静电场中的电介质
合集下载
静电场中的电介质
r0
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质
23. 静电场中的电介质
1 E dS 0S1 S2
S
P dS P dS PS2 S 2
S S2
0
1 1 E dS 0 S1
S
S
0 E P dS q0
0
0
四、电极化强度与极化电荷的关系 在均匀介质中, 极化电荷只出现在介质表面 或两种介质的分界面上。 设一均匀电介质薄片(S、l)置于电场(E) 中,表面将出现极化电荷。
p ql p ql P P V Sl 一般情形: P e P cos P n n
的q’为多少?
介质被均匀极化,介质内无净极化电荷。
介质内的场强: E E0 E
极化电荷产生的附加电场 实验表明: 对于各向同性的电介质,在E0不太大的 情况下,有:
P ( r 1) 0 E
上式表明P,E的简单比例关系,将比例系数写 成稍复杂的形式,是为了以后相对更重要的式子 表达方便。
en为薄片表面外法向单位矢量
例:
n
θ - - - - - + + + + +
- - - - - - + + + + +P +
P
思考:将介质从中分开,能否分离正、负
极化电荷?
§7-9 有电介质时的高斯定理 电位移
1 真空中的高斯定理: E dS qi
S
0
1 介质中的高斯定理: E dS
极化面电荷: P ·en
介质内表面(r =R1)处:
( r 1) q0 er P 0 ( r 1) E 2 4r r
1 P r R
大学物理 电介质
电介质的种类和状态的不同而不同
χ = εr − 1 电极化率
令 ε r = (1 + χ e ) 为相对介电常量(相对电容率)
ε = ε 0ε r ~电介质的电容率
5
四、极化电荷与自由电荷的关系
E
=
E0
−
E'=
E0 εr
E'=
εr − 1 εr
E0
d
σ'=
εr − εr
1
σ
0
Q' =
εr − εr
即 D⇒ E ⇒ P ⇒σ′ ⇒q′
9
物理意义
E
单位试验电荷 的受力
单位体积内的 P 电偶极矩的矢
量和 无物理意义, D 只有一个数学 上的定义 D = ε0E + P
= ε 0ε r E
特点
真空中关于电场的讨论都 适用于电介质:高斯定律、 电势的定义、环路定理等
各向同性均匀电介质中
P = ε0χe E ,表面束缚电荷 σ ′ = P ⋅ n ,电介质中P ≠ 0
D = (1+ χ )ε0E
ε r = (1 + χ )
ε = ε rε 0
相对电容率或相对介电常量
电容率或介电常量
D=ε0ε r E = εE
•注意: D 是辅助矢量,描写电场性质的物理量仍为 E ,V
对于真空 χ e = 0 ε r = 1 ε = ε 0 则 D = ε 0 E
3、有电介质时的高斯定理的应用
在垂直于电场方向的两个表面上,将产生极化电荷。
4.极化电荷
在外电场中,均匀介质内部各处仍呈电中性,但在介质表 面要出现电荷,这种电荷不能离开电介质到其它带电体,也不 能在电介质内部自由移动。我们称它为束缚电荷或极化电荷。 它不象导体中的自由电荷能用传导方法将其引走。
χ = εr − 1 电极化率
令 ε r = (1 + χ e ) 为相对介电常量(相对电容率)
ε = ε 0ε r ~电介质的电容率
5
四、极化电荷与自由电荷的关系
E
=
E0
−
E'=
E0 εr
E'=
εr − 1 εr
E0
d
σ'=
εr − εr
1
σ
0
Q' =
εr − εr
即 D⇒ E ⇒ P ⇒σ′ ⇒q′
9
物理意义
E
单位试验电荷 的受力
单位体积内的 P 电偶极矩的矢
量和 无物理意义, D 只有一个数学 上的定义 D = ε0E + P
= ε 0ε r E
特点
真空中关于电场的讨论都 适用于电介质:高斯定律、 电势的定义、环路定理等
各向同性均匀电介质中
P = ε0χe E ,表面束缚电荷 σ ′ = P ⋅ n ,电介质中P ≠ 0
D = (1+ χ )ε0E
ε r = (1 + χ )
ε = ε rε 0
相对电容率或相对介电常量
电容率或介电常量
D=ε0ε r E = εE
•注意: D 是辅助矢量,描写电场性质的物理量仍为 E ,V
对于真空 χ e = 0 ε r = 1 ε = ε 0 则 D = ε 0 E
3、有电介质时的高斯定理的应用
在垂直于电场方向的两个表面上,将产生极化电荷。
4.极化电荷
在外电场中,均匀介质内部各处仍呈电中性,但在介质表 面要出现电荷,这种电荷不能离开电介质到其它带电体,也不 能在电介质内部自由移动。我们称它为束缚电荷或极化电荷。 它不象导体中的自由电荷能用传导方法将其引走。
静电场中的电介质
由定义
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
第10章 静电场中的电介质
R2
解:1.场的分布 R1
r <R 0
导体内部
E1 ? 0
P? 0
?0
?r1
?r2
R0
? ? R0< r< R1
?r1 内
? E2 ?
