微波电子线路大作业(3)讲诉

合集下载

微波电子线路大作业

微波电子线路大作业

题目:微波电子线路大作业授课老师:杨锐学院:电子工程学院专业:电子信息工程学生姓名:王静波学号:02111344微波二极管介绍微波领域内的各种二极管,包括变容二极管、阶跃二极管、PIN二极管、限幅二极管、电调变容二极管、固体噪声二极管和雪崩二极管等。

一.微波混频二极管和微波检波二极管基于金属-半导体相接触具有非线性电导原理制成的两端器件。

这种器件早在第二次世界大战期间就用于雷达接收机中,是半导体领域中最早出现的实用性器件。

1965年以前,这两种二极管均为点接触结构,即用微米级的金属触丝尖端与半导体锗或硅接触而产生高频整流特性。

1965年以后出现性能优越的肖特基势垒型混频和检波二极管(又称肖特基二极管),其工作频率从几百兆赫到 300吉赫,具有噪声低、频带宽、抗烧毁性能好等特点。

在整个微波频带内直接用二极管混频的微波接收机的噪声系数为4.0~70分贝。

梁式引线结构和四管堆具有多倍频程的性能。

检波二极管的工作频率范围为0~40吉赫,检波正切灵敏度为45~55分贝毫瓦。

二.变容二极管基于PN结结电容随反向偏压变化而制成的微波半导体器件。

大体可分两大类:低噪声参量放大器用变容管和电调谐用变容管。

前者用于微波参量放大器,噪声温度低达30K,已广泛用于卫星地球站。

后者主要用于频率调谐、压控振荡器、电子对抗和捷变频雷达快速调频等。

此外,变容管还可以用于移相、限幅等。

在制作上,两类器件有一定区别,参放变容管要有好的电容非线性和很高的优值;而电调谐变容管则要严格控制半导体外延层的掺杂浓度分布以便获得大的电容变化区,并且应具有较高的优值。

三.肖特基势垒二极管结构:肖特基势垒二极管在结构原理上与PN结二极管有很大区别,它的内部是由阳极金属(用钼或铝等材料制成的阻挡层)、二氧化硅(SiO2)电场消除材料、N-外延层(砷材料)、N型硅基片、N+阴极层及阴极金属等构成,如图所示。

在N型基片和阳极金属之间形成肖特基势垒。

当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

微波电子线路(雷振亚)3-9章 (2)

微波电子线路(雷振亚)3-9章 (2)
反射型负阻参量放大器具有低噪声的优点,但存在潜在不 稳定、频带窄、结构复杂、调整困难等缺点。目前随着微波晶 体管的发展,低噪声、高频率新器件的出现,微波集成前端低 噪声电路已取代参量放大器,故在此不多作介绍。
第4章 微波上变频器与倍频器
4. 在图4-2中,如果只有一条有源支路,当输入功率加在非 线性电容上时,则其他电路均为无源支路。由于非线性变换作 用,输入信号将产生各次谐波。 由式(4-10)可得
第4章 微波上变频器与倍频器 图 4-3 反射型负阻参量放大器
第4章 微波上变频器与倍频器
必须指出,反射型负阻参量放大器虽然不从差频支路输出 功率,但差频支路(常称空闲回路)必须存在。这样才能在一定 条件下,使泵浦能量首先转换成差频能量(fP与fS通过电容变 频效应产生fP-fS),然后又转换成信号能量(fP-fS与fP又通 过电容变频效应产生fS)。这个“再生”信号电流的相位与原 信号电流的相位相同,从而使信号得到放大。所以空闲回路起 能量转换的作用,将泵浦源功率最后转换成信号能量输出。
mPmn 0
mfP nfS
(4-8)
nPmn 0
mfP nfS
(4-9)
第4章 微波上变频器与倍频器
得到理想非线性电抗被两个不同频率fP和fS激励后,在各 频率分量fm,n上的平均功率分配关系表示为
mPm,n 0
n m mfP nfS
nPm,n ,2| 理论上任意n次谐波倍频器的理想效率为100%,但实际电
路中因RS损耗及反射等影响,使效率远低于100%。
第4章 微波上变频器与倍频器
4.2 变容管上变频器 变容管上变频器的输入信号含有泵浦电压uP、信号电压uS 及产生的和频fout=fP+fS>fP,它们与变容管并联,只允许fS、fP、 fout三个正弦电流分量通过变容管,对其他频率分量均呈开路 状态。图4-4示出了上变频器等效电路,图中省去了各分支的

微波电子线路大作业

微波电子线路大作业

微波电子线路大作业姓名:哦呵呵 学号: 班级: 一、肖特基势垒二极管肖特基势垒二极管是利用金属与半导体接触形成肖特基势垒而构成的一种微波二极管,它对外主要体现出非线性电阻特性,是构成微波阻性混频器、检波器、低噪声参量放大 器、限幅器和微波开关等的核心元件。

