流体主要物理性质资料

合集下载

流体力学基本知识

流体力学基本知识
流体在长直管(或明渠)中流动,所受的摩 擦阻力称为沿程阻力。为了克服沿程阻力而消耗 的单位重量流体的机械能量,称为沿程水头损失
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律

流体的主要物理力学性质

流体的主要物理力学性质
牛顿第二定律
流体在运动过程中所受的力与加速度之间的 关系,是流体动力学的基本方程。
连续性方程
描述流体的质量守恒原理,即流体的质量流 量在流场中保持不变。
动量方程
描述流体的动量守恒原理,即流体的动量流 量在流场中保持不变。
能量方程
描述流体的能量守恒原理,即流体的能量在 流场中保持不变。
流体动力学的应用
06
流体动力学简介
基本概念
流体
流体是具有流动性的连续介质, 由大量分子组成,能够在外力作
用下发生流动。
流体动力学
流体动力学是研究流体运动规律 和行为的一门科学,主要研究流 体的速度、压力、密度等物理量
之间的关系。
流场
流场是指流体运动所占据的空间 区域,流场中的每一点都有一定
的速度和压力。
流体动力学方程
THANKS
感谢观看
流动状态的判定
雷诺数
用于判定流体流动状态的无量纲数, 由流体的流速、管径和流体动力粘度 决定。当雷诺数小于临界值时,流体 呈层流流动;当雷诺数大于临界值时, 流体呈湍流流动。
流动状态判定准则
根据实验和理论分析,得出判定流动 状态的准则,如普朗特数、尼古拉斯 数等。这些准则可以帮助我们判断不 同条件下流体的流动状态。
毛细管法
利用毛细管中的流体流动, 通过测量流体在毛细管中 的流动时间和压力差来计 算流体的粘度。
影响粘度的因素
分子间相互作用
流体的分子间相互作用会影响流体的粘度,分子 间相互作用越强,粘度越大。
温度
温度对流体的粘度有显著影响,一般来说,温度 升高会使流体的粘度降低。
压力
压力对流体的粘度影响较小,但在高压下,压力 对粘度的影响会更加明显。

流体的主要物理性质

流体的主要物理性质

规定,液压油产品的牌号用粘度的等级表示,即用该液压油在40℃时的
运动粘度中心值表示。
油液的牌号:40℃时的平均运动粘度,见下表:
温度:40℃,单位:×10-6m2/s
粘度等级 VG10 VG15 VG22 VG32 粘度平均值 10 15 22 32 粘度范围 9.00 ~11.0 13.5 ~16.5 19.8 ~24.2 28.8 ~35.2 机械与材料学院©2013 粘度等级 VG46 VG68 VG100 粘度平均值 46 68 100 粘度范围 41.4~50.6 64.2 ~78.4 90.0 ~110
机械与材料学院©2013
第二章 流体的主要物理性质
三、液体的粘度将随压力和温度的变化发生相应的变化。
1、流体产生粘性的主要原因 ①液体:分子内聚力; ②气体分子作热运动,流层之间分子的热交换频繁。
2、压力的影响
在高压下,液体的粘度随压力升高而增大;常压下,压力对流体的 粘性影响较小,可忽略。 3、温度的影响 ①液体:温度升高,粘度降低; ②气体:温度升高,粘度增大。
第二章 流体的主要物理性质
(3)相对粘度(恩氏粘度) 采用特定的粘度计在规定条件下测出来的液体粘度。
Et t1 / t2
式中:t1 – 油流出的时间 t2-20OC蒸馏水流出时间 φ=2. 8mm 恩氏粘度与运动粘度的换算关系 恩氏粘度计 200ml
6.31 t (7.31 Et )cst Et
机械与材料学院©2013
第二章 流体的主要物理性质
四、 液压油的选用
1、优先考虑粘性 ν=11.5 ~ 41.3 cSt 即 20、30、40号机械油 粘温特性好是指工作介质的粘度随温度变化小,粘温特性通常用粘度 指数表示。 2、按工作压力 p 高,选 µ 大; p 低,选 µ 小 3、按环境温度 T 高,选 µ 大; T 低,选 µ 小 4、按运动速度 v 高,选 µ 小; v 低,选 µ 大 5、其他 环境 (污染、抗燃) 经济(价格、使用寿命) 特殊要求(精密机床、野外工作的工程机械)

