第13章介质中的静电场
大学物理第13章_真空中的静电场(场强)
dl
则
q dq dl 2R
1 dq 0 dE r 2 40 r
O
x
dE
dE
dE x x
由对称性有
R
E dE x dE cosi 1 q cos l dl i 2 40 2R r
r
P
cos x r r x R
实验规律 场的 性质 场与物质的相 互作用
静电场:相对于观察者静
止的电荷所产生的电场
§1-1电荷.库仑定律
一.两种电荷 1.自然界只存在两种 电荷,同种电荷相排 斥,异种电荷相吸引
2.美国物理学家富兰克林首先称其为正 电荷和负电荷
3.带电的物体叫带电体 4.质子和电子是自然界存在的最小正、负电 荷,其数值相等,常用+e和-e表示
1986年 e 的推荐值为
e 1.60217733 10
C(库仑)为电量的单位
19
C
二.电荷量子化 1.实验表明:任何带电体或其它微观粒 子所带的电量都是 e 的整数倍
----物体所带电荷量量值不连续
2.电荷量子化:电荷量不连续的性质
三.电荷守恒定律 常见的两种起电方式: 摩擦起电 摩擦起电的本质:电子从一个 物体转移到另一个物体
定义:电场强度
F E q0
单位:牛顿/库仑(N/C)或伏特/米(V/m) 三.场强叠加原理 设空间有点电荷q1、q2 、q3 … qn
P点处的试探电荷 q0 所受电场力为
n F F1 F2 Fn Fi
i 1
F F1 F2 Fn P点的场强为 E q0 q0 q0 q0
大学物理介质中的高斯定理
r1
r2
18
例:球形电容器由半径为R1的球体和内半径为R3的导 体球壳构成,带电 q,其间有两层均匀电介质,
分界面的半径为R2,相对介电常数分别为r1和r2 。 求:E, D 和C。
解:
D
dS
4
r
2
D
q
S
R2
R1 r2
D1
q 4r 2
D2
q 4r 2
R3
r1
在界面上电位移线会发生折射
tan1 1
tan2
2
2 1
若 2 > 1 2 > 1 ,电位移线将折离法线
*
上海交通大学 董占海
28
证明:
E1t E2t D1n D2n
E1sin1 E2sin2
D1 cos 1 D2 cos 2
D1 1E1 D2 2 E2
39
思考:带电金属球 (R、Q),半个球处在电介质εr 中,则球正下方r > R 处的 E、D。
r
同上
上海交通大学 董占海
40
例5:一点电荷Q放在半无限大电介质为εr和真空的 界面处,求E、D。
解:空间的场强 = 两个点
电荷Q和q′产生的
故空间各点的E、为
r
点电荷的场,具有球
对称性
xd 2
2 DS 0 0 S0d
D
i
0
d
2
上海交通大学 董占海
d
r
0
Ox
23
xd 2
E
D
0r
0 x
第十三章(2)电介质
斜圆柱体元内的电偶极矩为
pi
P dl dS cosθ
i
介质的极化使两底面产生极
化电荷 dS
因此斜柱体元又可看成一个
电偶极子
pi
σ dSdl
i
所以
pi
dl dS
c osθ P
i
P dl dS cosθ σ dSdl
五、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示)
S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献。
S
q0
q' q0
设在介质内闭合曲面
S附近极化强度矢量
如图示。
S
取一宏观上足够小
、微观上足够大的 斜圆柱体元。
r R sin θ x R cos θ
知该带电圆环在球心的场强为
-+
-R +
- -P
- -
θ++
o R+s+in
z
- +R d
en
P
dEz
σ(2πR sin θRdθ) 4πε0
R cosθ [(R cosθ)2 (R sin θ)2 ]3/2
知该带电圆环在球心的场强为
pi
0
有极分子在外场中同样有位i 移极化,但是取向极化
效应要比位移极化效应更强。
有极分子的极化
电介质的极化: ①位移极化 位移极化
主要是电子发生位移
E0
无极分子只有位移极化,感生电矩的方向沿外场方向。 ②取向极化
第13章电介质
第十三章 电介质 一、 选择题 1、关于高斯定理,下列说法中哪一个是正确的(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面的D 通量仅与面内自由电荷有关. (C) 高斯面上处处D为零,则面内必不存在自由电荷.(D) 以上说法都不正确. [ B ]2、关于静电场中的电位移线,下列说法中,哪一个是正确的(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行. (C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ C ]3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r-0)E . [ B ]4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ]5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ]6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面:(A) 高斯定理成立,且可用它求出闭合面上各点的场强. (B) 高斯定理成立,但不能用它求出闭合面上各点的场强. (C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.[ B ]E E 0q S7、一平行板电容器中充满相对介电常量为r 的各向同性均匀电介质.