电磁学复习计算题(附答案)

合集下载

高考物理电磁学计算题(十四)含答案与解析

高考物理电磁学计算题(十四)含答案与解析

高考物理电磁学计算题(十四)组卷老师评卷人得分一.计算题(共50小题)1.如图是测定带电粒子比荷的一种装置.图中点划线PQ是装置的轴线,A是粒子源,某一带电粒子(不计重力)自小孔飞出,经电场加速后沿轴线PQ进入装置C;装置C中有一对平行金属板,板间存在正交的电磁场,已知磁场的磁感应强度为B1,两极板间距为d,极板间的电势差为U;装置D是一半径为r、磁感应强度为B2、圆心在PQ上的圆形匀强磁场区域.若某带电粒子(不计重力)经电场加速后,恰好沿轴线PQ直线通过装置C,并沿轴线PQ方向进入装置D,经D中的磁场发生偏转,最后从圆形区域边界上的G点射出,已知G 点到轴线PQ的距离为r.求:(1)粒子离开装置C的速度大小;(2)粒子的比荷.2.如图电路中,电源的电动势E=3V,内阻r=1Ω,电阻R1=2Ω,R2=R4=1Ω,R3=8Ω,R5=5Ω,电容器的电容C=100μF,求闭合电键K后,通过电阻R3的总电量.3.丁肇中领导的反物质与暗物质太空探测计划(AMS )是人类探索世界的又一次飞跃.在该研究项目中将实验主要装置阿尔法磁谱仪安置于国际空间站.通过对粒子径迹的测量,间接研究粒子的性质.现对装置中的核心部件(桶状永磁体)进行讨论,如图(甲)所示,设桶状永磁体内分布有沿y轴正方向的匀强磁场,磁感应强度大小为B,而桶外几乎无磁场.内桶半径为R,桶长足够长.有一质量为m、电量为+e的反电子从xoy平面(z轴沿桶向下)打入桶中,忽略地磁场与各类摩擦影响,不计各粒子间相互作用.(1)若反电子垂直于xoy平面从O点打入桶中,反电子所受洛仑兹力的方向;(2)若从O点打入的反电子方向在xoz平面内且与z轴成α角,如图(乙)所示,要使反电子能打在桶壁,则反电子的速率;(3)当打到桶壁的反电子垂直于桶壁方向的速度大于速度v0(已知)时,才能被明显地观测到,如图(丙)所示,有一反电子垂直于xoy平面,从x轴上的P 点打入,最后打在桶壁上的Q点(图中未画出).P点在x轴上的坐标值为b﹣R,Q点在z轴上的坐标值为s,若Q点为明显的观测点,则入射速度v以及b、s 与v0之间应满足什么关系?4.如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°.在第III象限垂直于桌面放置两块相互平行的平板c1、c2,两板间距为d1=0.6m,板间有竖直向上的匀强磁场,两板右端在y轴上,板c1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为L=0.72m.在第Ⅳ象限垂直于x轴放置一块平行y 轴且沿y轴负向足够长的竖直平板c3,平板c3在x轴上垂足为Q,垂足Q与原点O相距d2=0.18m.现将一带负电的小球从桌面上的P点以初速度v0=42m/s垂直于电场方向射出,刚好垂直于x轴穿过c1板上的M孔,进人磁场区域.已知小球可视为质点,小球的比荷qm=20C/kg,P点与小孔M在垂直于电场方向上的距离为s=210m,不考虑空气阻力.求:(1)求M点速度大小?(2)求匀强电场的场强大小;(3)要使带电小球无碰撞地穿出磁场并打到平板c3上,求磁感应强度的取值范围.5.如图所示,在绝缘水平面上固定有两根导轨,分别为直导轨(y=﹣2L,x≥0)和正弦曲线形导轨(y=Lsin,x≥0).一质量为m的金属棒MN放在两导轨上,导轨的左端接有一电阻为R的定值电阻,不计其他电阻.x≥0的整个空间内存在磁感应强度大小为B、方向垂直xOy平面向外的匀强磁场(未画出).t=0时刻,对棒施加一沿x轴正方向的水平外力F使棒从x=0处由静止开始做加速度大小为a的匀加速直线运动,棒始终与x轴垂直且与两导轨接触良好,不计一切摩擦.求:(1)棒从x=0处运动到x=2L处的过程中通过电阻R的电荷量q;(2)棒在t时刻受到的水平外力F的大小.6.如图甲所示,在y≥0的区域内有垂直纸面向里的匀强磁场,其磁感应强度B 随时间t变化的规律如图乙所示;与x轴平行的虚线MN下方有沿+y方向的匀强电场,电场强度E=×103N/C.在y轴上放置一足够大的挡板.t=0时刻,一个带正电粒子从P点以v=2×104m/s的速度沿+x方向射入磁场.已知电场边界MN 到x轴的距离为m,P点到坐标原点O的距离为1.1m,粒子的比荷=106C/kg,不计粒子的重力.求粒子:(1)在磁场中运动时距x轴的最大距离;(2)连续两次通过电场边界MN所需的时间;(3)最终打在挡板上的位置到坐标原点O的距离.7.一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad长为L,现从ad中点O垂直于磁场射入一速度方向与ad边夹角为30°、大小为v0的带正电粒子,如图所示,已知粒子电荷量为q,质量为m(重力不计).若要求粒子能从ab边射出磁场,v0应满足什么条件?8.如图,光滑水平地面上方x≥0的区域内存在着水平向内的匀强磁场,磁感应强度为B=0.5T.有一长度为l=2.0m内壁粗糙的绝缘试管竖直放置,试管底端有一可以视为质点的带电小球,小球质量为m=1.0×10﹣2kg,带电量为q=0.3C小球和试管内壁的滑动摩擦因数为μ=0.5.开始时试管和小球以v0=1.0m/s的速度向右匀速运动,当试管进入磁场区域时对试管施加一外力作用使试管保持a=2.0m/s2的加速度向右做匀加速直线运动,小球经过一段时间离开试管.运动过程中试管始终保持竖直,小球带电量始终不变,g=10m/s2.求:(1)小球离开试管之前所受摩擦力f和小球竖直分速度v y间的函数关系(用各物理量的字母表示).(2)小球离开试管时的速度.9.如图所示,在半径为b(大小未知)的圆形区域内,固定放置一绝缘材料制成的边长为L的弹性等边三角形框架DEF,其中心O位于磁场区域的圆心.在三角形框架DEF与圆周之间的空间中,充满磁感应强度大小为B的均匀磁场,其方向垂直纸而向里.在三角形DEF内放置平行板电容器MN,两板间距为d,N板紧靠EF边,N板及EF中点S处均开有小孔,在两板间靠近M板处有一质量为m,电量为q (q>0)的带电粒子由静止释放,粒子经过S处的速度大小为v=,方向垂直于EF边并指向磁场.若粒子与三角形框架的碰撞均为弹性碰撞,且粒子在碰撞过程中质量、电量均不变,不计带电粒子的重力,平行板电容器MN产生的电场仅限于两板间,求:(1)MN间匀强电场的场强大小;(2)若从S点发射出的粒子能再次返回S点,则圆形区域的半径b至少为多大?(3)若圆形区域的半径b满足第(2)问的条件,则从M板处出发的带电粒子第一次返回M板处的时间是多少.10.如图所示,两根相距L1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d、间距为2d的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R的电阻,导轨的左端距离第一个磁场区域L2的位置放有一根质量为m,长为L1,阻值为r的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g.(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度B n的大小;(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.11.如图所示为利用静电除烟尘的通道示意图,前、后两面为绝缘板,上、下两面为分别与高压电源的负极和正极相连的金属板,在上下两面间产生的电场可视为匀强电场,通道长L=1m,进烟尘口的截面为边长d=0.5m的正方形.