流体力学资料复习整理

流体力学资料复习整理

流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。

也可以说能够流动的物质即为流体。

流体在静止时不能承受剪切力,不能抵抗剪切变形。

流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。

只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。

运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。

2.流体的重度:单位体积的流体所的受的重力,用γ表示。

g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。

通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。

4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体存在摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。

流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。

温度升高时,液体的粘性降低,气体粘性增加。

6.牛顿摩擦定律: 单位面积上的摩擦力为:摩擦力为:此式即为牛顿摩擦定律公式。

其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘3/g N m γρ=pVV p V V pd d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=hUμτ=dydu A h U AA T μμτ===ρμν=度ν摩擦力是成对出现的,流体所受的摩擦力总与相对运动速度相反。

为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

流体及其物理性质

流体及其物理性质

面层,在这个表面层
接触角 Contact angle:在固、液、气三相交界处,自固-液界面经过液体内部到气夹角称为接触角。
液界面之间的
>90 度,不浸润; <90,浸润
表面张力公式 球形液面
2 R= p R2 ; p =2 R
非球面: p =
1 1 {这个公式不用掌握} R1 R2

dp dp = −d d
K
V ,当马赫数<0.3 时,气体可以按不可压缩流体处理;马赫数 >0.3 时,按 c

表面张力:液体与气体、另一种不相容 的液体或固体相接触时 ,会形成一个表 存在着的相互吸引力就是表面张力,它能使液面自动收缩。 内聚力:同一种物质的分子之间的相互作用力。 附着力:不同物质的分子之间的相互作用力。 内聚力小于附着力的情况下,就会产生“浸润现象”;反之,则会出现“不浸润现象”。

4.流体的可压缩性
流体的密度:单位体积的质量;临界体积内的质量。
:= d
2
重度: = g 比重: SG=
H O 4 oC
2
流体的可压缩性:在外力作用下流体密度,或体积,发生改变的的性质。 体积模量: 声速: c =
K=
马赫数: M a= 可 压缩流体处理。
3.流体的黏性
粘性力:相邻两层流体作相对运动时存在的内摩擦作用。 库仑的悬吊圆盘摆动实验证明衰减原因不是圆板与液体间的摩擦,而是液体内部的摩擦,即内摩擦。 流体黏性的形成原因: 液体:主要由分子内聚力形成。 气体:主要由分子动量交换形成。 壁面不滑移假设:流体与固壁形成分子量级的黏附,分子内聚力使得固壁上的流体质点与固壁一起 运动,即固壁上流体与固壁相对速度为零。 壁面不滑移假设已被大量实验证实,被称为壁面不滑移条件。 牛顿黏性定律: =

流体力学总结

流体力学总结

流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。

流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。

4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。

稀薄空气和激波情况下不适合。

5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。

体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。

10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。

气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。

满足牛顿内摩擦定律的流体为牛顿流体。

12. 理想流体:黏度为0,即0μ=。

完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。

2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。

重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。

流体的物理性质

流体的物理性质

牛顿内摩擦定律
h
dy
y
U
UF
uu+du
y
实验表明,对于大多数流体,存在
o
T A du dy
引入比例系数μ,则得著名的牛顿内摩擦定律:
T A du dy
TAdu,或 du
dy
dy
T——流体的内摩擦力,N; τ——切应力,N/m2
A——流层间的接触面积,m2
du dy ——速度梯度 ,表示与流速相垂的y方向上速度的变化率,s-1
η——动力黏度 ,表示流体种类和温度影响的比例常数,
d tgd dudt
dy
d du dt dy
y
U
UF
(u+du)dt
a
b
a’
b’
uu+du
dy
d
c
d
ห้องสมุดไป่ตู้c’
d’
o
udt
dy
h
y
黏性系数
a. 动力黏度η:SI单位为N·s/m2或pa·s。
b. 运动黏度ν:SI单位为m2/s。其计算式:=η /
影响因素 (流体种类,温度,压强)
1V p V1
※压缩系数的倒数为体积弹性系数
液体膨胀性的大小用膨胀系数α来表示,它表示当压力不变时,单位温度升高 引起流体体积的相对增加量,单位为1/℃(1/k)。
1V T V1
α ↑ >β ↑
注意: (1)高温高压下,给水和炉水的密度比常温常压下小。体积 增加。 (2)启停炉时,控制温度、压力变化率——控制热应力 (3)启动前锅炉上水到最低可见水位(正常水位下100mm)
a. 流体的种类:主要影响因素。一般在相同条件下, 液体的黏度大于气体的粘度。