已知介质表面极化电荷面密度为±′,则极化电荷在电容器中产生的电场强度的大小为:(A)0εσ'. (B) rεεσ0'. (C) 02εσ'. (D) r εσ'. [ A ] 8、一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D ,而当两极板间充满相对介电常量为r 的各向同性均匀电介质时,电场强度为E ,电位移为D ,则 (A) r E E ε/0 =,0D D =. (B) 0E E =,0D D r ε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ] 9、在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D 为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷.(B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零. [ D ]10、一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 向下运动. (B) 向上运动. (C) 保持不动. (D) 是否运动不能确定.[ B ]11、C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则(A) C 1极板上电荷增加,C 2极板上电荷增加. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ A ]12、C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少.(B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ C ]+q m+QC 1C 2C 1C 213、C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小. (B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小.(D) C 1的电容减小,电容器组总电容增大. [ B ]14、C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少. (D) C 1极板上电荷减少,C 2极板上电荷增大. [ C ]15、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ C ]16、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ C ]17、如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ C ]18、如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.[ B ]12C 1C 2q19、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ B ]20、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q 、电场强度的大小E 和电场能量W 将发生如下变化(A) Q 增大,E 增大,W 增大.(B) Q 减小,E 减小,W 减小.(C) Q 增大,E 减小,W 增大.(D) Q 增大,E 增大,W 减小. [ B ]21、真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ B ]22、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示, 则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关.(C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ A ]23、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关. (C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ C ]24、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关. (D) 储能增加,且与介质板相对极板的位置有关.[ A ]25、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,把一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示.介质板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关.(C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ C ]二、填空题1、分子的正负电荷中心重合的电介质叫做_______________ 电介质。
物理学教学ppt§7-4电介质中的静电场
1rΒιβλιοθήκη 01' P
2
2
P ( 1) E
2
r
02
例3 球形电容器的内外半径分别为R1、 R2,在两球 壳间充满相对介电常量为r的介质,求球形电容器 的电容.
解:设内球带电量为Q,在介质
内取半径为r的球面为高斯面S
R1 r R2
介质内的场强
两球壳间的电势差
U E dl
Q
R2 dr
l
4 π 0 r R1 r 2
三、电介质中的高斯定理
问题一:库仑定律与场强叠加原理成立吗?
问题二:静电场的性质变化吗?