Q
4??0?r1r 2
r^
? P2 ?
?0
?r1 ? 1
Q
4??0?r1r 2
^r
R1< r< R2
?r2 内
? E3
?
Q
4??0?r2r 2
^r
? P3 ?
?0
??r
分子中的正负电荷束缚的很紧,介质内部 几乎没有自由电荷。
电介质对电场的影响
实验表明 ,当在真空电场中放入电介质时 ,电场将 会发生变化 .
例: 在已达到静电平衡的两平行带电金属板引 入电介质
?Q
? Q 相对介电常数 ? Q
?Q
U ? U0 /?r ,?r ? 1 E ? E0 / ?r
10.2 电介质及其极化
极化电荷带负电
电极化强度通过任意封闭曲面的通量:
??
?SP ?d S ? ?SP cos? d S ? ?S? ??d S
??
? ? P S
?d
S
?
? qi?
(S内)
例1. 平行板电容器自由电荷面密度为 ó0
? 充满相对介电常数为 r 的均匀各向同
性线性电介质 , 求:板内的电场强度。
解:介质将均匀极化 ,其表面出现束缚电荷
-+
Eo
? p
+
F
F
-
Eo
?
外电场: E0
?
(大学物理ppt)第 4 章 静电场中的电介质
第 4 章
静电场中的电介质
一、电介质对电场的影响 二、电介质的极化 三、电极化强度
四、极化电荷
五、D 的高斯定律
六、电容器和它的电容
七、电容器的能量
一、电介质对电场的影响
电介质也即绝缘体
特点是分子中正负电荷束缚得很紧,内
部几乎没有自由电荷,不导电,但在电场中会
受到电场的影响,反过来也会影响原有电场的
P
pi
V
P np
其中 n 表示电介质单位体积内的分子数。
三、电极化强度
2. 电极化强度与电场的关系
对 各向同性 的电介质,当电场不太强时, 试验表明:
P 0 ( r 1) E 0 E
其中 r 1 叫做电介质的电极化率。
四、极化电荷
1. 面束缚电荷
在介质中取一斜柱,长为 l ,则穿过 dS 面 的总正电荷为
dq qndV qnldScos
而 故 p ql, np P dq PcosdS
-q
e n
l
dS +q
面束缚电荷密度 dq P cos P e n dS
E
四、极化电荷
2. 体束缚电荷
穿过 dS面的总正电荷为 PcosdS P dS dqout 穿过整个封闭面 S 向外的 电荷应为 d qout P dS qout
S S
-q
e n
l
S
dS +q
E
留在封闭面 S 内的体束缚电荷应为 q in - q out P dS
二、电介质的极化 在电介质内部的宏观微小的区域内,正负电
静电场中的电介质
一、电介质对电场的影响 二、电介质的极化 三、电极化强度
四、极化电荷
五、D 的高斯定律
六、电容器和它的电容
七、电容器的能量
一、电介质对电场的影响
电介质也即绝缘体
特点是分子中正负电荷束缚得很紧,内
部几乎没有自由电荷,不导电,但在电场中会
受到电场的影响,反过来也会影响原有电场的
P
pi
V
P np
其中 n 表示电介质单位体积内的分子数。
三、电极化强度
2. 电极化强度与电场的关系
对 各向同性 的电介质,当电场不太强时, 试验表明:
P 0 ( r 1) E 0 E
其中 r 1 叫做电介质的电极化率。
四、极化电荷
1. 面束缚电荷
在介质中取一斜柱,长为 l ,则穿过 dS 面 的总正电荷为
dq qndV qnldScos
而 故 p ql, np P dq PcosdS
-q
e n
l
dS +q
面束缚电荷密度 dq P cos P e n dS
E
四、极化电荷
2. 体束缚电荷
穿过 dS面的总正电荷为 PcosdS P dS dqout 穿过整个封闭面 S 向外的 电荷应为 d qout P dS qout
S S
-q
e n
l
S
dS +q
E
留在封闭面 S 内的体束缚电荷应为 q in - q out P dS
二、电介质的极化 在电介质内部的宏观微小的区域内,正负电