流体的物理性质

流体的物理性质

二.压缩性-流体在质量不变时,由于压 力的改变而使其体积改变的性质
压强增大使体积减小的性质
压缩系数:
在一定的温度下,单位 压强所引起的流体体积 的相对缩小量
dV
V
dp
单位:m2/N,Pa-1
可压缩流体 :密度ρ为变量,即ρ=ρ (x,y,z,t) 不可压缩流体 :密度ρ为常数,即ρ=C
注:通常情况下,液体为不可压缩流体, 气体为可压缩流体。
四、影响粘度的因素 液体 吸引力 T↑ μ↓
气体 热运动 T↑ μ↑
反映流体粘滞性 大小的系数
• 牛顿内摩擦定律
实验测得: 拉力T与接触面积A、 速度梯度 du 成正比,即
dy
T A du
dy
或 剪应力 T du
A dy
上两式均称为牛顿内摩擦阻力定律。
剪应力的大小与流体的粘性和速度梯度成正比,满足上式的为牛顿流体
§2-1 流体主要物理性质
一.惯性
1.以密度ρ来衡量
❖定义:单位体积流体所具有的质量
用符号ρ来表示。
➢ 均质流体:
m 单位:kg/m3
V
➢ 非均质流体: (x, y, z,t) lim m dm
V 0 V dV
水——1000 kg/m3
➢常见流体的密度: 空气——1.23 kg/m3
二 .可压缩性
抛物线分布
u
直线分布 u
二.粘性
• 随着温度升高,液体的粘
性系数下降;气体的粘性系
数上升。
今后在谈及粘性系数时 一定指明当时的温度。
• 运动粘性系数
具有运动学量纲。
注意
空气 水
内摩擦力 F
与垂直于流动方向的速度梯度du/dy成正

流体的物理性质

流体的物理性质

流体的物理性质流体是指物质在外力作用下可以流动并且没有固定形状的物质。

流体的物理性质涉及密度、压力、浮力、粘滞力等方面。

了解和掌握流体的物理性质对于科学研究和工程应用都具有重要的意义。

一、密度密度是指物质的质量与体积之比,常用符号为ρ。

在国际单位制中,密度的单位是千克每立方米(kg/m³)。

密度的大小与物质的分子结构和温度有关。

通常情况下,固体的密度比液体的密度大,液体的密度又比气体的密度大。

二、压力压力是指单位面积上的力的大小,常用符号为P。

压力的单位有帕斯卡(Pa)、毫巴(mbar)、标准大气压等。

根据帕斯卡定律,压力在液体或气体中的传播是均匀的。

在静止的液体中,压力随深度的增加而增加。

在流体中,压力差是产生流动的驱动力。

三、浮力浮力是指物体在液体或气体中受到的向上的力,大小等于被物体排开的液体或气体的重量。

根据阿基米德原理,物体浸没在液体中会受到向上的浮力。

当物体的密度大于液体时,物体会下沉;当物体的密度小于液体时,物体会浮起。

四、粘滞力粘滞力是指流体在内部流动过程中,由于内部分子间的相互作用而产生的阻力。

粘滞力可以通过粘滞系数来描述,通常用符号η表示。

粘滞系数与流体的性质以及温度有关。

黏稠的流体具有较大的粘滞系数,而稀薄的流体具有较小的粘滞系数。

五、表面张力表面张力是指液体表面上分子由于相互作用而形成的一种表面弹力。

表面张力使得液体在接触线附近形成平衡状态,并且使液体表面呈现出一定的弹性。

表面张力可以通过表面张力系数来描述,通常用符号σ表示。

表面张力系数与液体的种类和温度有关。

六、流体的流动流体的流动分为层流和湍流两种形式。

层流是指当流体在管道或河道中流动时,流线是平行且相互不交叉的。

湍流是指当流体在管道或河道中流动时,流线是混乱的、交叉的并且存在涡流现象。

流体的流动受到物体形状、流速、粘滞力等因素的影响。

流体的物理性质在自然界和工程领域中都发挥着重要的作用。

例如,在气象学中,研究大气中流体的运动可以预测天气变化;在航空航天工程中,了解流体的物理性质可以优化飞机的设计和提高燃油效率;在药物传输和生物领域,掌握流体的物理性质可以帮助研究人员理解血液和细胞的运动机制。