极化电荷是静止电荷,库仑定律与场强叠加原理
仍然成立 ,电场是有源场、保守场。
E dl l(E0 E) dl 0
l
介质中静电场的场强与电势的关系仍然成立。
介质中的高斯定理
1
S
E
ds
0
(
q 0
S内
q')
§7-4 电介质中的静电场
一、介质内的电场强度
E 自由电荷产生的场
E E0 E
0 E束缚电荷产生的场
介质中的电场强度
E E0 E'
E0 0 / 0 E' '/0
d
-+
+ r
-+ + + E0
+ +-+ E'
+- +-+ E
-+- -+- -+- -+- -+- +-
P 0E P '
Q (1 1)
4 π 0 r R1 R2
均匀电介质
§13-2 极化强度和极化电荷
极化强度: P
pei
体积V中分子 电矩的矢量和
i
V
体积V
(13-1)
实验证明: P o (r 1)E (13-2)
式中r称为相对介电常数,由介质特性确定。
在电介质表面上取一面元
dS, 并在电介质中沿极化强度 方向取一如图13-3所示的斜柱 体。
sd50例题132一空气平行板电容器充电后与电源断开然后在两板间充满各向同性均匀电介质则电容c电压u电场强度的大小e电场能量w四个量各自与充介质前比较增大或减小的情况为51例题133一电容器的电容c1000v的电源对其充电然后断开电源再与另一个未充电的电容器c50f两端相连求
第12章
导体电学
C(Conodnudcutcotroreleelcetcrtirciictiyty)
CA
B
E1
q1 os
E2
q2 os
q1 q2 -q1 -q2
q2
os
d2
q1
os
d1
(2)
解式(1)、(2)得:
d1 d2
q1=2.0×10-7C, q2=1.0×10-7C。
图12-8
A板电势:
VA VA VB
q2 os
d2
2.3 103V
13
例题12-3 如图12-9所示,一内外半径分别为R1、 R2的金属球壳,带有电量q2, 球心有一点电荷q1,设无 穷远为电势零点,求金属球壳的电势。
边缘效应)
解 设四个表面上的面电荷密
度分别为1、2 、3和4 ,如图12-
7所示,则
(1+ 2)S=QA
大学物理A(上册)电磁学b介质静电场PPT课件
解:设±q
-q
+q R1
o·
R2
E
q
40r 2
(沿经向)
(R 1rR2)
R2 1 q
u1u2Edl R 140r2dr
q R2 R1
4 0 R1R2
C q 40R1R2
u1u2 R2R1
仅与R1、R2有关
.
11
例3、柱形电容器,半经R1、R2(金属柱面), 长L>> R2 -R1,求电容。
弹性偶极子。
E0
pe
E0
.
15
2、有极分子电介质的极化
——转向极化(Orientation polarization)
无场:杂乱, 性。
P分不显0电
有场: 转向、有序。 刚性偶极子
E0
f2
pe
共 性:
E0
.
31
§5 电场的能量
一、带电系统的能量 (electrostatic energy)
1、带电Q 的带电体具有的能量
设想建立:不断把dq从∞移至该带电体上
移第一个dq时,不受力,外力不需作功。
Q
dqdq
u dqqdqdqdqdqdq
假如不⊥,则在表面 上有分量,电荷移动, 故不静电平衡。
E //
ds
A
En ●P
表面场强⊥表面,内部场强为零
sE dsEds10ds
E 0
E方向与 n 相同还是相反,取决于的正负, 考虑到方向
E
n o
0
.
3
2、导体内部处处没有未被抵消的净余电荷
(即e=0),电荷只分布在导体表面上。
导 体
湖南大学物理(2)第13章课后习题参考答案
第13章 静电场中的导体和电解质一、选择题1(D),2(A),3(C),4(C),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 452; (10). εr ,εr三、计算题1.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有002E r ελπ=,000ln r R E r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.3. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε4. 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 于多少? (2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为2211d E d E U U B A +=- )(210d d S q+=ε)(0t d Sq -=ε 由此得 )/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响.O R 1R 2Rεr 2εr 1t S S S d Ad 1t d 2d5. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为a ,外筒半径为b ,筒长都是L ,中间充满相对介电常量为εr 的各向同性均匀电介质.内、外筒分别带有等量异号电荷+Q和-Q .设 (b - a ) << a ,L >> b ,可以忽略边缘效应,求:(1) 圆柱形电容器的电容;(2) 电容器贮存的能量.解:由题给条件 (a a b <<-)和b L >>,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: )2/(0Lr Q E r εεπ= 两筒间的电势差 =π=⎰r drL QU bar εε02a b L Q r ln 20εεπ 电容器的电容 )]//[ln()2(/0a b L U Q C r εεπ== 电容器贮存的能量 221CU W =)/ln()]4/([02a b L Q r εεπ=6. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε=,d SC 222ε= 串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A7. 如图所示,将两极板间距离为d 的平行板电容器垂直地插入到密度为ρ、相对介电常量为εr 的液体电介质中.如维持两极板之间的电势差U 不变,试求液体上升的高度h .解:设极板宽度为L ,液体未上升时的电容为 C 0 = ε0HL / d 液体上升到h 高度时的电容为()d hL dL h H C rεεε00+-=()011C H h r ⎥⎦⎤⎢⎣⎡-+=ε 在U 不变下,液体上升后极板上增加的电荷为()d hLU U C CU Q r /100-=-=∆εε电源作功 ()d hLU QU A r /120-==∆εε液体上升后增加的电能20212121U C CU W -=∆()d hLU r /12120-=εε 液体上升后增加的重力势能 2221gdh L W ρ=∆因 A = ∆W 1+∆W 2,可解出 ()2201gdU h r ρεε-=思考题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
介质中静电场方程课件
静电屏蔽
由于静电感应作用,导体 内部不受外部电场影响, 形成静电屏蔽。
静电屏蔽的应用
保护电子设备免受外部电 场干扰,提高设备性能稳 定性。
THANKS FOR WATCHING
感谢您的观看
静电场的性质
有源无旋
静电场由电荷产生,不存在闭合的电 场线,因此是无旋的;同时,电场线 始于正电荷或终于负电荷,因此是有 源的。
高斯定理
在任意闭合曲面内的电荷量等于该闭 合曲面所包围的电场线匝数。
高斯定理与静电场
高斯定理的表述
通过任意闭合曲面的电场线数(匝数 )等于该闭合曲面所包围的电荷量。
高斯定理的意义
05
静电场的物理意义与应 用
电场对带电粒子的作用力
库仑定律
描述两个点电荷之间的作用力与距离的平方成反比,与电量成正 比。
电场力
带电粒子在电场中受到的力,与电场强度成正比,与粒子电量成正 比。
电场对带电粒子的作用
电场对带电粒子有吸引或排斥的作用,取决于粒子的电性。
电容器的电容与能量
01
02
03
电容器的定义
详细描述
镜像法是一种通过引入虚拟的镜像电 荷来模拟电场分布的方法。这种方法 适用于具有对称边界的电场问题,通 过引入镜像电荷来模拟电场分布,可 以简化问题的求解过程。
有限差分法
总结词
将连续的电场分布离散化为有限个离散点,通过差分方程进 行求解。
详细描述
有限差分法是一种将连续的电场分布离散化为有限个离散点 的方法。通过在离散点上建立差分方程,可以求解电场分布 。这种方法适用于具有规则边界的电场问题,具有计算精度 高、计算速度快等优点。
04
静电场的解法
分离变量法
第13章-静电场中的导体和电介质汇总
(2)空腔内电场强度处处为零,或者说,空腔内的电势处处相等。
证明:在导体内部作一个包围内表面的闭
q
合曲面,由静电平衡v条件,此曲面
上各点的电场强度 E 0,则通过
Ò闭S合Ev曲d面Sv的 0电通量所为以零,即q:i 0
S
假设导体空腔内表面上分布有等量异号的 电荷,是否可以?
屏蔽作用──导体壳内所包围的区域不受外电场的影响。
第13章 静电场中的导体和电介质
本章重点: 本章作业:
§13.1 静电场中的导体