分布均匀的带负电烟尘颗粒均以水平速度v0=2m/s连续进入通道,碰到下金属板后其所带电荷会被中和并被收集,但不影响电场分布.已知每立方米体积内颗粒数n=1013个,每个烟尘颗粒带电量为q=﹣1.0×10﹣17C,质量为m=2.0×10﹣15kg,忽略颗粒的重力、颗粒之间的相互作用力和空气阻力.(1)高压电源电压U0=300V时,求被除去的烟尘颗粒数与总进入烟尘颗粒数的比值(2)若烟尘颗粒恰好能全部被除去,求高压电源电压U1(3)装置在(2)中电压U1作用下稳定工作时,1s内进入的烟尘颗粒从刚进入通道到被全部除去的过程中,求电场对这些烟尘颗粒所做的总功.12.在远距离输电时,要尽量考虑减少电线上的功率损失,有一个电站,输送的电功率为P=500kW,当使用U=5kV的电压输电时,测得安装在输电线路起点和终点处的两只电度表一昼夜示数相差4800kW•h.求:(1)输电效率η和输电线的总电阻r;(2)若想使输电效率提高到96%,又不改变输电线,那么电站应使用多高的电压向外输电?13.如图所示,宽L=2m、足够长的金属导轨MN和M′N′放在倾角为θ=30°的斜面上,在N和N′之间连接一个R=2.0Ω的定值电阻,在AA′处放置一根与导轨垂直、质量m=0.8kg、电阻r=2.0Ω的金属杆,杆和导轨间的动摩擦因数μ=,导轨电阻不计,导轨处于磁感应强度B=1.0T、方向垂直于导轨平面的匀强磁场中.用轻绳通过定滑轮将电动小车与杆的中点相连,滑轮与杆之间的连线平行于斜面,开始时小车位于滑轮正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m.启动电动小车,使之沿PS方向以v=5.0m/s的速度匀速前进,当杆滑到OO′位置时的加速度a=3.2m/s2,AA′与OO′之间的距离d=1m,求:(1)该过程中,通过电阻R的电量q;(2)杆通过OO′时的速度大小;(3)杆在OO′时,轻绳的拉力大小;(4)上述过程中,若拉力对杆所做的功为13J,求电阻R上的平均电功率.14.一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴(填“正向”或“负向”).已知该波的波长大于0.30m,则该波的波长为m.15.在竖直平面直角坐标系xOy内,第Ⅰ象限存在沿y轴正方向的匀强电场E1,第Ⅲ、Ⅳ象限存在沿y轴正方向的匀强电场E2(E2=),第Ⅳ象限内还存在垂直于坐标平面向外的匀强磁场B1,第Ⅲ象限内存在垂直于坐标平面向外的匀强磁场B2.一带正电的小球(可视为质点)从坐标原点O以某一初速度v进入光滑的半圆轨道,半圆轨道在O点与x轴相切且直径与y轴重合,如图所示,小球恰好从轨道最高点A垂直于y轴飞出进入第Ⅰ象限的匀强电场中,偏转后经x 轴上x=R处的P点进入第Ⅳ象限磁场中,然后从y轴上Q点(未画出)与y 轴正方向成60°角进入第Ⅲ象限磁场,最后从O点又进入第一象限电场.已知小球的质量为m,电荷量为q,圆轨道的半径为R,重力加速度为g.求:(1)小球的初速度大小;(2)电场强度E1的大小;(3)B1与B2的比值.16.如图甲所示,足够长的粗糙斜面与水平面成θ=37°固定放置,斜面上平行虚线aa′和bb′之间有垂直斜面向上的有界匀强磁场,间距为d=1m,磁感应强度为B随时间t变化规律如图乙所示.现有一质量为m=0.1Kg,总电阻为R=10Ω,边长也为d=1m的正方形金属线圈MNPQ,其初始位置有一半面积位于磁场中,在t=0时刻,线圈恰好能保持静止,此后在t=0.25s时,线圈开始沿斜面下滑,下滑过程中线圈MN边始终与虚线aa′保持平行.已知线圈完全进入磁场前已经开始做匀速直线运动.求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)前0.25s内通过线圈某一截面的电量;(2)线圈与斜面间的动摩擦因数;(3)线圈从开始运动到通过整个磁场的过程中,电阻上产生的焦耳热.17.如图甲所示,有一磁感应强度大小为B、垂直纸面向外的匀强磁场,磁场边界OP与水平方向夹角为θ=45°,紧靠磁场右上边界放置长为L、间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2为电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上以不同初速度同时发射两个相同的质量为m、电量为+q的粒子a和b.结果粒子a恰从O1点水平进入板间电场运动,由电场中的O2点射出;粒子b恰好从M板左端边缘水平进入电场.不计粒子重力和粒子间相互作用,电场周期T未知.求:(1)粒子a、b从磁场边界射出时的速度v a、v b;(2)粒子a从O点进入磁场到O2点射出电场运动的总时间t;(3)如果金属板间交变电场的周期,粒子b从图乙中t=0时刻进入电场,要使粒子b能够穿出板间电场时E0满足的条件.18.如图所示,直角坐标系xOy在竖直平面内且x轴沿水平方向.在区域有电场强度大小为E、方向沿y轴正方向的匀强电场.一带电粒子从O点以某一速度沿y轴正方向做匀速直线运动,到达(0,L)点后进入磁感应强度为B、方向垂直于xOy平面的圆形匀强磁场区域(图中未画出).粒子通过磁场区域后垂直电场线进入匀强电场,粒子穿越电场前后速度方叫偏转了45°,已知带粒子的质量为m,电量为q,不计带电粒子的重力.求:(1)带电粒子勻速运动速度的大小;(2)圆形匀强磁场区域的最小半径及圆心坐标.19.如图甲所示,两块相同的平行金属板M、N正对着放置,相距为,板M、N上的小孔A、C与O三点共线,CO=R,连线AO垂直于板M、N.以O为圆心、R为半径的圆形区域内存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场.收集屏PQ上各点到O点的距离都为2R,两端点P、Q关于连线AO对称,屏PQ所对的圆心角θ=120°.质量为m、电荷量为e的质子连续不断地经A进入M、N间的电场,接着通过C进入磁场.质子重力及质子间的相互作用均不计,质子在A处的速度看作零.(1)若M、N间的电压U MN=+U时,求质子进入磁场时速度的大小v0.(2)若M、N间接入如图乙所示的随时间t变化的电压U MN=|U0sin t|(式中U0=,周期T已知),且在质子通过板间电场区域的极短时间内板间电场视为恒定,则质子在哪些时刻自s1处进入板间,穿出磁场后均能打到收集屏PQ 上?(3)在上述(2)问的情形下,当M、N间的电压不同时,质子从s1处到打在收集屏PQ上经历的时间t会不同,求t的最大值.20.如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中,力中只画出了6个圆筒,作为示意)它们沿中心轴线排列成一串,各个圆筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计.为达到最佳加速效果,应当调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒间缝隙时,都恰为交流电压的峰值.质量为m、电荷量为e的正、负电子分别经过直线加速器加速后,从左、右两侧被导入装置送入位于水平面内的圆环形真空管道,且被导入的速度方向与圆环形管道中粗虚线相切.在管道内控制电子转弯的是一系列圆形电磁铁,即图中的A1、A2、A3…A n,共n个,均匀分布在整个圆周上(图中只示意性地用细实线和细虚线了几个),每个电磁铁内的磁场都是磁感应强度和方向均相同的匀强磁场,磁场区域都是直径为d的圆形.