大学物理 4.7 静电场中的电介质
4.7 静电场中的电介质
电介质 ( 绝缘体 ) 和导体的主要区别是:导体中有 可以自由移动的电子,而电介质中正、负电荷束缚 很紧,没有可以自由运动的电荷 。
一、电介质的极化
电介质分为两类:有极分子电介质和无极分子电 介质。
无极分子
H
有极分子
H
C
+
H
H
1040
H
p 0 CH
σ '
E ' E
0
实验ቤተ መጻሕፍቲ ባይዱ明:
E E0 E' E0
σ '
E
一、有介质时的高斯定理
1.极化强度
体积V中分子 电矩的矢量和 i P V 体积V
p ei
实验证明,对于各向同性的电介质:
2
r1
Q0
(r R0 )
( R0 r R1 ) ( R1 r R2 ) ( R2 r )
E D
1
例题
如图金属球半径为R1 、带电量+Q;均匀、各 向同性介质层外半径R2 、相对介电常数 r ;
求: D、E、U
R1
分布 解(1)对称性分析确定E、D沿矢径方向 (2)大小
束缚电荷´
束缚电荷´
(分子) 取向极化
结果:无论是有极分子电介质还是无极分子电介质,
在外电场的作用下,电介质表面附近的电荷会越过介 质表面而在均匀电介质的表面上出现一层束缚(极化) 电荷。这种现象称为电介质的极化。
电介质 ( 绝缘体 ) 和导体的主要区别是:导体中有 可以自由移动的电子,而电介质中正、负电荷束缚 很紧,没有可以自由运动的电荷 。
一、电介质的极化
电介质分为两类:有极分子电介质和无极分子电 介质。
无极分子
H
有极分子
H
C
+
H
H
1040
H
p 0 CH
σ '
E ' E
0
实验ቤተ መጻሕፍቲ ባይዱ明:
E E0 E' E0
σ '
E
一、有介质时的高斯定理
1.极化强度
体积V中分子 电矩的矢量和 i P V 体积V
p ei
实验证明,对于各向同性的电介质:
2
r1
Q0
(r R0 )
( R0 r R1 ) ( R1 r R2 ) ( R2 r )
E D
1
例题
如图金属球半径为R1 、带电量+Q;均匀、各 向同性介质层外半径R2 、相对介电常数 r ;
求: D、E、U
R1
分布 解(1)对称性分析确定E、D沿矢径方向 (2)大小
束缚电荷´
束缚电荷´
(分子) 取向极化
结果:无论是有极分子电介质还是无极分子电介质,
在外电场的作用下,电介质表面附近的电荷会越过介 质表面而在均匀电介质的表面上出现一层束缚(极化) 电荷。这种现象称为电介质的极化。
静电场中电介质(共10张PPT)
自由电荷Q0和介质均呈球对称分
O--
-q
= 讨论: (1) 平板电容器(±Q)中充有均匀介质( r ),求 D与 的关系;
(1)电介质内正负电荷处于束缚状态, 在外电场作用下,束缚电荷只作微观的相对位移
H 自由电荷Q0和介质均呈球对+称分
布, 故 也为球对称分布
+
H+
+q
H O 布, 故 也为球对称分布
2、有极分子的取向极化
有极分子在外场中发生偏转而 产生的极化称为取向极化。
F
- + Eo
+
F
- p Eo
第六页,共10页。
三、静电场中的电介质
小结: (1)电介质极化现象∶在外电场作用下,介质表面 产生极化(束缚)电荷的现象。 (2)不论是有极分子还是无极分子的极化,微观 机理虽然不相同,但在宏观上表现相同。
在外电场的作用下,介质表面产生电荷的2现象称为电介质的极化。
(3)电介质内的电场强度。
(2)、无极分子: + + + + +
-----------
分子的正、负电荷中心在无外场时重
及
与各种因素均有关
合。不存在固有分子电偶极矩。 在外电场的作用下,介质表面产生电荷的现象称为电介质的极化。
+++++++++++
静电场中电介质
第一页,共10页。
电介质对电场的影响
B
+ + + + +
在平板电容器之间插 入一块介质板
E0
-- ---
实验发现:
静电场中的电介质