一、导体的静电平衡条件
导体在静电场中,两侧出现正、负电
荷的现象叫做静电感应现象。产生的
电荷称为感应电荷。产生外电场的
电荷称为施感电荷。
静电平衡时:
E E0 E 0
E0
E0
E0
静电平衡时,要求表面电荷也不能移动.即表面处的静电场
( R1 r R2 ) (r R2 )
q
R2
R1
R
(2)根据静电平衡条件和电势的定义可得电势的分布为
R
R1
R2
R1 q
U1
r
E1dr
R
E2dr
E3dr
R1
E4dr
R2
R
4π0r 2 dr
R2
4π0r 2 dr
1
4π 0
q R
q R1
qQ R2
(r R)
U2
R1
E2dr
E2
则面元dS所受的电场力为 单位面积上受到的电场力为
F
2
2 0
E2 en
dS
2 2 0
d Sen
例题13-3 半径为R的孤立金属球,接 地,与球心相距 l 处有一点电荷+q, 求球 上的感应电荷q′。
大学物理13章答案
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
大学物理:第 13 章 电介质
若点电荷 q0 处于q 的电场中,
静电能为:
把q0从P点移到无限远时 静电场力作的功,就是 “系统”的静电势能。 或:把q0从无限远移动到P点的过 程中,外力反抗静电力作的功。
* 对于点电荷体系(或连续带电体),系统的能 量可以有类似的定义: 把点电荷体系无限分离到彼此间相距无限远的 过程中静电场力作的功,叫作该系统时的静电势 能。 对连续带电体,可以把带电体看成是由无限多 电荷元组成的点电荷体系。这样,连续带电体的 静电能量的定义同上。
一、电介质的分类
1. 有极分子: 无外场时,分子等效正、负电荷中心 不重合分子固有电偶极矩。
O-H+
-q H+
+
H 2O
=
+q
2. 无极分子: 无外场时,分子等效正、负电荷中心 重合无分子பைடு நூலகம்有电偶极矩。
-
+
+
-
=
±
-
O2
二、电介质的极化
1. 无极分子的位移极化 O2
-
- +
-
- -
+
-
-
- + + - + -+ p
四、电容器储存的静电能量(带电 Q)
+q
A
B
-q
dq +
uAB
+
电容器的静电能:
1Q 1 1 2 QU CU 2 C 2 2
2
五、电场的能量,能量密度
设带电系统静电作用能量是以电场能量 的形式储存在电场中的。 以平板电容器为例:
其中:
电容器体积:V = Sd
电场的能量密度: 单位体积电场所具有的能量
第13章静电场电势 清华大学版大学物理
功能问题是物理学的各个研究领域的 重要关注点, 重要关注点, 本章将讨论电场力做功的 性质,给出静电场的环路定理, 性质,给出静电场的环路定理,揭示静电 场有势性,并进一步讨论静电场的能量。 场有势性,并进一步讨论静电场的能量。
第13章 电势 章
13.1 13.2 13.3 13.4 13.5 13.6 13.7 静电场的保守性 电势差和电势 电势叠加原理 电势梯度 电荷在外电场中的静电势能 电荷系的静电能 静电场的能量
二、 静电场环路定理
L1 P2 L2
A = ∫ Fdr = ∫ q Edr 12
0
P1
=∫
p2 p1 ( L ) 1
p2 p1 ( L ) 1
v r p1 q0 E ⋅ dr + ∫
p2 ( L2 )
v r q0 E ⋅ dr
=∫
v r p2 q0 E ⋅ dr − ∫
p2 ( L2 )
v r q0 E ⋅ dr = 0
O
q
当静电场是由点电荷产生的 当静电场是由点电荷产生的
A12 = ∫
( p2 ) ( p1 )
r 1
v r
P1
v dr
q0 L dr
θ
v E
q0 E ds cosθ =
∫
r2 r1
q0qd r 4πε 0 r 2
cosθds = dr
q0 q 1 1 ( − ) = 4πε 0 r1 r2
只与P 位置有关, 只与 1、P2位置有关, 而与路径L无关 而与路径 无关
在点电荷系q 产生的电场中, 在点电荷系 1、q2、… 、qn产生的电场中, 移动q 移动 0,电场力做功 v r p2 v r p2 A12 = ∫ F ⋅ dr = ∫ q0 E ⋅ dr
第13章介质静电场
24
2.电极化的微观机理
有极分子
有电场时 MPE
P 0
V
无外场时:
P 0
V
极性(有极)分子介质 取向极化
25
无极分子
有电场时
P 0
V
无外场时:
P 0
V
非极性(无极)分子介质
位移极化
26
极性(有极)分子介质
取向极化 (orientation polarization)
证明:在导体内任取体积元 dV
dV
E内 0
EdS 0
S
体积元任取
由高斯定理
qi dV0
i
V
0
电荷只能分布在表面!