改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确的调整,可使电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的一条直径的两端,如图(乙)所示.这就为实现正、负电子的对撞作好了准备.(1)若正电子进入第一个圆筒的开口时的速度为v0,且此时第一、二两个圆筒的电势差为U,正电子进入第二个圆筒时的速率多大?(2)正、负电子对撞时的速度多大?(3)为使正电子进入圆形磁场时获得最大动能,各个圆筒的长度应满足什么条件?(4)正电子通过一个圆形磁场所用的时间是多少?21.互联网正在极大地促进商业的发展和消费的升级,“020”模式是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台的一种商业新模式,具体到一家外卖公司与消费之间,就是消费者在网络平台上下单订购,而公司进行线下的配送服务.某外卖公司为了更好地为消费者服务,配送员工使用的是“XR一2016”型电动自行车工作,以下是该车的相关参数:名称车身质量满载载重前后车轮直径额定转速电动机额定电压电动机额定电流额定机械输出功率参数40kg80kg40cm r/min48V20A835W 该电动自行车采用后轮驱动直流电动机,其中额定转速是电动自行车在满载情况下在平直公路上以额定功率勻速行进时的车轮转速,求:(1)电动自行车以额定转速行进时的速度v0;在额定工作状态时,损失的功率有80%是由于电动机绕线电阻生热而产生的,则电动机的绕线电阻为多大;(2)满载(车身质量+满载载重质量)情况下,该车以速度v=5m/s沿着坡度为θ=4.59°的长直坡道向上匀速行驶时,受到的摩擦阻力为车重(含载重)重量的0.02倍,求此状态下电动自行车实际运行机械功率(sin4.59°=0.08,重力加速度g=10m/s2).22.有一仪器中电路如图所示,其中M是质量较大的金属块,将仪器固定在一辆汽车上,汽车启动时和急刹车时,发现其中一盏灯亮了,试分析是哪一盏灯亮了.23.如图所示,ABCD为边长为2a的正方形,O为正方形中心,正方形区域左丶右两对称部分分别存在方向垂直ABCD平面向里和向外的匀强磁场.一个质量为|m丶电荷量为q的带正电粒子从B点处以速度v垂直磁场方向射入左侧磁场区域,速度方向与BC边夹角为15°,粒子恰好经过O点.已知cos15°=,粒子重力不计.(1)求左侧磁场的磁感应强度大小;(2)若粒子从CD边射出,求右侧磁场的磁感应强大大小的取值范围.24.如图所示为一列沿x轴正方向传播的简谐横波在t=0时刻的波形图.x=0处的质点做简谐运动的振动方程为y=﹣2sin10πt(cm).求:(1)从t=0开始计时,P点第一次到达波峰位置所需的时间;(2)P点第一次到达波峰位置时,x=0.25m处质点偏离平衡位置的位移.25.如图所示,质量为m、电阻为R的单匝矩形线框置于倾角为θ的光滑斜面上,线框边长ab=L、ad=2L,虚线MN过ad、bc边中点,一根能承受最大拉力F0(F0>mgsinθ)的细线沿斜面中轴线方向栓住ab边中点处于静止.从某时刻起,在MN上方加一方向垂直斜面向上的匀强磁场,磁感应强度大小按B=kt的规律均匀变化.求经多长时间细线断裂?26.一光滑绝缘细直长杆处于静电场中,沿细杆建立坐标轴x,以x=0处的O点为电势零点,如图(a)所示.细杆各处电场方向沿x轴正方向,其电场强度E 随x的分布如图(b)所示.细杆上套有可视为质点的带电环,质量为m=0.2kg,电荷量为q=﹣2.0×10﹣6C.带电环受沿x轴正向的恒力F=1.0N的作用,从O点静止开始运动,求:(1)带电环在x=1m处的加速度;(2)带电环在x=1m处的动能;(3)带电环在x=1m处的电势能.27.如图所示,两足够长的平行光滑金属导轨MN、PQ相距为L,导轨平面与水平面的夹角为α.匀强磁场分布在整个导轨所在区域.磁感应强度为B、方向垂直于导轨平面向上,质量为m、长为L 的金属杆垂直于MN.PQ放置在导轨上.且始终与导轨接触良好.两导轨的上端通过导线连接由定值电阻和电容器组成的电路,电容器的电容为C.现闭合开关S并将金属杆从ab位置由静止释放,已知杆向下运动距离为x到达cd位置的过程中,通过杆的电荷量为q1,通过定值电阻的电荷量为q2,且已知杆在到达cd前已达到最大速度,不计导轨、金属杆及导线的电阻,重力加速度为g.(1)电容器上极板带什么电?电荷量是多少?(2)杆运动的最大速度和定值电阻的阻值各是多少?(3)小羽同学从资料上查阅到电容器的储能公式为E c=CU2(U为电容器两板间的电压),若不计回路向外辐射的电磁能.求杆从ad到cd的过程中回路产生的总焦耳热.(结果用m、g、B、L、C、α、x、q1、q2表示)28.如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T,将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8)求:(1)金属棒与导轨间的动摩擦因数μ和cd离NQ的距离S.(2)金属棒滑行至cd处的过程中,电阻R上产生的热量.(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).29.如图所示,x轴上放有一足够大的荧光屏,y轴上(0,L)处有一个点状的α粒子放射源A,某瞬间同时向xoy平面内各个方向发射速率均为v0的α粒子(不计重力),设α粒子电量为q,质量为m,求:(1)当空间中只存在平行xoy平面沿y轴负方向的匀强电场时,最后到达荧光屏的α粒子在电场中的运动时间为最先到达荧光屏的α粒子在电场中运动时间的3倍,求电场强度.(2)当空间中只存在垂直xoy平面向里的匀强磁场且磁感应强度B=时,最先到达荧光屏的α粒子在磁场中的运动时间与最后到达荧光屏的α粒子在磁场中运动时间的比值为多少.30.如图所示,边长为L=0.20m的正方形金属线框,放在光滑,绝缘的水平面上,线框的总电阻为R=1.0Ω,有界匀强磁场方向垂直纸面向里,磁感应强度大小为B=0.50T,线框的右边与磁场边界平行.现用一水平外力将线框以v=10m/s的速度匀速拉出磁场区域.求:(1)线框离开磁场的过程中受到的安培力的大小.(2)线框完全拉出磁场区域的过程中,线框中产生的焦耳热.31.如图所示,开有小孔的平行板水平放置,两极板接在电压大小可调的电源上,用喷雾器将油滴喷注在小孔上方.已知两极板间距为d,油滴密度为ρ,电子电量为e,重力加速度为g,油滴视为球体,油滴运动时所受空气的粘滞阻力大小F f=6πηrv(r为油滴半径、η为粘滞系数,且均为已知),油滴所带电量是电子电量的整数倍,喷出的油滴均相同,不考虑油滴间的相互作用.(1)当电压调到U时,可以使带电的油滴在板间悬浮;当电压调到时,油滴能在板间以速度v匀速竖直下行.求油滴所带电子的个数n及油滴匀速下行的速度v;(2)当油滴进入小孔时与另一油滴粘连在一起形成一个大油滴,以速度v1(已知)竖直向下进入小孔,为防止碰到下极板,需调整电压,使其减速运行,若将电压调到2U,大油滴运动到下极板处刚好速度为零,求:大油滴运动到下极板处时的加速度及这一过程粘滞阻力对大油滴所做的功.32.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L=0.5m,上端接有阻值R=0.3Ω的电阻,匀强磁场的磁感应强度大小B=0.4T,磁场方向垂直导轨平面向上.一质量m=0.2kg,电阻r=0.1Ω的导体棒MN在平行于导轨的外力F作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好,当棒的位移d=9m时电阻R上消耗的功。