1、结构:肖特基势垒二极管有两种管芯结构:点接触型和面接触型。

2、工作原理:肖特基势垒二极管工作的关键区域是金属和N 型半导体结形成的肖特基势垒区域,是金属和N 型半导体形成的肖特基势垒结区域。

在金属和N 型半导体中都存在导电载流子—电子。

它们的能级不同,逸出功也不同。

当金属和N 型半导体相结时,电子流从半导体一侧向金属一侧扩散,同时也存在金属中的少数能量大的电子跳跃到半导体中,称为热电子。

显然,扩散运动占据明显优势,于是界面上金属中形成电子堆积,在半导体中出现带正电的耗尽层。

在界面上形成由半导体指向金属的内建电场,它是阻止电子向金属一侧扩散的,而对热电子发射则没有影响。

随着扩散过程的继续,内建电场增强,扩散运动削弱。

于是在某一耗尽层厚度下,扩散和热电子发射处于平衡状态。

宏观上耗尽层稳定,两边的电子数也稳定。

界面上就形成一个对半导体一侧电子的稳定高度势垒GW eN D D S 22=φ,D N 是N 半导体的参杂浓度,D W 厚度存在于金属—半导体界面由扩散运动形成的势垒成为肖特基势垒,耗尽层和电子堆积区域成为金属—半导体结。

3、伏安特性:利用金属与半导体接触形成肖特基势垒构成的微波二极管称为肖特基势垒二极管。

这种器件对外主要呈现非线性电阻特性,是构成微波混频器、检波器和微波开关等的核心元件。

一般地,肖特基势垒二极管的伏安特性可以表示为半导外延点接半导外延面结氧化金属金 金两种肖特基势垒二极管结构 金属触欧姆接触]1)[exp(1)exp()(-=⎥⎦⎤⎢⎣⎡-==U I nkT qU I U f I S S α (1-1) 式中:nkTq =α。

微波电子线路大作业

微波电子线路大作业

微波电子线路大作业02091411范仕祥一.PIN 管微波开关按功能分有两种:通断开关和转换开关;按PIN 管与传输线的连接方式分为串联型、并联型和串并联型;从开关结构形式出发可分为反射式开关、谐振式开关、滤波器型开关、阵列式开关等。

单刀单掷开关基本原理如果PIN 管正、反偏时分别为理想短路和开路,则对上图(a )的串联型开关来说,PIN 管理想短路时,开关电路理想导通;PIN 管理想开路时,开关理想断开。

对(c )图的并联型开关来说,情况相反,PIN 管短路,对应开关断开;PIN 管开路,对应开关导通。

由于封装参数的影响,对于单管开关无论是串联型还是并联型,都只能在固定的某几个较窄的频率区间有开关作用,而实际的工作频率常常不在这些区域。

为了扩展开关的工作模区,改善开关性能,有的直接把管芯做在微波集成电路上;也有采用改进的开关电路,其中常用的有谐振式开关、阵列式开关和滤波器型开关。

单刀双掷开关开关指标开关时间:τ为载流子寿命,I0为正向电流,IR 为反 向电流,IR ↑,ts ↓, 则: 功率容量:并联开关:导通时 截止时串联开关:导通时 截止时00ln 's s f R I I T T I I ττ==、2010(2)4f dn dm f Z R P P Z R +=2302B dn V P Z =2020(2)4f dn dm f Z R P P Z R +=2308B dn V P Z =当频率升高时,串联或并联一只PIN 管的开关,其性能指标将恶化,因此,可采用多个二极管级联,以提高开关性能。

多管阵列型开关是在均匀传输线上等间隔的并联(或串联)若干个PIN 管而构成,根据微波网络理论可对阵列型开关进行分析。

单管开关级联就可做成阵列式开关,因此阵列式开关的分析可归结为级联网络分析,可用传递矩阵相乘的方法求出阵列开关的衰减特性。

采用多管串联的电路形式,可加大该通道开关的功率容量:而采用多管并联的形式,则可提高该通道开关的隔离度。

微波电子线路第三章(下)

微波电子线路第三章(下)
本节以常用的突变结变容管倍频器为例来进行具体倍频器的 q 分析。对突变结变容管, 分析。对突变结变容管,其电容非线性系数 m = 1 2 , − v 特性 满足平方律关系。 满足平方律关系。 1.变容管二次倍频器 对于二次倍频器,显然不存在空闲回路;电路时域方程变为: 对于二次倍频器,显然不存在空闲回路;电路时域方程变为:
6
微波频率变换器
定义变容管的激励状态参数D 定义变容管的激励状态参数D为:
q max − q min D= QB − φ
D < 1 称为欠激励
D = 1 称为满激励 D > 1 称为过激励
变容管二次倍频器工作在不同激励状态下的电荷变容管二次倍频器工作在不同激励状态下的电荷-电压波形
采用非突变结变容管, 采用非突变结变容管,原则上不设置空闲回路也可以完成高次 倍频。但实际上,为了充分利用中间谐波能量,提高倍频效率, 倍频。但实际上,为了充分利用中间谐波能量,提高倍频效率, 7 往往都加有空闲回路。 往往都加有空闲回路。微Leabharlann 频率变换器3.5 变容管倍频器
从前面的分析中可知, 从前面的分析中可知,当用大信号正弦电流或正弦电压 激励变容管时,由于变容管的非线性容抗的作用, 激励变容管时,由于变容管的非线性容抗的作用,将会产生 各次谐波,提取所需频率的分量即可完成倍频功能。 各次谐波,提取所需频率的分量即可完成倍频功能。同时变 容管的损耗极小,因此倍频效率很高。 容管的损耗极小,因此倍频效率很高。 由于变容管倍频器大多是在大信号条件下工作, 由于变容管倍频器大多是在大信号条件下工作,因此其 分析也必须采用电荷分析法, 分析也必须采用电荷分析法,理论上它适用于任意激励电平 和电容变化的变容管。 和电容变化的变容管。本节将介绍变容管倍频器的电荷分析 法及分析结论,讨论其性能,并介绍它的典型电路结构。 法及分析结论,讨论其性能,并介绍它的典型电路结构。 3.5.1 变容管倍频器的等效电路及电路方程