故,可用介质中的高斯定理求解
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E
2π
0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E
2π
0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量
电介质
高斯定理的应用
∫∫ D ⋅ dS = ∑ q
(S) ( S内 )
0
D= ε r ε 0 E
v v v D= ε 0 E + P
D = ε 0 E0
r r r D ⇒ E ⇒ P ⇒ σ ′ ⇒ q′
D P
+σ0 -σ'
E = E0 − E '
E E 0
+σ' -σ0
[例] 例
r r r 请画 D, E , P 线。
−
dq
A + +Q + + +
B -Q -
1 1 1 Q2 2 We = U c Q = CU c = 2 2 2 C
二 、电场的能量和能量密度
1、静电场的能量 、
以平行板电容器为例 1 1 W e = Q0 U = ( DS )( Ed ) 2 2
We = 1 D EV 2
2、电场的能量密度
定义: 定义:单位体积内的能量
−q
q
q
E=
q 4πε 0 r 2
r
R1 E1
R2
电场的能量密度为
E2
dWe = ω e dV =
R1
1 q2 ω e = ε 0 E 2= 2 32π 2ε 0 r 4
q2
2 4
32π ε 0 r
4πr 2 dr =
q2 8πε 0 r
2
dr
q2 1 1 − We = ∫ dr = 2 r R 8πε 0 r 8πε 0 1 r q2
位移极化
E0
E0
取向极化
在外电场作用下, 在外电场作用下,电介质表面出现正负电荷层的 现象叫做电介质的极化 电介质的极化。 现象叫做电介质的极化。
6-静电场中的电介质
v v 1 q E⋅ dS = ∑ = 1 ( ∫
S
ε0
S内
ε0
∑q +∑q′)
0 S内 S内
式中的 ∑q 为闭合曲面内一切正、负电荷的代数和 为闭合曲面内一切正、 即自由电荷q 极化电荷q (即自由电荷q0、极化电荷q’)
v v 1 ∫ E⋅dS = (∑q0 +∑q′)
S
ε0
------ 有源场
分析电场所具有的对称性质 巧作高斯面, 巧作高斯面,即选择适当形状的闭合曲面为高斯面 计算通过高斯面的电位移通量
v v dS ΦD = ∫ D⋅ dS = ∫ D
S
计算高斯面内所包围的自由电荷的代数和 由电介质中的高斯定理求出电位移 D
∑q0
D∫dS = ∑q0
D=
∑q0
∫dS
由电位移 D 求出场强 E
4 0εr1r2 πε r r Br r ∞r r ∞ UA = ∫ E⋅ dl = ∫ E⋅ dl +∫ E⋅ dl Q A B A A r r E3 = ∞ 2 4 0εr2r πε =UAB +∫ E4 ⋅ dr
S内
S内
v v 1 Q∫ E0 ⋅ dS = ∑q0
S
v v ∴∫ ε0E0 ⋅ dS = ∑ 0 q
S S内
ε0 S内
v v ∴∫ ε0εr E⋅ dS = ∑ 0 q
S S内
v v v 令 D=ε ε E =εE ----电位移矢量 ----电位移矢量 0 r v v 自由电荷 电位移通量 ∴ D⋅ d = ∑ 0 S q ∫
§2
静电场中的电介质
H+ H C−+ H −
电介质:内部几乎没有可以自由运动电荷的物体, 电介质:内部几乎没有可以自由运动电荷的物体,又称为 绝缘体 电偶极子模型 正负电荷
第三章静电场中的电介质
1 E ds ( q0 q)
s
0
s内
s内
q P ds
s内 s
1 1 E dS q0 q q0 P dS 0 0 S S
0 E P dS q0
四、 有介质时的高斯定理应用
令D 0 E P
S
引入辅助物理量:电位移矢量(electric displacement)