高考物理电磁学计算题(三十四)含答案与解析

高考物理电磁学计算题(三十四)含答案与解析

高考物理电磁学计算题(三十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,在平面直角坐标系中,第三象限里有一加速电场,一个电荷量为q、质量为m的带正电粒子(不计重力),从静止开始经加速电场加速后,垂直x轴从A(﹣4L,0)点进入第二象限,在第二象限的区域内,存在着指向O点的均匀辐射状电场,距O点4L处的电场强度大小均为E=,粒子恰好能垂直y轴从C(0,4L)点进入第一象限,如图所示,在第一象限中有两个全等的直角三角形区域I和Ⅱ,充满了方向均垂直纸面向外的匀强磁场,区域I的磁感应强度大小为B0,区域Ⅱ的磁感应强度大小可调,D点坐标为(3L,4L),M点为CP的中点。

粒子运动轨迹与磁场区域相切时认为粒子能再次进入磁场。

从磁场区域I进入第二象限的粒子可以被吸收掉。

求(1)加速电场的电压U;(2)若粒子恰好不能从OC边射出,求区域Ⅱ磁感应强度大小;(3)若粒子能到达M点,求区域Ⅱ磁场的磁感应强度大小的所有可能值。

2.一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。

图中直径MN的两端分别开有小孔。

筒绕其中心轴以角速度ω0顺时针转动。

一带电粒子从小孔M沿MN方向射入筒内(图中未画出),当筒转过90°时,该粒子恰好从小孔N飞出圆筒。

若粒子在筒内未与筒壁发生碰撞,不计粒子重力。

(1)求带电粒子的比荷;(2)若粒子速率不变,在该截面内,粒子从小孔M射入时的运动方向与MN成30°,粒子仍未与筒壁发生碰撞而从某小孔飞出,求圆筒的角速度ω。

3.如图所示,在水平边界MN上方有磁感应强度大小为B0、方向垂直纸面向外的匀强磁场,磁感应强度为B,O、A是MN上的两点,OA距离为L,PQ是一足够长的挡板,粒子打在挡板上均被吸收,开始时P点与O点重合,∠QON=θ=53°.在OA之间有大量质量为m、电荷量为﹢q且速度相同的粒子,速度方向均垂直边界MN竖直向上,且在纸面内。

电磁学复习计算题(附答案)

电磁学复习计算题(附答案)

《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?d-3q+q2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLdq POxz ya aaa10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R ,试求圆心O 点的场强.ABRpⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q ABR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ a Oxεrdd/2 d/2BC AqVR ROQ εr 1εr 226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2 Ia a I xO 2a a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2 abcIIO12 e32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC 的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39. 假定地球的磁场是由地球中心的载流小环产生的,已知地极附近磁感强度B 为 6.27×10-5 T ,地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )y ORωR 1 R 2 NbIS2R1 mbacI IO1 2eABEF RIID C O 60︒abc dOI R 2R 1 l 2 l 141. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

2023高考物理电磁学复习 题集附答案

2023高考物理电磁学复习 题集附答案

2023高考物理电磁学复习题集附答案1. 计算题(1) 题目:一根长直导线与一均匀磁场垂直。

当导线上通过电流I时,该导线受到的磁力为F。

若电流增加到2I,导线受到的磁力变为几倍?答案:根据洛伦兹力公式 F = BIL,磁力与电流I成正比。

当电流增加到2I时,磁力也变为原来的两倍。

(2) 题目:一根长直导线和一个圆形线圈位于同一平面内。

导线与线圈无电流通过时,导线上的电流为I1时,线圈不受任何力的作用。

若导线上的电流变为I2(I2 > I1),线圈受到的磁力的方向如何?答案:根据安培环路定理,通过圆形线圈的磁感应强度与线圈内的电流方向相同。

由于导线和线圈位于同一平面内且导线上电流方向为I1,所以线圈受到的磁力方向与导线相反。

2. 简答题题目:什么是电磁感应?请举一个与电磁感应相关的实例,并说明原理。

答案:电磁感应是指导体中的电荷在磁场的作用下产生电流的现象。

一个与电磁感应相关的实例是发电机的工作原理。

发电机通过旋转导线圈在磁场中产生感应电动势,从而将机械能转化为电能。

发电机工作的原理如下:当导线圈旋转时,由于导线移动时与磁力线斜交,导线内部的自由电子受到洛伦兹力的作用,从而在导线中产生电流。

这时,导线两端的电势差就会推动工作电荷的流动,形成一个电流回路。

由于导线圈在旋转时可以保持与磁场的相对运动,因此电流的产生是连续不断的,实现了电能的转换。

3. 应用题题目:一个带电粒子以速度v进入一个垂直磁场,受到的洛伦兹力为F。

如果将该带电粒子的速度翻倍,磁场保持不变,受到的洛伦兹力将会如何变化?答案:根据洛伦兹力的公式 F = qvB,洛伦兹力与粒子速度v成正比。

当将带电粒子的速度翻倍时,其受到的洛伦兹力也会翻倍。

4. 计算题题目:一根长度为L的导线,电流I以时间t的速率匀速地变化。

在导线附近的某点处,磁感应强度B随时间的变化率为d|B|/dt = k,其中k为常数。

求在这个点的感应电场强度E。

答案:根据法拉第电磁感应定律,感应电场强度E与磁感应强度的变化率成正比。

高考物理电磁学计算题(二十四)含答案与解析

高考物理电磁学计算题(二十四)含答案与解析

高考物理电磁学计算题(二十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,虚线框内为某种电磁缓冲车的结构俯视图,缓冲车厢的底部安装电磁铁(图中未画出),能产生竖直向下的匀强磁场,磁场的磁感应强度为B,车厢上有两个光滑水平绝缘导轨PQ、MN,将高强度绝缘材料制成的缓冲滑块K置于导轨上,并可在导轨上无摩擦滑动。

滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L,假设关闭发动机后,缓冲车厢与滑块K以速度v0与障碍物C碰撞。

滑块K立即停下,此后缓冲车相会受到线圈对它的磁场力而做减速运动,从而实现缓冲,缓冲车厢质量为m,缓冲滑块的质量为m0,车厢与地面间的动摩擦因数为,其他摩擦阻力不计,求:(1)缓冲滑块K的线圈中感应电流的方向和最大安培力的大小;(2)若缓冲车厢向前移动时间t后速度减为零,缓冲车厢与障碍物和线圈的ab边均没有接触,求此过程线圈abcd中通过的电量;(3)接(2)求此过程线圈abcd中产生的焦耳热。

2.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。

已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。

(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。

如图乙(甲图中导体棒ab)所示,为了方便,可认为导体棒ab中的自由电荷为正电荷,每个自由电荷的电荷量为q,设导体棒ab中总共有N个自由电荷。

a.求自由电荷沿导体棒定向移动的速率u;b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率。

3.环保部门为了监测某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。

2024年高考物理二轮复习专题18:电磁学综合计算题(附答案解析)

2024年高考物理二轮复习专题18:电磁学综合计算题(附答案解析)

专题18·电磁学综合计算题能力突破本专题主要牛顿运动定律、动能定理、动量定理、动量守恒定律、洛伦兹力、法拉第电磁感应定律,以及用这些知识解决匀速圆周运动模型、导体棒模型、线框模型、圆周运动+类平抛运动模型等类型的试题。

高考热点(1)能利用运动合成与分解的方法处理带电粒子在电场中运动问题;(2)应用几何关系和圆周运动规律分析求解带电粒子在磁场、复合场中的运动;(3)电磁感应中的电路分析、电源分析、动力学和能量转化分析。