微波电子线路

微波电子线路

微波电子线路总结一、基于肖特基势垒二极管的混频器1、PN结简介:PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。

PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。

但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。

P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。

这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。

(2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗尽层,它的电阻率很高,为高电阻区。

(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。

(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。

当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。

PN结的宽度一般为0.5um。

PN结的单向导电性PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。

(1)外加正向电压(正偏)当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。

西电微波电子线路作业

西电微波电子线路作业

微波电子线路作业班级:020911姓名:张盎农学号:02091086ADS混频器设计耦合器设计仿真结果J"尺*人¥申.* *rr”:M «SHW®I噩I逼AHKOD I A低通滤波器设计仿真结果川尸r« Lwp 1|代年*甲r *包誓爭欽》国■* H 4 4| |b b 种吐母和週输出频谱仿真1按照文档所连D-■10-错误提示2直接代入数值修改后端口 1:P=dbmtow (-20),功率源输出信号功率为 -20dBmFreq=3.6GHz,射频输入频率 端口 2:P=dbmtow ( 10),功率源输出信号功率为 10dBmFreq=3.8GHz,本振输入频率谐波平衡仿真控制器设置如图所示■■I ■ i>li 1 -b -i.i -1 ■ I I"Ha > bl HO" »9 D 戈4■也申會譽令墓览熔样 囲園、 a«i.«i<rt 吉盥::*" VJt 趣理1J JIL- +fiL.罪询 HL N guU肛I —IN. [uiLcE>rJ U阿 py MET +省申申mu * »国■'看警%嗚宀Tij*r*<77*9144本振与输出修改端口 2重新设置:P=dbmtow ( LO_pwr ),即设置变量 LO_pwr 增加变量设置VAR ,设置如图所示{■L B |J I ^ £*L M I fi.Ku^j UisEr-1.2 ■Qind^l 1F*7mm¥"MU :I 器 y RM MIIC 囲心珂泗帕目■ I F 1 HB*1 .M|pjnn^i :r»4f GMfFmq 可二3 tS GHz 0就讪叮 ◎隹羽冃W-0 靜 rfru L=2 bamC_JMW _ _ .TU &*5f-TW^*r vw-1島『mmL=10 2 Hl1L7*ct、ni氯i 斡训><1财tttn L=1£] 4G imnr&SmTL«Ua 匕 Wub 「 L=25niMMW F_M11I 伽3 比刚 hhlfitabJ *1利 C7 mrn> iM 二P 9fi mm 加』却«mMLH TL5宫 g.二1血 T 训■!斛HIIWL-10.2 ffV•:皿」f hSKi>[o CIA亍••ronnMum-3 九血oimP=dbmlD«4^FnH|=3c 6<«H±」 J 四臨・ idllLI 中Akij j fi : uUh-uOttMlQd h F<PORT2Num---27=9OIMH 円如11晦■巩1训 rreqj-3B 0H1仿真结果从图像结果可看出 Vout 输出与本振功率有关三阶交调分析将的端口 1的单品功率源更换为多频功率源 P_n To ne ,对其设置如图所示修改端口 2和VAR 的设置,如图所示修改谐波平衡仿真控制器,设置如图所示 插入测量方程控件 Meas Eqn ,并对其参数如图设置EH"HARM Qh 心 BALANCEEDft□Cfh ■-iiirnriTsi R 斗1肿個H01l •iw&PddE 屮戸-9 GHz 电 IW*討盲(j-H/On»12|=Jfiwaapl别pg □ pi XtEL □ _pw r~ Art liTABnceNHSTBllj^lflB T M IHtDHiEVNiBrvP'lF Swii 如imNwepih ■ >M ■”理 rinNtvw 烛S*i lnw«»Nm[5> 5<n 5®r1-1 Sbp=X SfcU-l話MUM世IULn_prn 10tM <U :B F=1gm i E 呻NwilSuniflr ----------|TP 0D5 ranJW^D-AJ LFWU5j I i!B“in Rgm«D BCdioPOPTi rjNum-1b-^n-'CetWW=D 価 moi回asPAfiAUErtR:PlH=t12 um=? £-30 Ohm(a zQt!mKraCLO_pwrj Fnqi=3 ・ GH EmmTU bU3M :"MMubr 吩0 N Him rrilll仿真结果vf(E g U L cos L t) (E o U L cos L t)I sa eI sa SPE gU L cos L t二,理论分析 微波混频器1、 微波混频器的作用与用途微波混频器是通信、雷达、电子对抗等系统的微波接收机以及很多微波测量 设备所不可缺少的组成部分。