电荷分布在实心导体表面,导体内部场强处处为零。
6
2.2 导体表面电荷
设导体表面电荷面密度为 (x,y,z)
相应的电场强度为 E表(x,y,z)
设P 是导体外紧靠导体表面的一点
a
b
dl
a
导体等势是导体体内电场强度处处为零的 必然结果
静电平衡条件的另一种表述
4
金属导体放入均匀场前
E
ห้องสมุดไป่ตู้
金属球放入前电场为一均匀场
E
E内 0
金属球放入后电力线发生弯曲 电场为一非均匀场
5
2.导体上的电荷分布
由导体的静电平衡条件和静电场的基本性质,可 以得出导体上的电荷分布。
2.1 实心导体(内部各处净电荷为零)
论述的根据是静电场的基本规律和导体与电介质的电结构 特征。
基本性质方程
qi
E dS
S
第13章 静电场中的导体和电介质
思考题13-1 尖端放电的物理实质是什么?答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。
13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。
(1) B 球电势高于A 球。
答: 正确。
不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。
另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。
(2) 以无限远为电势零点,A 球的电势: V A < 0答: 不正确。
若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。
所以,V A >0。
13-3 怎样能使导体净电荷为零 ,而其电势不为零?答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0。
图13-37 均匀带电球体的电场能13-4 怎样理解静电平衡时导体内部各点的场强为零?答: 必须注意以下两点:(1) 这里的“点”是指导体内的宏观点,即无限小体积元。
对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零;(2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。
13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比?答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ∆σ产生的。
实际上这个场强是导体表面上全部电荷所贡献的合场强。
如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。
13-6 为什么不能使一个物体无限制地带电?答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 一无限大各向同性均匀介质平板厚度为d,相对介电 常数为r,内部均匀分布体电荷密度为0的自由电荷。
求:介质板内、外的 解: 面对称 取坐标系如图
D E P D E P 平板
x0 处 E 0
d
以 x = 0 处的面为对称面 过场点作正柱形高斯面S 底面积设S0
0
r
S S0
0x
x
根据介质中的高斯定理有
d x 2
2DS 0 0 2 x S0
D 0 x
d
0
S
r
d x 2
2 DS 0 0 S0 d
D
0x
x
x
0
2
d
d x 2
D 0 x
d1
d2
r1 r2
o d1 d 2 U E1d1 E2 d1 o r1 r 2
oS
U
C
oS r1
d1
r2
d2
1 1 1 C C1 C2
例3、球形电容器由半径为R1的球体和内半径为R3的 导体球壳构成,其间有两层均匀电介质,分界面的 半径为R2,相对介电常数分别为r1和r2 。求:电容。 解:
+ - + -+
E
E0
E E0 E
q0源电荷 q’极化电荷
※以平行板电容器为例讨论空间总的静电场
P
E0
E'
e
(a)平行板电容 器自由电荷面 密度为0。
(b)(c)介质均匀 极化,表面出现 束缚电荷± 。
Pn e 0 E
E E0 E
•束缚电荷±
0 E0 0
E E0 E E0 e E 相对介电常数>1 E0 E0 E (1 e ) r 0 0 介电常数 0 r permittivity e r 1 0 0 1 e r
E e E 0
2 SD dS 4 r D q q D 2 4r D E
R2
R1 R3
r2
r1
o r
2
E1
q 4o r1r
E2
q 4o r 2 r
2
U
R2
qdr 4o r1r
2
R1
R3
qdr 4o r 2 r
2
R2
q r 2 R3 R2 R1 r1 R1 R3 R2 4r1 r 2 r 3 R1 R2 R3
l
E dl 0
§13-4 电位移矢量
一、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示) S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献