出题方向主要考查计算题,一压轴题的形式出现,题目难度一般为中档偏难。

考点1带电粒子(体)在电场中的运动(1)首先分析带电粒子(体)的运动规律,确定带电粒子(体)在电场中做直线运动还是曲【例1】(2023•越秀区校级模拟)一长为l 的绝缘细线,上端固定,下端拴一质量为m 、电荷量为q 的带正电的至小球,处于如图所示水平向右的匀强电场中。

先将小球拉至A 点,使细线水平。

然后释放小球,当细线与水平方向夹角为120︒时,小球到达B 点且速度恰好为零,为重力加速度为g ,sin 300.5︒=,cos30︒=。

求:(1)匀强电场AB 两点间的电势差AB U 的大小;(2)小球由A 点到B 点过程速度最大时细线与竖直方向的夹角θ的大小;(3)小球速度最大时细线拉力的大小。

【分析】(1)根据动能定理列式得出AB 两点电势差的大小;(2)根据矢量合成的特点得出小球受到的合力,结合几何关系得出速度最大时细线与竖直方向的夹角;(3)根据动能定理得出小球的速度,结合牛顿第二定律得出细线的拉力。

【解答】解:(1)由小球由A 点到B 点过程,根据动能定理得:(1cos30)0AB qU mgl ++︒=解得:2AB U q=-(2)由UE d=得匀强电场强度的大小为:3mg E q=小球所受的合力大小为:F ==合合力方向tan qE mg θ=故30θ=︒小球由A 点到B 点过程在与竖直方向夹角30θ=︒为时速度最大;(3)当小球运动到与竖直方向夹角30θ=︒为时速度最大,设此时速度为v ,根据动能定理得:()211602F l cos mv ⋅-︒=合得最大速度v =根据牛顿第二定律得2T v F F ml-=合得速度最大时细线拉力大小T F =答:(1)匀强电场AB 两点间的电势差AB U ;(2)小球由A 点到B 点过程速度最大时细线与竖直方向的夹角θ的大小为30︒;(3)小球速度最大时细线拉力的大小为3。

电磁学考试题库及答案详解

电磁学考试题库及答案详解

电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。

A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。

2. 电场强度的方向是()。

A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。

3. 电势能与电势的关系是()。

A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。

4. 电容器的电容C与板间距离d和板面积A的关系是()。

A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。

5. 磁场对运动电荷的作用力遵循()。

A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。

二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。

2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。

初中物理中考电磁学专项练习(计算题)201-300(含答案解析)

初中物理中考电磁学专项练习(计算题)201-300(含答案解析)

初中物理中考电磁学专项练习(计算题)201-300(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.如图甲所示,电源电压恒定,R0为定值电阻.将滑动变阻器的滑片从a端滑到b端的过程中,电压表示数U与电流表示数I间的关系图象如图乙所示.求:(1)滑动变阻器R的最大阻值;(2)R0的阻值及电源电压;(3)当滑片滑到滑动变阻器的中点时,电阻R0消耗的功率.2.如图所示的电路中,只闭合S1时,通过R2的电流是1.5 A,R1=30 Ω,R2=20 Ω.求:(1)电源电压是多大;(2)只闭合S2时,通电20 s电流通过R1产生的电热是多少;(3)使开关通断情况发生变化,整个电路消耗的最小电功率P和最大电功率P′之比是多少.3.如图所示的电路中,小灯泡上标有“6V 3.6W”字样,滑动变阻器R1的最大电阻为40Ω.当只闭合S、S2,滑动变阻器的滑片P在中点时,小灯泡正常发光;当所有开关都闭合,滑片滑到A端时,A1、A2的示数之比是3:1(灯的电阻保持不变).求:(1)电源电压.(2)当只闭合S 、S 2,滑动变阻器的滑片P 在A 端时,小灯泡两端的实际电压.(3)小灯泡消耗的最小电功率(不能为0).4.小明将规格为“220 V 1 210 W”的电热水器单独接入电路中,测得在2 min 内电能表的转盘转过40转(电能表表盘上标有1 200 r/ kW·h 字样),求: (1)该电热水器的实际功率;(2)电路中的实际电压;(3)若该电热水器加热效率为90%,求在该电压下将5 kg 、25 ℃的水加热到55 ℃需要的时间.5.如图甲所示,滑动变阻器R 2标有“50Ω 1A”字样,电源电压为8V 且保持不变。

当开关S 闭合时,电流表A 1和A 2的指针偏转情况如图乙所示。

求:(1)电阻R 1的阻值(2)通电100s ,电流通过电阻R 1产生的热量;(3)再次移动滑动变阻器R 2的滑片P ,使两电流表指针偏离零刻度的角度相同,此时滑动变阻器R 2消耗的电功率P 2。

电磁学计量计算题

电磁学计量计算题

1、一个电荷量为+q的点电荷在电场中某点受到的电场力为F,则该点的电场强度大小为:A、F/qB、q/FC、FqD、无法确定(答案)A2、两个相同的金属小球,带电荷量分别为+4Q和-2Q,当它们相距r时,相互间的库仑力大小为F。

若将它们接触后再放回原处,则它们之间的库仑力大小变为:A、F/8B、F/4C、3F/8D、F/2(答案)B3、一段长为l的通电直导线放在磁感应强度为B的匀强磁场中,导线与磁场方向垂直,通过导线的电流强度为I,则导线所受安培力的大小为:A、B/IlB、BI/lC、BIlD、BIl2(答案)C4、一个电容器带电荷量Q时,两极板间的电势差为U,若使它的电荷量增加ΔQ,则两极板间的电势差将变为:A、UB、U + ΔQC、(Q + ΔQ)U/QD、无法确定(答案)C5、一个电阻值为R的电阻,接在电压为U的电源上,通过电阻的电流为I,若电源电压增至2U,则通过电阻的电流为:A、IB、2IC、I/2D、4I(答案)B6、在磁感应强度为B的匀强磁场中,一个面积为S的线圈垂直磁场方向放置,则穿过该线圈的磁通量为:A、BS2B、B/SC、BSD、0(答案)C7、两个电阻R1和R2串联后接在电源上,已知R1 = 2:3,则通过R1和R2的电流之比I1为:A、2:3B、3:2C、1:1D、无法确定(答案)C8、一个电容为C的电容器,充电至电压为U后断开电源,再将一个电容为2C的电容器与其并联,则并联后电容器的总电压为:A、UB、2UC、U/2D、3U/2(答案)A。

电磁学复习计算题(附问题详解)

电磁学复习计算题(附问题详解)

《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯EqLq P面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧ABR ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:dσAσBA Bq ∞∞ -λ +λ(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线均匀分布.试在图示的坐标系中求出xdd/2 d/2轴上两导线之间区域]25,21[a a 磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F 的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 a bc d O RR x yI I 30° 45° I ∆l 1I ∆l 2心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0=4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB1 mI是铝导线,铝线电阻率为ρ1 =2.50×10-8 Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学电磁学试题及答案