微波电子线路大作业

微波电子线路大作业

基于Microwave office低噪声放大器的设计与仿真设计微波放大器的过程就是根据应用条件、技术指标要求完成以下步骤:首先选择合适的晶体管,然后确定ΓS和ΓL,再设计能够给出ΓS和ΓL的输入、输出匹配网络,最后用合适的微波结构实现,目前主要是采用微带电路。

对于小信号微波放大器的设计,主要有低噪声设计、单向化设计、双共轭匹配设计、等增益设计、宽频带设计等方法。

微波晶体管放大器性能的好坏,首先取决于晶体管本身的性能,第二取决于晶体管S参数测量的精度,第三取决于设计方法的优劣。

所以设计微波晶体管放大器的任务是要在给定的工作频带内设计输入、输出匹配网络,除满足一定的增益、噪声系数要求外,还需满足输入、输出驻波比的要求。

设计指标²频率范围。

²增益。

²噪声。

²其他:动态范围、功率、电源、接口条件、体积、重量、温度范围、振动、冲击、盐雾、循环湿热等。

设计步骤(1) 选晶体管。

一般要求晶体管的特征频率f T不低于3~5倍的工作频率。

(2) 确定电路形式及工作状态。

一般选用共射(共源)组态,根据噪声系数、增益和动态范围来确定偏压和电流大小。

(3) 判断稳定性。

测量晶体管的[S]、F min、Γop(或由厂商给出),判断其稳定性。

(4) 设计输入和输出匹配电路。

根据需要设计出LNA或高增益的匹配网络。

放大器设计过程可以总结为下图所示的流程图。

微波晶体管的S参数工作在微波波段的晶体管,其内部参数是一种分布参数,对于某特定频率可以用集总参量来等效,但是用这种等效电路进行分析很难得到一个明确的结论,且计算繁琐,也很难测得等效电路各参数值。

因此这种等效电路可以用来说明微波晶体管工作的物理过程,但不便用来计算。

为便于工程应用,常把在小信号工作状态下的微波晶体管看成是一个线性有源二端口网络,并采用S参数来表征微波晶体管的外部特性。

用S参数表示微波晶体管特性设输入端和输出端所接传输线的特性阻抗均为50 Ω,Z L为终端负载阻抗,Z S为信号源阻抗,U i1、U r1和U i2、U r2分别表示输入端口和输出端口的入射波、反射波,a1、a2为归一化入射波,b1、b2为归一化反射波,即可写出线性网络方程为b1=S11a1+S12a2b2=S21a1+S22a2根据S参数定义得到可以按定义测量晶体管的S参数,式中S11是晶体管输出端接匹配负载时的输入端电压反射系数;S22是晶体管输入端接匹配负载时的输出端电压反射系数;S21是晶体管输出端接匹配负载时的正向传输系数;S12是晶体管输入端接匹配负载时的反向传输系数。

射频微波电路作业1-7(答案版)(DOC)

射频微波电路作业1-7(答案版)(DOC)

第一章射频/微波工程介绍1.简述常用无线电的频段划分和射频的定义。

射频/微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和大1000倍以上2.简述P,L,S,C,X,Ku,K,Ka波段的频段划分方法。

3.简述射频/微波的四种基本特性和相比普通无线电的优点。

四个基本特性:1、似光性;2、穿透性3、非电离性4、信息性优点:(1)(2) 分辨率高。

连续波多普勒雷达的频偏大,成像更清晰,(3) 尺(4)(5)(6) 频谱宽。

频谱不拥挤,不易拥堵,军用设备更可靠。

4. 简述射频铁三角的具体内涵。

由于频率、 阻抗和功率是贯穿射频/微波工程的三大核心指标,故将其称为射频铁三角。

频率功率阻抗振荡器、压控振荡器、频率合成器、分频器、变频器、倍频 器、混频器、滤波器等频率计数器/功率计、频谱分析仪标量/矢量网络分析仪阻抗测量仪、网络分析仪阻抗变换、阻抗匹配、天线等衰减器、功分器、耦合器、 放大器、开关等5. 给出几种分贝的定义:dB, dBm ,dBc ,dBc/Hz ,10 dBm+10 dB=?10dBm+10dB=20dBm第二章 传输线理论1. 解释何为“集肤效应”?集总参数元件的射频特性与低频相比有何特点?在交流状态下,由于交流电流会产生磁场,根据法拉第电磁感应定律,此磁场又会产生电场,与此电场联系的感生电流密度的方向将会与原始电流相反。

这种效应在导线的中心部位(即r=0位置)最强,造成了在r=0附近的电阻显著增加,因而电流将趋向于在导线外表面附近流动,这种现象将随着频率的升高而加剧,这就是通常所说的“集肤效应”。

电阻:在低频率下阻抗即等于电阻R,而随着频率的升高达到 10MHz 以上,电容Ca 的影响开始占优,导致总阻抗降低;当频率达到20GHz 左右时,出现了并联谐振点; 越过谐振点后,引线电感的影响开始表现出来,阻抗又加大并逐渐表现为开路或有限阻抗值。