流体的主要物理性质

流体的主要物理性质

压强(at)
压缩系数 (m2/N)
5 0.538
10 0.536
20 0.531
流体的主要物理性质
40 0.528
80 0.515
1.2 流体的可压缩性和热膨胀性
1.液体的可压缩性和热膨胀性
压缩系数的倒数被称为体积弹性模量或体积弹性系数,即
K的单位是Pa。
K 1 V dp dp
0.72
1.2 流体的可压缩性和热膨胀性
2.气体的可压缩性及热膨胀性
气体与液体不同,气体具有显著的可压缩性和热膨胀性。温度与压强的变化对 气体密度的影响很大。在温度不过低,压强不过高时,气体的压强、体积和温度三 者之间的关系服从理想气体状态方程:
p RT
其意义为:一定量气体,压强与密度的比值与热力学温度(开尔文温度,开氏 度=摄氏度+273.15)成正比。
此外,虽然气体是可以压缩和膨胀的,但对于低速气流,当其速度远小于音速, 且在流动过程中压强和温度变化较小时,气体的密度变化很小。例如,气流速度小 于50m/s时,其密度的变化通常小于1%,此时通常可以忽略压缩性影响,视为不可 压缩流体。
流体的主要物理性质
1.3 不可压缩流体
所谓不可压缩流体,是指流体的每个质点在运动全过程中,密度不变的流体。 而密度为常数的流体,称为不可压缩均质流体。
流体的主要物理性质
1.1 流体的密度
表2-1 不同温度下水的密度
温度(℃)
密度 (kg/m3)
温度(℃)
密度 (kg/m3)
0 999.87
40 992.24
4 1000.00
50 988.07
10 999.73
60 983.24
20 998.23

流体力学基本知识

流体力学基本知识

二、流动的两种形态——层流和紊流 流体在流动过程中,呈现出两种不同的流 动形态。当液体流速较低时,呈现为成层 成束的流动,各流层见并无质点的掺混现 象,这种流态就是层流。加大流速到一定 程度,质点或液团相互混掺,流速愈大, 混掺程度愈烈,这种流态就成为紊流。 判断流动形态,雷诺氏用无因次量纲——雷 诺数Re来判别。
(二)流速系数C经验公式 (1)曼宁公式 (2)海澄-威廉公式
五、局部水头损失 在实际水力计算中,局部水头损失可以采 用流速水头乘以局部阻力系数后得到,即 v2 hj=ζ 2 g (1-35) 式中ζ——局部阻力系数。ζ值多是根据管配件、 附件不同,由实验测出。 v——过流断面的平均流速;它应与ζ值 相对应。除注明外,一般用阻力后的流速; g——重力加速度。
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
或者写为
p1
v12
2g
p2
2 v2ห้องสมุดไป่ตู้
2g
h12
实际气体总流的能量方程与液体总流的能量方程比 较,除各项单位以压强来表达气体单位体积平均 能量外,对应项意义基本相近
第四节 流动阻力和水头损失
一、流动阻力和水头损失的两种形式 (一)沿程阻力和沿程水头损失 流体在长直管(或明渠)中流动,所受的摩擦 阻力称为沿程阻力。为了克服沿程阻力而消耗的 单位重量流体的机械能量,称为沿程水头损失hf。 (二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫使 主流脱离边壁而形成漩涡,流体质点间产生剧烈 地碰撞,所形成的阻力称局部阻力。为了克服局 部阻力而消耗的重力密度流体的机械能量称为局 部水头损失hj。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
工程流体力学
§0.2 流体的基本概念
1)、牛顿内摩擦定律
牛顿1868年在《自然哲学的数学原理》中假设:“流体两部 分由于缺乏润滑而引起的阻力与速度梯度成正比”。 牛顿流体 du = 非牛顿流体 dy 粘性系数或动力粘性系数 运动粘性系数
m s
2
N s
m2