大学电磁学试题及答案

大学电磁学试题及答案一、选择题(每题2分,共20分)1. 电场强度的定义式是()。

A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电势差的定义式是()。

A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A3. 电容器的电容与两极板间的距离成()。

A. 正比B. 反比C. 无关D. 无法确定答案:B4. 电容器的电容与两极板的面积成()。

A. 正比B. 反比C. 无关D. 无法确定答案:A5. 电容器的电容与两极板间介质的介电常数成()。

A. 正比B. 反比C. 无关D. 无法确定答案:A6. 电容器的储能公式是()。

A. W = 1/2CU^2B. W = 1/2CV^2C. W = 1/2CQ^2D. W = 1/2CVQ答案:B7. 电流强度的定义式是()。

A. I = dQ/dtB. I = Q/dtC. I = dQ/tD. I = Qd/t答案:A8. 欧姆定律的公式是()。

A. U = IRB. U = R/IC. U = I/RD. U = RI答案:A9. 电阻定律的公式是()。

A. R = ρL/AB. R = ρA/LC. R = L/ρAD. R = A/ρL答案:A10. 电感的定义式是()。

A. L = NΦ/IB. L = Φ/NIC. L = I/NΦD. L = N/IΦ答案:A二、填空题(每题2分,共20分)11. 电场强度的方向是________。

答案:电势降低最快的方向12. 电势差的方向是________。

答案:电势高的指向电势低的13. 电容器两极板间的电场强度是________。

答案:E = U/d14. 电容器两极板间的电势差是________。

答案:U = Ed15. 电容器的储能公式是________。

答案:W = 1/2CU^216. 电流强度的方向是________。

答案:正电荷定向移动的方向17. 欧姆定律的公式是________。

初中物理中考电磁学专项练习(计算题)701-800(含答案解析)

初中物理中考电磁学专项练习(计算题)701-800(含答案解析)

初中物理中考电磁学专项练习(计算题)701-800(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.甲、乙两个家用电热器接入如图所示的家庭电路中,当两电键都闭合时,干路中的电流为4.5安,通过甲用电器的电流为0.3安.求:(1)通过乙电热器的电流;(2)甲电热器在10秒内电流做的功.2.在如图所示的电路中,电源电压和小灯泡的阻值均保持不变,电源电压 U=6V,小灯泡 L 上标有“6V 3W”字样,电流表的量程为 0~0.6A,电压表的量程为 0~3V,滑动变阻器 R2的最大阻值为20Ω.(1)只闭合开关 S1和 S2时,电路消耗的功率为 6W,则闭合开关 S1、S2和 S3时,电路的总电阻 R=_____?(2)在不损坏各元件的情况下,只闭合开关 S1时,R1消耗的最大功率为 P1,只闭合开关 S3时,L 消耗的最小功率为 P3,则 P1:P3=______?3.如图所示电路中,电源电压恒定,电阻R0=5Ω,滑动变阻器的最大阻值为R P,闭合开关,移动滑片,当接入电路的有效阻值为R P/4 时电流表A 的示数为0.45A,当接入电路的有效阻值为R P/5时电流表A 的示数为0.5A,试求:(1)变阻器的最大阻值R P(2)若电流表的量程为0﹣0.6A,电压表的量程为0﹣3V,为了不损坏两个电表,求滑动变阻器可连入电路的阻值范围.4.如图甲所示,是某种电热饮水机的简化电路示意图.图乙是它的有关参数.它有加热和保温两种工作状态(由机内温控开关自动控制),试问:(1)和的电阻值各是多大?(2)在用电高峰期,该饮水机的实际工作电压只有,加热效率为80%,若将装满水箱的水从20℃加热至,需要多长时间?(,,忽略温度对电阻的影响)5.养生壶是一种用于养生保健的可以烹饮的容器,类似于电水壶,其最大的特点是釆用一种新型的电加热材料,通过髙温把电热膜电子浆料(金属化合物)喷涂在玻璃表面形成面状电阻,在两端制作银电极,通电后产生热量把壶内的水加热.小明家买了一个养生壶(图甲),其铭牌如表所示.(1)该养生壶正常工作时,面状电阻的阻值多少?(2)若壶内装有2L温度为20℃的水,在一个标准大气压下,将水烧开,此过程中水吸收的热量是多少?[c水=4.2×l03J/(kg•℃),lL=1×10﹣3m3](3)小明关闭了家中的其他所有用电器,只用该壶在加热过程中家用电能表(图乙)的转盘5min内转了300转,此过程中养生壶消耗的电能和实际电功率各是多少?6.如图所示,电源电压恒为18V,小灯泡L标有“6V 3W”字样,滑动变阻器R标有“100Ω 1A”字样,电压表使用的量程为0~15V,电流表使用的量程为0~0.6A,R0为一定电阻;当闭合开关S、S1,断开S2时,灯泡L恰好正常发光;不计温度对灯丝电阻的影响.求:(1)小灯泡L的电阻;(2)闭合开关S、S1,断开S2时,通电1min,电流通过定值电阻R0所做的功;(3)当闭合开关S、S2,断开S1时,在保证电表不超量程、灯泡L两端的电压不超额定电压的情况下,滑动变阻器R功率的变化范围.7.某同学设计了一个简易电子秤,其原理如图甲所示,电源两端的电压恒为6V,R1是阻值为20Ω的电阻,R2是长6cm阻值为30Ω的均匀电阻丝,电压表量程为0﹣3V,电流表量程为0﹣0.6A.图中CD固定不动,当秤钩不挂物体时,滑动变阻器的滑片恰好位于R2最上端,当秤钩上挂物体时,弹簧会被压缩,滑动变阻器的滑片随着AB部分一起下移,弹簧长度的变化量△L与弹簧受到的压力F的关系如图乙所示.(取g=10N/kg)(1)为了使被测物体质量增大时电子秤的示数也增大,应该将_____表改装成电子秤的表盘.(2)当被测物体质量增大时,电路的总功率_____.(3)根据图甲、乙可知,该电子秤能测量的最大质量为_____kg.8.如图所示电路中,电源电压不变,R 1=20,滑动变阻器R2的最大阻值为60,小灯泡L的额定电压为5V,电流表的量程(0~0.6A或0~3A).只闭合S2时,电流表的示数为0.4A;只闭合S3,且变阻器的滑片P在正中点时,电流表的示数为0 .3A.(不考虑温度对灯丝电阻的影响)(1)电源电压和灯丝电阻.(2)只闭合S3时,要使小灯泡L正常发光,变阻器R2连入电路的阻值.(3)闭合S1、S2、S3,为保证不损坏电流表,变阻器R2的阻值可调范围和电流表的变化范围.9.一只标有“2.5V 0.5A”的小灯泡和一只规格为“10Ω 1A”的滑动变阻器串联接在电压为3V的电源上,如图所示.求(1)正常发光时滑动变阻器接入电路中的阻值.(2)滑片滑动时,灯泡功率的变化范围.(3)若小灯泡的实际功率为0.8W,求滑动变阻器接入电路中的电阻.10.如图所示是小明家热水器的电路图,己知电热丝R1位于水中,起加热作用,其阻值R1=22Ω,R2起控制作用,R2=198Ω(1)只闭合S1时,处于保温状态,求保温时的电流?(2)当闭合S2时,处于加热状态,求此时的加热功率?(3)如果该热水器的效率为96%,需要把60kg水加热升高40℃所需要的时间是多少.11.如图甲是一种家用电熨斗,额定电压为220V,其简化电路如图乙,虚线框内为底板加热电路,R0是定值电阻,R是可变电阻,当滑片在两端点之间滑动时(可以滑动到两个端点),可以调控电熨斗底板的温度.该电熨斗温度最高时的电功率为484W,电阻R0在温度最高时与温度最低时的电功率之比为4:1,求:(1)温度最高时,通过电熨斗的电流为多少A;(2)电熨斗温度最低时,应将R的阻值调为多少Ω;(3)假定电熨斗每秒钟消耗的电能W跟电熨斗底板温度与环境温度的温度差△t的关系如图丙,如果在温度为20℃的房间使用该电熨斗来熨烫衬衫,要求熨斗底板温度为220℃,且保持不变,应将R的阻值调为多少Ω.12.如图所示,(1)当S1闭合、S2和S3都断开时电流表A1的示数为1A,求电流表A2和A3的示数各为多少?(2)当S2和S3闭合、S1断开时,电流表A3和A2的示数分别为2.5A和1.2A,求电流表A1的示数为多少?(3)若将S1、S2和S3同时闭合会发生什么现象?13.如图所示电路,电源电压U=6V恒定,电流表的量程为0﹣0.6A,电压表的量程为0﹣3V,灯A上标有“6V 1.8W”,灯B上标有“6V 1.2W”,滑动变阻器R上标有“50Ω 1.5A”,设灯丝电阻为额定状态时的电阻,且不计温度对灯丝电阻的影响.求:(1)滑动变阻器的滑片P放在a端时,闭合所有开关后,电压表和电流表的读数分别是在多少?(2)如果只允许两盏灯中的一盏工作,且要求电路中各元件安全使用,在滑片P移动过程中,求整个电路消耗的最小电功率.14.如图所示,电源电压为20V,且保持不变,已知滑动变阻器的最大阻值为25Ω,定值电阻R0为20Ω,小灯泡上标有“12V 12W”字样,电流表量程为0~3A.求:(1)灯泡正常工作时的电阻是多少?(2)当S闭合,S1、S2都断开时,要使灯泡正常发光,滑动变阻器连入电路中的阻值为多大? 滑动变阻器在lmin内消耗的电能是多少?(3)当S、S1、S2都闭合时,调节滑动变阻器滑片到阻值为多少时,整个电路消耗的总功率最小?这个最小功率是多少?(4)当S、S1、S2都闭合时,为了不损坏电流表,且使整个电路消耗的总功率最大,滑动变阻器接入电路的阻值为多少?这个最大功率是多少?15.如图所示电路,R0的阻值为6Ω,R2的阻值为R1的2倍.只闭合开关S0时,电流表的示数为1A;开关都闭合时电流表的示数为3A.求:(1)只闭合S0时R0两端的电压;(2)开关都闭合时R1的电功率.16.如图甲是某品牌电压力锅,图乙所示是它的简化电路图.R1、R2是定值电阻,闭合开关S1,开关S2与触点b接通,电压力锅处于加热状态,此时电压力锅的功率P1=1000W,通过R1的电流为I1;当锅内的气压达到设定值时,S2自动与触点b断开并与触电a接通,S1仍闭合,电压力锅处于保压状态,此时电压力锅的功率为P2,通过R2的电流为I2.图是表示做好某次饭的过程中,电压力锅从加热到保压消耗的电功率与时间的关系.已知I1=5I2.求:(1)电压力锅处于加热状态时,通过电阻R1的电流.(2)电压力锅处于保压状态时的功率P2 .(3)用电高峰期,电路的实际电压为210V,电压力锅做好同样一次饭,处于加热过程实际需要的时间.(不考虑能量损失)17.在如图所示的电路中,电源电压为20伏,电阻R1的阻值为15欧,滑动变阻器标有“50Ω 1A”的字样,电压表的量程为“0~15V”.闭合电键后,电路正常工作.求:(1)当电压表V的示数为14伏时,电路中的电流.(2)在滑片左右移动的过程中,求电路中电流的变化范围.(3)若在电路中再串联一个电流表(电流表选用0~0.6A的量程),在确保电路各元件安全的条件下,求滑动变阻器连入电路的阻值范围.18.LED(发光二极管简称LED)是人类继爱迪生发明白炽灯之后最伟大的发明之一,它是一种新型节能、环保的光源产品.如图甲是一种常见的LED手电筒,发光元件由5个发光二极管并联组成,每个发光二极管的额定电流为30mA,它的能量是由可反复充电使用的电池提供,且LED 灯发光的颜色会随电压的变化而变化,如图丙表格所示.请回答下列问题:(1)这种LED手电筒正常工作时的总电流为多少?(2)图乙是一个LED与50Ω的定值电阻R串联,已知电源电压为4.2V保持不变,闭合开关S,毫安表(为读数更精确的电流表)的读数为20mA,通过计算说明此时LED 灯发出什么颜色的光?(3)若图乙中,闭合开关S,R的实际功率为0.08W,求此时LED灯通电10min消耗的电能是多少焦耳?19.如图所示电路,电源电压不变,R1=24Ω,小灯泡标有“6V6W”(电阻不变).求:(1)只断开S2时,电压表示数为12V,则电源电压为多大____?(2)只闭合S1时,电流表的示数是多少_____?(3)当S1、S2、S3都闭合时,将滑片P移动到b端,若此时电流表的示数为0.8A,则滑动变阻器的最大阻值是多少_____?20.在相距20 km的甲、乙两地之间有两条输电线,已知输电线每米长的电阻为0.01 Ω.现输电线在某处发生短路,为了确定短路位置,检修员利用电压表、电流表和电源接成如图所示电路进行测量.当电压表的示数为1.5 V时,电流表的示数为30 mA,则可确定短路位置离甲地_______km.21.如图甲所示电路,电源电压恒为1.5V,闭合开关后,把滑动变阻器R2的滑片P从最右端向左移动.由于滑动变阻器某处发生断路,滑片P向左移动一段距离后,电流表才有读数,此时电压表的示数为1.35V.且电流表读数I与滑片P移动的距离x的关系如图乙所示.求:(1)当电流表开始有读数时,滑片P移动的距离x的值和R2接入电路的阻值;(2)电阻R1的阻值;(3)当滑片P移到x等于10cm处时,R2消耗的电功率.22.如图所示的电路中,变阻器R0的滑片P在移动过程中,电压表的示数变化范围是0~4伏,电流表的示数范围是0.5安培~1安培,求电阻R的值?变阻器R0的最大阻值和电源电压U?23.电压力锅以其自动控压、自动控温,高效省电、安全、节能等优点备受人们的亲睐。