电容:理想状态下,极板间介质中没有电流。

微波 电路 实训

微波 电路 实训

微波电路实训下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!微波电路实训是电子工程专业的重要课程之一,通过实际操作和实践训练,帮助学生掌握微波电路设计和制作的基本原理和技能。

微波电子线路第三章上

微波电子线路第三章上

相当于前面线性分析中加在混频 二极管上的电压只有三个:信号 电压、镜频电压和中频电压,因 此混频器是三端口网络。
Y混频器电路原理图
微波频率变换器
Y混频器的电路方程表示为:
I1 I0
I1
y0 y1 y2
y1
y0 y1
y2 y1 y0
VV01 V1

IS Iif
Ii
混频电流的主要频谱
u S 频 率L称为和频, if 除称 S为中频L 外还称为差频,
称为镜像i 频2率 L。 S L if
微波频率变换器
得出以下基本结论:
在非线性电阻混频过程中产生了无数的组合分量,其中包 含有中频分量,能够实现混频功能。可用中频带通滤波器 取出所需的中频分量而将其它组合频率滤掉。
微波频率变换器
3.2.1 电路工作原理与时频域关系
微波混频器只采 用一个肖特基势垒混 频二极管,称为单端 混频器
Z S 是信号源内阻抗, Z L 是本振源内阻抗, ZO 表示输出负载阻抗, Vdc 为直流偏压
vS t VS cosS t
vL t VL cosLt
微波频率变换器
1. 输出电流频谱(设 S ) P 先假设 Z、S Z和L 均ZO被短路;负载电压(输出电压) vO t 0
二极管电流中包含中频分量为:
iif t I1,1 exp jS L t I1,1 exp jS L t
2 I1,1 cosS L t
其振幅可计算出为:
2 I1,1
g1,1VS
1 8
g1,3VS 3
中频电流振幅不再与输入信号振幅成线性关系,将产生非线
性失真。
由于信号也产生各次谐波,将有可能在输出端产生组合干扰。

微波电子线路第三章中

微波电子线路第三章中

微波单端混频器
定向耦合器除保证信号和本振功率有效加在二极管上之外,
还可以保证信号口和本振口之间有适当的隔离度。一般取耦
合度为10dB
13
微波频率变换器
Sg 4 阻抗变换器及相移线段,相移线段的作用是抵消二极管
输入阻抗中的电抗成分
低通滤波器,它的作用是滤除信号和本振及它们各次谐波等高 频信号:
Sg 4 终端开路线对高频信号呈现短路输入阻抗,高频信
中频信号从信号巴仑的平衡端(变换器次级)的中点引
出,而本振巴仑次级的中点接地。
8
微波频率变换器
根据平衡电桥理论,当四个二极管特性相同时,它们组成平 衡电桥,加于对角端1、3之间的电压不会在另一对角端2、4之间 出现,因此双平衡混频器具有固有的高隔离度。
双平衡混频器优于单平衡混频器的一个主要方面。如果混频 二极管性能优良,这种高隔离度将在很宽频带内实现,因此双平 衡混频器可以作为宽带和超宽带微波混频器。
vL3 t VL cos Lt
vL4 t VL cosLt
根据信号与本振电压情况,可分别求出每一个管子的混频电流为:
i1t


In,m exp jn Lt
jmSt
n m

i2 t
2 2
时,有
i
t
, 0
即在混频器的输出端有许多分量互相抵消(平衡)而不存在。
平衡混频器输出电流频谱含量比单端混频器的少得多,在强
信号下它产生的组合干扰也较少。
由于平衡混频器利用两个二极管,在同样强的输入信号下, 分到每个管的信号功率比单管混频时小3dB,因此它所容许的 不失真的信号强度(即输入动态范围)比单端混频器大3dB。

西安电子科技大学微波大作业——Smith_chart在计算慢波微带线特征阻抗中的应用

西安电子科技大学微波大作业——Smith_chart在计算慢波微带线特征阻抗中的应用
Smith圆图
当中的Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,ZL是归一负载值,即ZL/ Z0。当中电路的负载值Z0是传输线的特性阻抗值,通常会使用50Ω。图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的是负数。图表最中间的点(1+j0)代表一个已匹配(matched)的电阻数值(ZL),同时其反射系数的值会是零。图表的边缘代表其反射系数的长度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。有一些图表是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。”
史密斯图的基本在于以下的算式:
史密斯圆图的应用
用史密斯图求
我们知道,传输线上前向和后向的行波合成会形成驻波,其根本原因在于源端和负载端的阻抗不匹配。我们可以定义一个称为电压驻波比(voltage standing-wave ratio, VSWR)的量度,来评价负载接在传输线上的不匹配程度。VSWR定义为传输线上驻波电压最大值与最小值之比:
特征参数
从应用角度看,描述波导的特征参数有以下四点
色散特性
色散特性表示波导纵向传播常数
与频率
的关系,常用 平面上的曲线表示

西电微波电子线路课后习题答案

西电微波电子线路课后习题答案

微波电子线路习题(3-2)(1)分析:电路a 、b 线路相同,信号、本振等分加于二管,混频电流叠加输出,1D 、2D 两路长度差4λ,是典型的双管平衡混频器电路。