粘性系数取决于流体的性质、温度与压强。 一般随温度变化较大:温度增加,水的粘性 系数变小,气体变大。 理想流体 粘性流体
工程流体力学
§0.2 流体的基本概念
恩氏粘度计
28
工程流体力学
§0.2 流体的基本概念
毛细管粘度计
29
工程流体力学
§0.2 流体的基本概念
旋转粘度计
30
工程流体力学
§0.2 流体的基本概念
思考题1
按连续介质的概念,流体质点是指: A、流体的分子; B、流体内的固体颗粒; C、几何的点; D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体。 (D)
22
工程流体力学
§0.2 流体的基本概念
一、质量力
• 作用在流体每一质点上,其大小与流体质量成正 比:G= mg • 直线惯性力: I ma
• 离心惯性力:
R m r
2
• 这三种力都与液体质量m成正比,且都作用在质点 中心上,因而称为质量力
23
工程流体力学
§0.2 流体的基本概念
二、表面力(近程力)(接触力)
16
工程流体力学
§0.2 流体的基本概念
定义:使液体表面处于拉伸状态的力为表
面张力. 表面张力系数 :单位长度上的表面张力.
f L
表面张力的产生部位:液、气接触自由表
面,液固接触的周界、不同液体接触的周界 表面张力产生的原因:由于内聚力的不同 而导致(分子受力不平衡)。
17
工程流体力学
du T A dy
牛顿流体——服从牛顿内摩擦定律的流体(水、大部分 轻油、气体等)
τ
宾汉型塑性流体 假塑性流体 牛顿流体 膨胀性流体
膨胀型流体——τ的增长率随 dv/dz的增大而增加(淀粉糊、 挟沙水流)
0 τ
塑性流体——克服初始应力 τ0后,τ才与速度梯度成正 比(牙膏、新拌水泥砂浆、中 等浓度的悬浮液等)
• 表面力指作用于流体的表面上,并与受作用的流 体表面积成正比。 • 表面力包括外力和内力。 • 垂直于作用面的力,称为法向力(压力)P; • 平行于流体作用面的,称为切向力(内摩擦力)T • 连续流体中,表面力是在流体表面连续分布的力。 因此使用单位面积上的表面力来表述,称为应力。
P pA T A
20
工程流体力学
§0.2 流体的基本概念
内聚力: 液体 分子间吸引力
附着力: 液体 与固体分子间 吸引力
图1-6 液体在毛细管内下降 (b) 不湿润管壁的液体的液面下降
21
工程流体力学
§0.2 流体的基本概念
第三节 作用在流体上的力
流体无论处于运动或平衡状态,都受到各
种力的作用。 按力的物理性质不同来划分,可分为重力、 惯性力、弹性力和粘滞力。 按力的作用方式不同,可分为:质量力和 表面力两种。
24
工程流体力学
§0.2 流体的基本概念
第四节 流体的各种模型
• 本节主要介绍几个概念: 1.连续介质:(宏观/数学分析) 2.理想流体:不考虑粘度、可压缩性、膨胀 性等物理性质的流体. 3.不可压缩流体: 4.牛顿流体与非牛顿流体:
25
工程流体力学
§0.2 流体的基本概念
牛顿流体与非牛顿流体
假塑性流体——τ的增长率随 dv/dz的增大而降低(高分子 溶液、纸浆、血液等)
2
工程流体力学
§0.2 流体的基本概念
液体和气体的区别:
气体易于压缩,而液体难于压缩; 液体有一定的体积,存在一个自由液面;气体能 充满任意形状的容器,无一定的体积,不存在自 由液面。
液体的流动性小于气体
液体和气体的共同点:
两者均具有易流动性,即在任何微小切 应力作用下都会发生变形或流动,故二者 统称为流体。
7
工程流体力学
§0.2 流体的基本概念
4、流体的粘性
流体内部各流体微团之间发生相对运动时,流体 内部会产生摩擦力(即粘性力)的性质,称为粘性。 是流体抵抗变形的能力,是流体的固有属性,是 运动流体产生机械能损失的根源。
du 实验表明,T A dy
du TA dy
粘性 切应力:
F du A dy
体积模量:体积压缩率的倒数。
VP E0 ( Pa) p V 1
E越大,流体越不易被压缩 5
工程流体力学
§0.2 流体的基本概念
2)热膨胀性:流体体积随温度升高而增大的 性质。它的物理意义是单位温度变化所引 起的体积的相对变化率。液体的热膨胀性 很小,一般可以忽略不计。气体的热膨胀 系数为1/273,不可忽略.
§0.2 流体的基本概念
2)毛细管现象
• 在毛细管中,表面张力可以引起液面上升或下降,此现象称 之为毛细管现象.