高考物理电磁学计算题(三十)含答案与解析

高考物理电磁学计算题(三十)含答案与解析

高考物理电磁学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.如图,倾角为θ的斜面粗糙且绝缘,在虚平面下方区域有一垂直斜面向上的匀强电场。

一质量为m、电荷量为q的带负电的小物块(可视为质点),从斜面上A点以速度v0沿斜面匀速下滑,进入电场区域滑行距离L后停止。

求:(1)小物块与斜面间的动摩擦因数μ;(2)匀强电场场强E的大小;(3)在电场中滑行L的过程中,带电小物块电势能的变化量。

2.如图,一带正电小球质量m=0.1kg,置于光滑绝缘水平面上的A点,空间存在着斜向上与水平成37°的匀强电场。

该小球从静止开始沿水平面做匀加速直线运动,当运动到B 点时,测得其速度v B=4m/s,此时小球的位移S=4m。

重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球沿水平面运动的加速度大小;(2)小球对地面的压力大小;(3)小球从A点运动到B点,电势能的变化量。

3.如图1所示,半径为r的金属细圆环水平放置,环内存在竖直向上的匀强磁场,磁感应强度B随时间t的变化关系为B=kt(k>0,且为已知的常量)。

(1)已知金属环的电阻为R.根据法拉第电磁感应定律,求金属环的感应电动势E感和感应电流I;(2)麦克斯韦电磁理论认为:变化的磁场会在空间激发一种电场,这种电场与静电场不同,称为感生电场或涡旋电场。

图1所示的磁场会在空间产生如图2所示的圆形涡旋电场,涡旋电场的电场线与金属环是同心圆。

金属环中的自由电荷在涡旋电场的作用下做定向运动,形成了感应电流。

涡旋电场力F充当非静电力,其大小与涡旋电场场强E的关系满足F=qE.如果移送电荷q时非静电力所做的功为W,那么感应电动势E感=。

a.请推导证明:金属环上某点的场强大小为E=kr;b.经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。