但a 、b 两路本振、信号输入位置互换。

在a 电路中,本振反相加于两管,信号同相加于两管,为本振反相型平衡混频器。

B 电路则为信号反相型平衡混频器。

(2)电流成分①a 电路输出电流成分:*中频分量 1,0=-=n t s ωωω *和频分量 1,=+=+n t s ωωω*本振噪声 ()πωω-==t v u t v u nl nl n nl nl n cos ,cos 21 *外来镜频干扰s l s ωωω-=2/t v g i i i i s i i i 0/1/2/1/cos 2ω=-= 不能抵消,二倍输出。

*镜频分量 2,2=-=n s l i ωωω0=io i 镜频输出抵消,但流过输入回路,在源电阻上损耗能量。

*高次分量n 奇数 两路相差πn 反相 输出叠加 n 偶数 两路相差πn 2 同相 输出抵消 ②b 电路输出电流成分:()111s u t g i =,()222s u t g i =*中频分量 1,0=-=n t s ωωω *和频分量 1,=+=+n t s ωωω*本振噪声 ()πωω-==t v u t v u nl nl n nl nl n cos ,cos 21 *外来镜频干扰s l s ωωω-=2/t v g i i i i s i i i 0/1/2/1/cos 2ω=-= 不()t v g t v g i io s l s s i ωωωcos cos /1//1/1=-=()tv g t v g i io s l s s i ωωωcos cos /1//1/1=-=能抵消,二倍输出。

*镜频分量 2,2=-=n s l i ωωω12i io i i = 镜频输出不能抵消,也会流过输入回路,在源电阻上损耗能量。

微波电子线路大作业讲解

微波电子线路大作业讲解

微波电子线路大作业第一部分1-1 噪声系数定义一、表征单口网络噪声(噪声源)的参数1. 热噪声功率,1928年,尼奎斯特在热力学统计理论分析和实验研究的基础上,导出电阻热噪声电压均方值的表达式kTRB U n 42= (.1-1)式中,k =1.38×9-23(J/K)为玻耳兹曼常数;T 为电阻温度(K);R 为电阻值(Ω);B 为测试设备的通频带(Hz)。

这就是尼奎斯特定理。

2n U 表示在带宽B 内,处于热力学温度T 的电阻R 所产生的热噪声开路电压均方值。

若用等效源表示,可将一个热噪声电阻用等效为一个无噪声电阻R 与一个噪声电压源2n U 串联而成的等效电压源;或等效为一个无噪声电导G 与一个噪声电流源2n I 并联组成的等效电流源,kTGB R U I n n 4/222==。

当几个电阻串联时,采用等效电压源较方便;并联时,采用等效电流源较方便。

当接入负载电阻R L =R 时,温度为T 的电阻R ,在带宽B 内产生的资用噪声功率是kTB R R U N n =⋅=22)2( (.1-2) 热噪声是一种随机过程,通过傅里叶分析知,其频率分量是连续、均匀的频谱分布,称为白噪声。

由式(.1-2)得出资用热噪声功率的谱密度为kT W n = (W/Hz) (.1-3)上式表明,电阻输出的单位带宽资用噪声功率只与热力学温度(K)二、表征双口网络(放大器、混频器等)噪声的参数1. 等效输入噪声温度:一个实际双端口网络(线性或准线性),设网络增益为G ,其输出端产生的总噪声功率N out 应为网络输入端电阻R i 产生的噪声功率N i 和网络内部噪声功率在输出端的贡献之和。

将实际网络用理想网络代替,把网络内部噪声折合到输入端,用等效输入噪声功率N e 和等效输入电阻R e 来表示。

则N e 通过理想网络传输到输出端所贡献的噪声功率,将与网络内部噪声功率在输出端的贡献相等。

如图.1-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波电子线路大作业(3)班级:姓名:学号:一、微波二极管负阻振荡器由砷化镓材料制成的体效应二极管呈现负阻效应的物理基础是能带结构的电子转移效应,而产生负阻效应的原理则是由于高场畴的形成。

典型的Gunn 二极管的结构如图所示.铜底座(接铜螺纹)提供一条外加散热器的低阻热通道,螺纹端拧在散热器上,它是接到直流电源的负极,陶瓷圆环起绝缘作用,它把正负极隔开。

若将耿氐二极管装在谐振腔的适当位置上,只要在它的两端加上适当的直流电压,就可以在谐振腔内产生微波振荡.这就构成了微波负阻振荡器。

由于谐振腔相当于集总电路的000L R L --并联谐振电路,它与耿氐二极管组合起来就形成了如图3-12(a)的等效电路,其中图(a)的左侧表示Gunn 二极管等效电路。

d C 和d R -是有源区参数,Cd 是Gunn 管电荷区域的电容参数,d R -是在电场超过阈值后所呈现的负阻特性,C 、L 是管壳及引线所呈现的分布参数;图(a)右侧表示谐振腔等效电路。

二极管具有负阻-Rd ,而负载则是正电阻R0,由于-Rd 与R0并联,它的电阻为00R R R R R d d t +=所以进一步简化后就变成如图(b)所示的等效电路。