D 0E P
介质存在时高斯定理:
D ds q0
s s内
电位移矢量对任意闭合曲面的通量等于该曲面内所有自由 电荷的代数和。 二、电位移矢量D 1、定义:
(S )
_
E0
内
ds
l
P dS q
( S内)
V
S
外
V 内的极化电荷总量 q P ds s P d s 该点的极化电荷体密度 ' s V
'
P ds / V
' s
* 此式为各点极化电荷体密度和该点极化强度的关系。
q' , ' , ' 分别表示极化电荷、体密度、面密度 • q0 , 0 , 0 分别表示自由电荷、体密度、面密度
•
二、极化电荷体密度与极化强度的关系:
1、以位移极化为例 极化分子电矩
p分子
ql
S
E0
ds
单位体积有 n 个分子 极化强度矢量
l
0
P np分子 nql
D E
静电场中的电介质
S S
electric displacement
def D 0E P
( 0 E P) dS q0
S S
D dS e dV
S V
def D 0E P
自由电荷
物理意义
通过任一闭合曲面的电位移通量,等于 该曲面内所包围的自由电荷的代数和。
D (1 e ) 0 E
退极化场
r (1 e )
r 称为相对电容率
或相对介电常量。
D r 0 E E
r 0
或介电常量dielectric constant。
0 称为电容率permittivity
关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量为零. (B) 高斯面上电位移矢量处处为零,则面内必不存在自由电荷. (C) 高斯面电位移矢量的通量仅与面内自由电荷有关. (D) 以上说法都不正确. [ ]
例二:平行板电容器充电后,极板 上面电荷密度 0 1.77106 C / m , 将两板与电源断电以后,再插入 r 8的电介质后计算空隙中和 电介质中的 E、D、P 因断电后插入介质,所以极板 上电荷面密度不变。
+ 0
– 0
电位移线垂直与极板, 根据高斯定律
高斯面 +0
从电场这一角度看,特别地把绝缘体叫做电介质。 从电学性质看电介质的分子可分为两类: 无极分子、有极分子。 从它们在电场中的行为看:有位移极化和取向极化。 下面将逐一讨论。
电介质对电场的影响
本章只限于讨论各向 同性的均匀的电介质。 +Q –Q +Q –Q
electric displacement
def D 0E P
( 0 E P) dS q0
S S
D dS e dV
S V
def D 0E P
自由电荷
物理意义
通过任一闭合曲面的电位移通量,等于 该曲面内所包围的自由电荷的代数和。
D (1 e ) 0 E
退极化场
r (1 e )
r 称为相对电容率
或相对介电常量。
D r 0 E E
r 0
或介电常量dielectric constant。
0 称为电容率permittivity
关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量为零. (B) 高斯面上电位移矢量处处为零,则面内必不存在自由电荷. (C) 高斯面电位移矢量的通量仅与面内自由电荷有关. (D) 以上说法都不正确. [ ]
例二:平行板电容器充电后,极板 上面电荷密度 0 1.77106 C / m , 将两板与电源断电以后,再插入 r 8的电介质后计算空隙中和 电介质中的 E、D、P 因断电后插入介质,所以极板 上电荷面密度不变。
+ 0
– 0
电位移线垂直与极板, 根据高斯定律
高斯面 +0
从电场这一角度看,特别地把绝缘体叫做电介质。 从电学性质看电介质的分子可分为两类: 无极分子、有极分子。 从它们在电场中的行为看:有位移极化和取向极化。 下面将逐一讨论。
电介质对电场的影响
本章只限于讨论各向 同性的均匀的电介质。 +Q –Q +Q –Q
