I = I dl = I d R
d B = 0 d I = 0 I d 2R 2R
d Bx = − d B sin
=

0I 2 2R
sin
d
d By = d B cos
=
0I 2 2R
cos
d
Bx
=
0 d Bx
=
− 0I 2R
I • P•
o• L2
(D) M = 。
解:线圈 1(或 2)的电流变化不会引起线圈 2(或 1)的磁
通量的变化。
二、填充题(单位制为 SI)
1.
电流回路如图所示,弧线
AD

BC
为同心半圆环。某时刻一电子以速度
v
沿水平向左
的方向通过圆心 o 点,则电子在该点受到的洛仑兹力大小为 Fm
=
0I 4
ev
5-5
则此导线中的感生电动势 i
=
5 2
BR 2 ;
O 点电势高。
解:添 ob 后,整个线圈的感应电动势为零,所以
oacb
=
ob
=
ob(v

B) dl
=
− obrB

d
r
=

0
5R
rB

d
r
=
=

5 2
R2B
5.如图所示,一无限长圆柱体半径为 R ,均匀通过电流 I ,则穿过图中阴影部分的磁通量

解:产生涡旋电场,据 i = E K d l 可判断。
10.两个自感应系数分别为 L1 、 L2 ,半径均为 R 的圆
L1

电磁学习题课答案..

电磁学习题课答案..
作业1分析
作业二: 1、如图所示,两个同心的均匀带电球面,内球面半径为 R1,带电量
Q1,外球面半径为 R2,带电量为 Q2。设无穷远处为电势零点。
求: (1) 空间各处电场强度的分布;
(2)在内球面内,距中心为r处的P点的电势。 解:(1)依据高斯定律,有
O
Q1
R1
Q2
r
R2
P
r<R1
Q=0
E1=0
R1<r< R2
r> R2
Q= Q1
Q= Q1 +Q2
E2= Q1/(40r2)
E3= (Q1+Q2 )/(40r2) 方向均沿径向向外。
(2)由电势定义式:
此结论也可由电 =0+ [-Q /(4 R )+ Q /(4 R )]+ [(Q +Q )/(4 R )] 1 0 2 1 0 1 1 2 0 2 势叠加分析得到 = Q1/(40R1)+Q2 /(40R2 )
(a)为抗磁质,因为它在磁场中产生的 附加磁场与外磁场方向相反。 (b)为顺磁质,因为它在外磁场中产生 的附加磁场与外磁场方向相同。
11
作业六:
1、一根铜棒长
,水平放置,可绕距离a端为
处和棒垂直的轴在水平面以 的角速度旋转。铜棒置于竖直向上的磁感应强度 的匀强磁场中,如图所示, 求: (1) 铜棒的电动势 (2) a,b两端哪端的电势高? 解: (1)将棒ab分成无穷多小段,取一小段dr, 棒转动时dr产生的动生电动势:
1
2、电量分别为q1,q2,q3的三个点电荷分别位于同
一圆周的三个点上,如图所示.设无穷远处为电势
零点,圆半径为R,则b点处的电势U= ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算电磁学课程作业(三)
1. 为什么理想导电体和理想导磁体内部为零场?分别就静电场、静
磁场和交变电磁场三种情况进行阐述。

2. 试写出场论里的高斯定理、格林定理、斯托克斯定理、亥姆霍兹
定理,并说明其数学含义。

3. 试证明恒等式:
(1))(412
R R πδ=∇;(2)R R 11'-∇=∇ (其中'r r -=R
) 4. 0>z 的空间区域无源,0=z 的界面上为:
(1)电壁,紧贴电壁的磁流元为
0E m s y e J -=; (2)磁壁,紧贴磁壁的电流元为00/Z E s x e J -=;0Z 为波阻抗。

证明对于以上两种情况,
0>z 的空间区域的场相同。

5. 向z 方向传播的均匀平面波,
jkz e
E E --=0x e 在0=z 面上的等效源为0E m s y e J -=;00/Z E s x e J -=,证明此等效源在0<z 区域产生的场为零。

以下题目需提交作业:
6.传输主模的矩形波导终端开路,并接在开口的无限大理想导电面
上,求其辐射场。

7.传输主模的圆形波导终端开路,并接在开口的无限大理想导电面
上,求其辐射场。

相关文档
最新文档