当直流电源刚接通时,如工作点选择恰当且能满足Rd>R0的条件,则Rt 为负值。

在这种情况下,噪声足以触发振荡,使振幅随时间而增长。

但是,管阻-Rd 是非线性的,随着振幅的增大|-Rd|的数值逐渐减小。

当|-Rd|=R0时,从式不难看出,Rt=∞。

这就相当并联电阻Rt开路,变成Lt与Ct所组成的无损耗回路,因此产生等幅振荡。

谐振腔的作用是一方面可以调谐振荡波形使其接近正弦,另一方面把高频电磁能量收集在腔内,并通过耦合把高频能量送到负载上。

X波段波导耿氏振荡器的结构如图耿氏二极管横装在矩形波导中,并且由调节短路活塞改变腔的大小进行频率调谐。

振荡频率与腔体的长度有关,它的长度大体等于半个波导波长整数倍,腔体的长度是指从Gunn管的安装柱面到可调短路面之间的距离。

目前,国产X波段耿氏二极管的技术参数为:工作频率为10GHz左右,工作电压为10V,工作电流为0.2-0.6A,输出功率为0.03-0.1W,最大耐压为14V。

二、微波晶体管振荡器产生振荡电流的电路叫做振荡电路。

振荡电路主要有正弦波振荡器和函数发生器如脉冲发生器等.正弦波振荡电路是用来产生一定频率和幅值的正弦交流信号。

它的频率范围很广,可以从一赫芝以下到几百兆赫芝以上;输出功率可以从几毫瓦到几十千瓦;输出的交流电能是从电源的直流电能转换而来的。

正弦波振荡器必须包含这样几个组成部分:1.放大部分,振荡器的核心,将直流电源提供的能量转换成交流信号能量;补充振荡过程中的能量损耗,以获得连续的等幅正弦波;2.选频部分,从信号中选出所需的频率3.正反馈电路,将选出来的所需频率的信号送回到输入端放大;4.稳幅电路,般靠振荡管自身的非线性稳幅,要求高的振荡器有专门的稳幅电路回路的谐振频率。

常用的正弦波振荡器有LC振荡电路,RC振荡电路以及石英晶体振荡电路等. LC振荡电路的输出功率大、频率高。

它的选频电路由电感和电容构成,可以产生高频振荡(几百千赫以上)。

LC振荡器根据反馈电压取出的方式不同,分为变压反馈式、电感和电容三点式三种。

下图是晶体管LC振荡器的基本电路图.RC正弦波振荡电路的输出功率小、频率低。

它由放大器和具有选频正反馈特性的RC网络所组成的。

有三种RC振荡电路:高低电桥振荡器,相移式振荡器,双T型选频网振荡器。

石英晶体振荡电路的频率稳定度高。

它是一个特殊的LC振荡器,是一种高频振荡器。

广泛应用在无线电通讯、广播电视,工业上的高频感应炉、超声波发生器、正弦波信号发生器、半导体接近开关等。

微波晶体管振荡器原理和晶体管振荡器相同.所不同的是振荡频率高,达到超高频或微波频率;其次,由于频率高,要考虑到元件的分布参数.微波振荡器是在通信、雷达、电子对抗及测试仪器等各种微波系统中广泛应用的重要部件之一。

近年来,随着微波半导体器件的迅速发展,微波固态振荡器也得到迅速发展。

目前已有晶体管振荡器(包括双极晶体管振荡器和场效应管振荡器);转移电子振荡器(体效应振荡器);雪崩二极管振荡器和隧道二极管振荡器等多种形式。

微波振荡器主要用于微波收、发信机的本地振荡、各种调制器的载频信号源及微波测量系统中的基本信号源等。

其性能好坏将直接影响微波系统的优劣和测量精度。

振荡器的主要性能指标有:1、频率稳定度高振荡器的振荡频率会受偏置电源的不稳定、环境温度以及负载阻抗的变化等因素的影响,致使频率发生漂移,其漂移的大小可用频率稳定度来描写。

任何微波系统中对振荡器的频率稳定度有一定的要求,例如,在微波和卫星通信中的射频频率的频率稳定度高于10-5,只有这样才能保证长途通信中的频率漂移限制在允许可靠接收的范围内。

为了提高振荡器的频率稳定度,必须使振荡器工作在稳定的条件下。

例如,采用稳定的偏置电源、恒温的环境、防震措施以及尽力减少负载与振荡器之间耦合,等等。

具体方法有温度补偿法、外腔移频法和注入锁定法。

其中温度补偿法是最简单、最实用的方法。

2、谐波抑制度高当晶体三极管或二极管工作在饱和状态时,振荡器将会产生许多不需要的谐波而引起干扰。

为此,必须仔细调整工作点,尽可能少产生不需要的谐波,然后通过调整输出滤波器,使谐波输出尽可能小。

3、载噪比高由于振荡电路的非线性,使半导体器件内的噪声对振荡器产生的单频信号进行调制,以致振荡器的输出频谱不是单频信号,而存在噪声边带,这会使接收端的信噪比降低。

因此必须尽可能提高载噪比。

具体措施有:采用波纹系数小、性能稳定的直流偏置电路;采用外腔稳频法或注入锁定法既可以提高振荡器的频率稳定度,又可以降低噪声;尽可能提高振荡器谐振回路的品质因素,等等。