液固间 附着力 大于液 体的内 聚力 H2O

r

h
r
h


(a) (b)


液固间 附着力 小于液 体的内 聚力 (Hg)
毛细管现象
接触角概念: 当液体与固体壁面接触时, 在液体,固体壁 面作液体表面的切面, 此切面与固体壁在液体内部所夹部 分的角度 称为接触角, 当 为锐角时, 液体润湿固体, 当 为钝角时, 液体不润湿固体.水与洁净玻璃的 = 0° 水
L=14cm,活塞往复运动的速度为1m/s,润滑油的μ =0.1Pa· s。
求作用在活塞上的粘性力。
解: T A
dv dn
2
D d L
A dL 0.1196 0.14 0.053m
1 0 dv v 0 5 103 s 1 dn ( D d ) / 2 (0.12 0.1196) / 2
§0.2 流体的基本概念
5.表面张力和毛细管现象
1)表面张力
表面张力与毛细现象.AVI
当液体与其它流体或固体接触时,在分界面上都产生 表面张力,出现一些特殊现象,例如空气中的雨滴呈球状, 液体的自由表面好像一个被拉紧了的弹性薄膜等。 表面张力的形成主要取决于分界面液体分子间的吸引 力,也称为内聚力。在液体中,一个分子只有距离它约 10-7cm的半径范围内才能受到周围分子吸引力的作用。在 这个范围内的液体分子对该分子的吸引力各方向相等,处 于平衡状态。但在靠近静止液体的自由表面、深度小于约 10-7cm薄的表面层内,每个液体分子与周围分子之间的吸 引力不能达到平衡,而合成一个垂直于自由表面的合力。
o
气体 温度
气体:分子热运动引起的动量交换是产生粘 度的主要因素。温度↑→分子热运动↑→动 量交换↑→内摩擦力↑→粘度↑ 压力对流体粘度的影响不 流体的基本概念
4)粘度的测量方法cy1021
法1: 用粘度计直接测量得出:(绝对粘度 , ) 毛细管粘度计、旋转粘度计 法2: 用恩氏粘度计测出相对粘度(恩氏粘度 0 E ), 然后用经验公式转换为运动粘度. 恩氏粘度计测定

du dy
(kg /( m s))
(2) 运动粘度

(m 2 / s)
11
工程流体力学
§0.2 流体的基本概念
粘度 液体 气体
(3.1) 粘度的影响因素 温度对流体粘度的影响很大 液体:分子内聚力是产生粘度的主要 因素。温度↑→分子间距↑→分子吸 引力↓→内摩擦力↓→粘度↓
工程流体力学
§0.2 流体的基本概念
§1.2 流体的基本概念
在研究流体静止和运动之前, 首先要了解流体的内在属性,即 流体的物理性质。包括密度、压 缩性、膨胀性、粘性等。其中, 粘性是流体物理性质中最重要的 特性。
1
工程流体力学
§0.2 流体的基本概念
第一节 流体的概念
• 凡是没有固定的形状易于流动的物质就叫 流体。即液体和气体。 • 流体与固体的差别表现为: 固体:既能承受压力,也能承受拉力与抵抗 拉伸变形;固体的变形与受力的大小成正比。 流体:只能承受压力,一般不能承受拉力与 抵抗拉伸变形。在极小切应力下就会出现连 续的变形流动。
9
工程流体力学
§0.2 流体的基本概念
例1.2.1 一块可动平板与另一块不动平板之间为某种液体, 两块板相互平行,它们之间的距离 h 0.5mm 。若可动 平板以 v 0.25m s 的水平速度向右移动,为维持这个速度, 需要单位面积上的作用力为 2 N,求这二平板间液体 m2 的粘性系数。 解 由牛顿内摩擦定律 du dy 认为两板间液体速度呈线性分布,故
3
工程流体力学
§0.2 流体的基本概念
第二节 流体的主要力学性质
m 1.密度均质 V
m 密度非均质 lim V 0 V
G 2.重度 V g 流 流 3.相对密度 d = 水 水
常见的密度(在一个标准大气压下):
4℃时的水
r1 0 du 解: dy r2 r1
2n 60
M Ar1 2 r1h r1 0.0045
h
n
r1 r2
得 0.952Pa s
注意:1.面积A的取法; 注意: 1.面积A的取法; 2.单位统一 2.单位统一
15
工程流体力学
T 0.053 0.1 5 103 26.5N
注意:面积、速度梯度的取法
14
工程流体力学
§0.2 流体的基本概念
相关文档
最新文档