大学物理_4静电场中的电介质
S
i
自由电荷
各向同性 线性介质
P 0r 1E
D 0r E E 介质方程
r 0 称介质的介电常数(电容率)
在 斯具 定有 理某出种发对解称出性D的情况下,可以首先由高
即 D E P q
说明:
1.电位移在闭合面上的通量只和闭合面内的自
第十五章 静电场中的电介质
(Dielectric In Electrostatic Field)
§15.1 电介质对电场的影响 §15.2 电介质的极化 §15.3 D的高斯定律 §15.4 电容器及其电容 §15.5 电容器的能量
§15.1 电介质对电场的影响 电介质的特点:无自由电荷,不导电。 电场中置入各向同性均匀电介质时的影响
定义 C Q 单位:法拉 F
U
电容只与几何因素和介质有关 固有的容电本领
【例1】求真空中孤立导体球的电容
解:设球带电为 Q
导体球电势 U Q
4 0 R
导体球电容 C Q
U
4 0 R
问题
欲得到 1F的电容, 孤立导体球的半径R
由孤立导体球电容公式知
R
1
4 0
9109 m
R3
4π 0r 2
(r (r
R) R)
q2r2
we
0E2
2
32π2
q2
0
R
6
32π2 0 r 4
(r R) (r R)
静电能:We
V wedV
0
we
4πr
2dr
《静电场中的电介质》课件
详细描述
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Er
R3
, U r
q1 q2
R2
曲线
E
q1 q1 R1
1 2 3 4
A
B
U
o R1 R2 R3
r
r
<2>若将球与球壳用导线连接,情况如何?
qA qB内 0 ; qB外 q1 q2
R3
R2 R1
1 2 3 4
q2 q1
E1 E 2 E 3 0 q1 q2 E4 2 40 r4
2 3 4
B
R3
R2
q1 q2
R1
<1> qA q1 qB内 q1 qB外 q1 q2
q1 q1
1 2 3 4
A
B
E1 0 E3 0
E2
4 r
q1
2 0 2
q1 q2 E4 4 0 r42
q1 q1 q1 q2 1 q1 q2 U1 ( ) ; U3 40 R1 R2 R3 40 R3 1 q1 q1 q1 q2 U2 ( ) ; 40 r2 R2 R3 1 1 q1 q2 U4 40 r4
P
pi V
设 分子数密度:n
极化后每个分子的偶极矩: q1 L
P nq1 L
实验规律
P 0 E
空间矢量 函数
介质 总场 极化率
E E0 E
P 0 E
作如图斜圆柱
' q1 dq + + dS q
χ:由介质的性质决定,与E无关。在各
电介质中的高斯定理:
s
D dS
q
s内
0
电位移矢量通过静电场中任意封闭曲面的通量 等于曲面内自由电荷的代数和
电介质中的高斯定理:
注意:
D dS q0
s s内
' q , q 电位移矢量 D 0 E P : 与 均有关 0 s D dS : 穿过闭合曲面的 D 通量仅与 q0 有关.
充介质前
0
300V
0 E 0
D 0
0
5 0 3 1 0 3
D
100 V
1
5 0 3
1 D2 0 3 0 E1 E 2 3 0
4 0 3
充介质后
pi 0
i
出现束缚电荷(面电荷、体电荷)
实例:均匀介质球在均匀外场中的极化
非均匀场, 在介质球内 与外场反向。
在介质球外可能 与外场同向或反 向。在介质球内 削弱外场。
3. 金属导体和电介质比较
金属导体
特征 模型 电介质(绝缘体)
有大量的 自由电子 “电子气” 静电感应
基本无自由电子,正负电荷 只能在分子范围内相对运动
1. 导体内无净电荷(ρ=0),电荷只分布于导体表面.
s
S'
实心导体
s
q S
q
空腔、腔内无电荷 空腔、腔内有电荷
2. 导体表面电荷面密度与表面紧邻处场强成正比.
E n
0
3. 孤立导体σ与表面曲率有关 .