从振荡原理来分,微波固态振荡器可分为两种类型:负阻振荡器和反馈振荡器。

但无论哪一种,它们生产振荡的机理是相同的,都归结为具有非线性的负阻特性。

所不同的是像转移电子器件如雪崩二极管只要在直流偏压下就具有负阻特性,由它构成的振荡器称为负阻型振荡器;而像微波晶体管必须将反馈电路联系在一起时,才具有负阻特性,由它构成的振荡器称为反馈型振荡器。

二、PIN管微波开关PIN管在正反向偏置下的不同阻抗特性可用来控制电路的通断,组成开关电路。

PIN 管开关电路按功能分为两种:一种是通断开关,如蛋刀单掷开关,作用只是简单的控制传输系统中微波信号的通断;另一种是转换开关,如单刀双掷、单刀多掷开关,作用是使信号在两个或多个传输系统中转换。

若按PIN 管与传输线的连接方式,可分为串联型、并联型一级串/并联型三种;从开关结构形式出发,可分为反射式开关、谐振式开关、滤波器型开关、阵列式开关等。

1.单刀单掷开关1.1开关的正反衰减比下图为单管串联型和并联型开关的原理图及其微波等效电路图。

图中分别为PIN 管的等效阻抗和等效导纳,分别为传输线的特性阻抗和特性导纳,a 、b 分别为网络的归一化入射波和反射波。

(a )串联型原理图;(b )串联型等效电路;(c )并联型原理图;(d )并联型等效电路;设开关输入端信号源的资用功率为,输出端负载吸收功率为。

则定义开关的衰减L 为: La P P L = 若开关网络用散射S 参量来表征,且假设开关插入在匹配信号源和匹配负载之间,则上式化为2212121||1||||S b a L ==1.2基本原理如果PIN 管正、反偏时分别为理想短路和开路,则对上图(a )的串联型开关来说,PIN 管理想短路时,开关电路理想导通;PIN 管理想开路时,开关理想断开。

对(c)图的并联型开关来说,情况相反,PIN管短路,对应开关断开;PIN管开路,对应开关导通。

由于封装参数的影响,对于单管开关无论是串联型还是并联型,都只能在固定的某几个较窄的频率区间有开关作用,而实际的工作频率常常不在这些区域。

为了扩展开关的工作模区,改善开关性能,有的直接把管芯做在微波集成电路上;也有采用改进的开关电路,其中常用的有谐振式开关、阵列式开关和滤波器型开关。

2.单刀双掷开关最普通但又最常用的单刀多掷开关是单刀双掷开关,它把信号来回换接到两个不同的设备上,形成交替工作的两条微波通路。

其典型的例子是雷达天线收发开关,发射机和接收机共用一个天线,用一个单刀双掷开关来控制。

右图表示一并联型单刀双掷开关的原理图。

管截止,或反之。

并借助1/4波长线的阻抗变换作用,使输入信号全部从B或A中的一个端口输出,此端口为导通通道,同时另一端口为断开通道。

但是该单刀双掷开关需要两个偏压源,为节省偏压源,实际中常采用一个偏压源控制并联型单刀双掷开关电路(如下图),在此电路中,接在并联的枝节上。

当都处于反偏时,B路接通;当都处于正偏时,A路接通。

因此可共用一个偏压源。

3.开关时间和功率容量PIN管用作开关时,其开关时间必须满足系统对开关速度的要求,为提高开关速度,应尽量减薄I层,使储存电荷减少。

在这种情况下,开关时间基本上由载流子在I层的渡越时间决定,而与载流子寿命无关。

但I层太薄,使二极管反向击穿电压减小,承受微波功率也减小,因此提高PIN 管开关速度受限于两项极限参数,即开关时间和功率容量。

3.1开关时间右图表示PIN 管从正偏电流突然转向反偏时的情况。

设正偏时I 层储存的电荷为,当换成反偏时,I 层储存的电荷一部分被反向电流吸出,另外一部分则继续复合,形成复合电流。

显然,单位时间内层中电荷减少量等于单位时间内从I 层流出的电荷量与复合电荷之和,即考虑到t=0时,,可解得)1()(//0-+=--ττττs s t R t e I e I t Q假设时,电荷全部清除,即0)(=s t Q ,于是0)1(//0=-+--ττττs s t R t e I e I 所以 )1ln(R0I I t s +=τ 开关时间可近似表示为 R 0I I t s τ≈ 由此可见,当PIN 官给定后(已定),加大反向电流可使开关时间减少。

所以应为PIN 管开关制作具有内阻小而又能输出大的反向偏压的专门驱动器。

3.2功率容量当PIN 管导通时,功率容量的限制因素是最大允许的功耗,当PIN 管截止时,功率容量的限制因素是反向击穿电压。

开关的功率容量是指开关所能承受的最大微波功率,它不仅与管子的功率容量有关,还与开关电路的类型(串联或并联)、工作状态(连续波工作或脉冲工作)及具体结构(散热性能)有关。

三、PIN 管电调衰减器和限幅器用电信号控制衰减量的衰减器称为电调衰减器。

利用PIN 管正向电阻随偏置电流连续变化的特性,可以做成各种类型的电调衰减器。

电调衰减器可用于振幅调制和稳幅系统。

1、环行器单管点调衰减器此电调衰减器的衰减由偏置电流来控制。

相关文档
最新文档