在考虑大量自由电子的统计结果时,电子与金属离子的碰撞结果可视为导体对电子有连续的阻力,其大小可表示为f=bv(b>0,且为已知的常量)。

电磁学计算题题库(附答案)

电磁学计算题题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?d-3q+q2. 一带有电荷q =3×10-9C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5J ,粒子动能的增量为4.5×10-5J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为=Ar (r ≤R ) ,=0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0=8.85×10-12C 2 / N ·m 2)6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量0=8.85×10-12 C 2N -1m -2)9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数=8.85×10-12 C 2·N -1·m -2)11. 有一电荷面密度为的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7C 和q 2=-2×10-7C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度A=-17.7×10-8 C ·m -2,B 面的电荷面密度B=35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量0=8.85×10-12 C 2·N -1·m -2)16. 一段半径为a 的细圆弧,对圆心的张角为0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,0表示出圆心O 处的电场强度.17. 电荷线密度为的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分 EqLdqO xzyaaaaABRⅠⅡ Ⅲ dba45︒cEσAσBA BOa θ0 q A R ∞∞O -λ+λ别为-和+.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大? 23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为r 1和r 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I l 1和I l 2所受安培力1F ∆和2F∆的方向和大小,设l 1 = l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I l 1和I l 2所受安培力1F ∆和2F∆的大小和方向,设l 1= l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(=4×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 Ia aIx2aεrdd/2 d/2B C AqR R OQ εr 1εr 2a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2abcIIO12 ey OR圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39. R =6.37×106 m .=4×10-7H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为1=2.50×10-8·m ,圆弧ACB 是铜导线,铜线电阻率为2=1.60×10-8·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率=4×10-7T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为,如图,求:(1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。

长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。

导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。

线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。

将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。

高考物理电磁学计算题(二十八)含答案与解析

高考物理电磁学计算题(二十八)含答案与解析

高考物理电磁学计算题(二十八)含答案与解析评卷人得分一.计算题(共40小题)1.如图1所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为R=2.5Ω的定值电阻R.将一质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=1.5Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若金属棒以1m/s的初速度向右运动,同时对棒施加一个水平向右的拉力F,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,试求:(1)金属棒cd的电流方向,并分析金属棒的加速度变化情况;(2)金属棒稳定后速度是多少?此时电阻R上消耗的电功率是多少?(3)金属棒速度为2m/s时的加速度大小,并画出整个运动过程中大致的v﹣t图象,并标出t=0,t=2s时坐标。

2.如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。

在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。

测得金属线框中的电流随时间变化的图象如乙图所示,在金属线框被拉出的过程中。

(1)求通过线框导线截面的电量及线框的总电阻(2)分析线框运动性质并写出水平力F随时间变化的表达式(3)已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少3.如图甲所示,绝缘水平面上固定着两根足够长的光滑金属导轨PQ、MN,相距为L=0.5m,ef右侧导轨处于匀强磁场中,磁场方向垂直导轨平面向下,磁感应强度B的大小如图乙变化。

开始时ab棒和cd棒锁定在导轨如图甲位置,ab棒与cd棒平行,ab棒离水平面高度为h=0.2m,cd棒与ef之间的距离也为L,ab棒的质量为m1=0.2kg,有效电阻R1=0.05Ω,cd棒的质量为m2=0.1kg,有效电阻为R2=0.15Ω.(设a、b棒在运动过程始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计)。

大学物理电磁学题库及答案

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零.[E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) lI B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为a(A) R 140πμ. (B) R120πμ. (C) 0. (D) R 140μ. [ ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小(B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d 1 2C q 4(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l Bd(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A) 回路L 内的∑I 不变,L 上各点的B 不变. (B) 回路L 内的∑I 不变,L 上各点的B 改变. (C) 回路L 内的∑I 改变,L 上各点的B 不变. (D) 回路L 内的∑I 改变,L 上各点的B 改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:L 1 2 I 3 (a) (b)⊙(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ] 28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C)qB m y v 2-=. (D) qBm y v -=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ ]×× ×33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v .(D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ. (C) rR I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为(A) 2/32IB Na . (B) 4/32IB Na .(C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1 I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ] 42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:BI 1 I I a(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的? (A) H 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.a M O P(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍.[ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.[ ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]B I O (D)I O (C)O (B)58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.[ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈. (C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. [ ]Ib d b d bcd v v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21.(D) ω abB | cosω t |. (E) ω abB | sin ω t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0.(B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]B ☜ t O (A) ☜ tO (C) ☜ t O (B) ☜ tO (D)70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动.(B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] ca b d N M B76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 78、电位移矢量的时间变化率t D d /d 的单位是A )库仑/米2 (B )库仑/秒C )安培/米2 (D )安培•米279、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=__________.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)。

高考物理电磁学计算题(一)含答案与解析

高考物理电磁学计算题(一)含答案与解析

高考物理电磁学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5m的圆形区域内存在着垂直于斜面向下的匀强磁场。

一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25W的小灯泡A相连,圆形磁场的一条直径恰好与线框bc边重合。

已知线框总质量m=2kg,总电阻R0=1.25Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2﹣t(T)的规律变化。

开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。

设最大静摩擦力等于滑动摩擦力,(g取10m/s2,sin37°=0.6,cos37°=0.8.π=3.2)求:(1)线框不动时,回路中的感应电动势E;(2)小灯泡正常发光时的电阻R;(3)线框保持不动的时间内,小灯泡产生的热量Q。

2.如图所示为一种“电磁天平”的结构简图,等臂天平的左臂为挂盘,右臂挂有矩形线圈,线圈未通电时天平两臂平衡;已知线圈的水平边长L=0.1m,匝数为N=800,线圈的下底边处于匀强磁场内,磁感应强度B=0.5T,方向垂直于线圈平面向里,线圈中通有方向沿顺时针,大小可在0﹣2A范围内调解的电流I;挂盘放上待测物体后,调解线圈中电流使得天平平衡,测出电流即可测得物体的质量;重力加速度g=10m/s2,试求:该“电磁天平”能够称量的最大质量.3.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。

已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。

(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?d+q2. 一带有电荷q =3×10-9C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5J ,粒子动能的增量为4.5×10-5J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为=Ar (r ≤R ) ,=0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0=8.85×10-12C 2/ N ·m 2)6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量=8.85×10-12 C 2N -1m -2)9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLdqOxz ya aaa10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数0=8.85×10-12C 2·N -1·m -2) 11. 有一电荷面密度为的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7C 和q 2=-2×10-7C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度A=-17.7×10-8 C ·m -2,B 面的电荷面密度B=35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量0=8.85×10-12 C 2·N -1·m -2)16. 一段半径为a 的细圆弧,对圆心的张角为0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,0表示出圆心O 处的电场强度.17. 电荷线密度为的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA Ba θ0 q A R ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-和+.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为r 1和r 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε) -λ +λ a Oxεrdd/2 d/2BC AqR ROQ εr 1εr 226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I l 1和I l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设l 1 = l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I l 1和I l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设l 1= l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(=4×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2 Ia aIxO2aa bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2abcIIO12 e32. 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC 的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39. 地球半径为R =6.37×106m .0=4×10-7H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.y ORωR 1R 2NbI S2R1 mbacI IO1 2eA B E F RI ID CO 60︒abc dOI R 2R 1 l 2 l 140. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为1=2.50×10-8·m ,圆弧ACB 是铜导线,铜线电阻率为2=1.60×10-8·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率=4×10-7T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为,如图,求:(1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

相关文档
最新文档