S
q0
q'
q0
P en
P
pi
V
V
(C· -2 ) m
pi
每个分子的 电偶极矩
二、极化电荷
设在均匀电介质表面取一 斜圆柱体。体积为dV。
en
P
+ ds
pi ql dsl
dV ds l cos
-
l
pi ds l ˆ P l dV ds l cos cos
S
0
定义电位移矢量:
S
0 S 0 E P dS q
D oE P
D dS q
S
——介质中的高斯定理
讨论:
D dS q
S
(1)介质中的高斯定理表明:电位移矢量对任意封闭曲 面的通量与该封闭曲面内自由电荷有关。
一、电介质的微观机制和极化过程
两大类电介质分子结构:
(1)、有极分子: 分子的正、负电荷中心在无外场时 不重合,分子存在固有电偶极矩。
O--q
H+
+ H2O
H+
=
+q
(2)、无极分子:分子的正、负电荷中心在无外场时 重合。不存在固有分子电偶极矩。 H+
H+ C-H+ H+
=
±
H4C
1、无极分子的位移极化
但是:电位移矢量本身与对空间所有的电荷分布有关, 包括自由电荷和束缚电荷。 (2)电位移矢量是描述介质中电场性质的辅助量,没有 具体的物理意义。电场强度是描述电场的基本物理量。
(3) D 线起始于正自由电荷,终止于负自由电荷
在没有自由电荷处不中断。
(4)介质中的高斯定理包含了真空中的高斯定理。
S
0 S 0 E P dS q
自由电荷
1 E dS q q' S 0 S内 S内
q' P dS
S内 S
1 1 E dS q P dS
P e 0 E
0 x D E 0r 0r
0 x P r 1 r
D 0 d E 0 2 0
d x 2
D
0
2
d
均匀场
P 0 r 1 E 0
例 一均匀介质球发生均匀极化,已知 P, R
求极化电荷在中心产生的电场。 解:
D
0 o o r o o
o
1 1 r
例2、一平行板电容器,中间有两层厚度分别为d1和 d2的电介质,它们的相对介电常数为r1和r2,极板 面积为S。求电容。 解: D o
o o E2 E1 o r 2 o r1
第13章 电介质
§13.1 电介质的极化
§13.2 极化强度和极化电荷 §13.3电介质中的静电场 §13.4 电位移矢量 §13.5 静电场的能量
§13-1 电介质的极化
电介质:Dielectric
电阻率很大,导 电能力很差的物质。 即绝缘体。
电介质的特点:
分子中的正负电荷 束缚的很紧,介质内部 几乎没有自由电荷。
P cos
dq dE 2 40 R
+ P + dE +
z
(2RSin )( Rd ) dEz dE cos cos 2 40 R P Ez 3 0
介质边界两侧的静电场
各向同性均匀介质内部 D, E , P 方向相同, D 或 E 之间的关系。 下面讨论极靠近边界两侧
e 0 E
※充满介质时电容器的电容
•电容器无介质 时,自由电荷Q0
E0 U 0
E E0
•电容器充满介质时, 电场强度变小
Q0 Q0 C r rC0 U U 0
介质中的场强 E 比真空中相应电荷分布的场强 E0 小, 而充满介质电容器的电容 C 比真空电容器的电容 C0 大。
(d)内部的场由自由 电荷和束缚电荷共 同产生
二、介质中的电极化率
实验证明:对于各向同性的介质,当电场不太强时,介 质内任意点的电极化强度与该点的总电场度成正比。
P e 0 E
—— e 称为介质的电极化率
当介质为各向同性的均匀介质时,极化率为一纯(常)数。
•自由电荷± 0
设界面没有自由电荷
一、场强与界面垂直
D dS D1S D2 S 0
1
D1 E1
D2
2
D1 D2
D
E E
1 1 2
E2
2
E
D线连续 E线连续
二、场强与界面斜交
1
2
D1 cos1 D2 cos 2(1)
2 P2
, P1 en1 P2 en 2 ( P1 P2 ) en1
§13-3 介质中的静电场
一、介质中的场强
有介质存在时,空间静电场的性 质与自由电荷(q0)以及电介质 的分布有关。
-
电介质的宏观电学性质可以 由极化电荷(q')代替。 空间总的静电场为:
D 0 E P 0 E e 0 E 1 e 0 E 0 r E E
P e 0 E
三、介质中的高斯定理应用
主要是指自由电荷分布和电介质在空间分布具有 高度对称性的问题
计算电介质中场强的主要步骤: 1. 根据自由电荷分布和电介质空间分布对称性分析 电位移矢量空间分布特征;
P en P cos
en
介质外法线方向
不同介质交界面处的极化电荷分布。
P
1
ˆ n
en1
P en
, P1 en1 P2 en 2 ( P1 P2 ) en1
P1 en 2
D1
D1n D2n 1E1n 2 E2n
E2
2
1
1
2
E1 sin 1 E2 sin 2(2)
E1
E1t E2 t
D1t
1
D2 t
2
E1 E2 tg 2 tg tg (2)(1) tg1 2 1 1 2 D1 D2
2tg1 1tg 2
P0