• 有导体存在时的 E , U 分布
求解思路:
静电平衡条件 电荷守恒定律 导体上的 电荷分布
r
20
d
0 U 0 E0 d d 300V 0
充介质后:
0 U0 U E1d d 100V 3 0 3
P1n P1cos P1 0 E1 0 4 ( r 1 ) 0 0 3 0 3
' 1
比较
' P dS dq q内
s
P dS q内
s s
极化强度通过某封闭曲面的通量等于曲面内 极化电荷代数和的负值
二. 电介质中的电场 1. 介质中的高斯定理
静电场高斯定理
1 1 E dS q内
s
自由电荷
0
0
由高斯定理
s
D1 dS
D1
( S 内)
q
0
D1S 10 S
D1 10 ; E1
0 r
10
S
S
S
20
1
'
'
S
D1 10 ; E1
0 r
D2
D1
1 10
r
20
d
同理
D2 20 ; E2
s内
特例: 真空——特别介质
'
q 0 , P 0 , D 0E P 0E
回到
1 E dS
s
0 ( S内 )
q
0
2. 如何求解介质中电场?
' 总场 = 外场 + 极化电荷附加电场 E E 0 E
E0 P q ( , )
0
电量不变:
又: 解得
S S 10 20 0 S 2 2 E1d E2d U
10
5 D1 0 3
1 E1 E 2 0 3 0
20
1 D2 0 3
10
n
P
已知充介质前:
S 20
1
'
'
1 10
解: 〈1〉画出未接地前的电荷分布图.
+
+ + -
+
+
R
-
q -
o d q
+
+
+
腔内壁非均匀分布的负电荷 对外效应等效于:
q
在与 q 同位置处置 q .
+ + - q -
+
〈2〉外壳接地后电荷分布如何变化?
+
+ +
R
-
q -
o d q
+
+
U壳 U地 Uq U内壁 U外壁 0
( q
s内
0
q )
'
1
0
( q0 P dS )
s内 s
极化电荷
( 0 E P ) dS q0
s s内
自由电荷
( 0 E P ) dS q0
s s内
自由电荷
定义:电位移矢量
D 0E P
1 r
介质的相对电容率
式中
D 0 r E E
真空电容率
0 : 0 r :
介质电容率
E
D
D
0 r
' q , q ( 2) 0 分别具有某些对称性 才能选取到恰当高斯面使 D dS 积分能求出.
s
步骤: 对称性分析,选高斯面.
计算 E , U 分布
( 方法同前 )
练习: 若 A 带电 q1 , B 带电 〈1〉图中1,2,3,4 各区域的
q2 ,求: E 和 U 分布,
并画出 E r 和
U r 曲线.
〈2〉若将球与球壳用导线连接,情况如何?
〈3〉若将外球壳接地,情况如何?
R3
R2 R1
q2 q1 1 A
2. 介质中的高斯定理, D矢量.
3. 求解电介质中的的电场.
§ 9.7
静电场中的电介质
一. 电介质的极化及其描述 1.电介质的分类
H
e
+ 无极 - 分子
H
+
pi 0
H
H
+ 有极
c
H 无极分子
电介质
物质结构 中存在着 正负电荷
104
-
pi 0
分子
o
H 有极分子
电介质
2.极化现象
H
H H
H
c
+ + + 无外场
i
+ + + -
-
pi
+ + -
E0
+ +
+ - + E
pi 0
i
无极分子 电介质
pi 0
pi 0
外场中(位移极化)
pi 0
出现束缚电荷和附加电场 E总 E 0 E 0
q1 - q1
B
A
q1 q1 U1 ( ) 4 0 R1 R2 q1 q1 U2 ( ) 4 0 r2 R2 U3 0 U4 0 1
1
[例三] 内半径为 R 的导体球壳原来不带电,在腔 内离球心距离为 d ( d R )处,固定一电量 q的 点电荷,用导线将球壳接地后再撤去地线,求球心 处电势.
不一定与表面垂直
H
104
pi
+
o
H
-
F
pi
-
+
E0
F
E
有极分子 电介质
无外场 pi 0 pi 0
i
外场中(转向极化) pi 0 pi 0
i
出现束缚电荷和附加电场
位移极化和转向极化微观机制不同,宏观效果相同。
统一描述
上讲回顾: 静电场中的导体