《可能性》PPT课件
可能性课件ppt课件
风险评估
在风险评估中,需要对各种可能的风 险进行可能性评估,以便采取相应的 风险管理措施。
03 可能性推理
可能性推理的定义与特性
总结词
理解可能性推理的定义和特性是掌握其应用的关键。
详细描述
可能性推理是一种基于概率的推理方式,它考虑了事件发生的可能性,而不是 确定性。它具有概率性、主观性和客观性等特性,使得在不确定的环境中能够 做出合理的决策。
归纳逻辑
通过观察和归纳,从具体 事例推导出一般规律,进 而判断可能性大小。
演绎逻辑
使用演绎推理的方法,从 一般规律推导出具体事件 的可能性。
可能性判断的实践应用
决策制定
预测分析
在制定决策时,需要对各种可能的结 果进行可能性评估,以便做出最优选 择。
在预测分析中,需要对未来的各种可 能情况进行可能性评估,以便做出相 应的应对措施。
详细描述
可能性预测是一种基于概率的预测方法,它通过分析历史数 据和当前信息,对未来的事件或结果进行概率评估。可能性 预测强调不确定性,并考虑多种可能性的同时发生。
可能性预测的方法与步骤
总结词
列举并解释进行可能性预测的常用方法 ,如贝叶斯定理、蒙提霍尔问题等。
VS
详细描述
进行可能性预测时,可以采用多种方法, 如贝叶斯定理、决策树、蒙提霍尔问题等 。这些方法各有特点,适用于不同的情况 和需求。例如,贝叶斯定理是一种基于条 件概率的预测方法,适用于已知先验概率 和条件概率的情况;决策树则适用于多阶 段、多因素决策过程的分析。
可能性预测的实践应用
总结词
列举可能性预测在现实生活和商业领域的具 体应用案例,并分析其效果和价值。
详细描述
可能性预测在许多领域都有广泛的应用,如 金融、医疗、交通等。例如,在金融领域, 可能性预测可以用于股票价格波动、市场趋 势分析等方面;在医疗领域,可能性预测可 以帮助医生进行疾病诊断和治疗方案制定。 通过可能性预测的应用,可以提高决策的科 学性和准确性,降低风险并带来实际效益。
《可能性》》课件
基于可能性的风险评估,我们可以制定有效的风险管理计划,降 低潜在损失。
预测未来的可能性
预测市场趋势
通过分析历史数据和当前市场状况,我们可以预 测未来的市场趋势和可能性。
预测个人发展
可能性分析可以帮助我们预测个人未来的发展, 如职业发展、健康状况等。
制定计划和目标
基于对未来的预测,我们可以制定相应的计划和 目标,以应对未来的变化和挑战。
政策制定
政策制定者需要考虑各种可能性 的影响,包括政策的实施效果、 社会反响、经济影响等,以制定 出科学合理的政策。
05
总结与展望
对可能性的理解与认识
01
可能性是指事物发展的不确定性,是识到事物的多面性和动态性,以 及不同因素之间的相互作用。
03
可能性存在于任何事物的发展过程中,包括自然现 象、社会现象和人类行为等。
统计学中的许多方法和理论都与概率论密切相关,如大数定律、中心极限定理等。
概率论为统计学提供了理论基础和数学工具,使得统计学能够更加准确地描述和预 测数据的分布和变化规律。
03
可能性在日常生活中的应 用
决策制定中的可能性
01
评估不同选择
在决策过程中,可能性可以帮助 我们评估不同选择的潜在结果, 从而做出更明智的决策。
概率论的应用
决策论
01
利用概率论来评估不同决策的风险和收益,从而做出最优决策
。
可靠性理论
02
研究系统或设备的可靠性和故障概率,以提高系统的可靠性和
稳定性。
贝叶斯推断
03
基于贝叶斯定理,利用先验信息和样本信息来更新对未知参数
的信念。
统计学与概率论的联系
统计学是应用概率论对数据进行收集、整理、分析和推断的科学,它建立在概率论 的基础上。
《可能性》课件(共18张PPT)
习题巩固
一个正方体,六个面上分别写着数字1-6。掷一次,可能掷出哪些数字?
1
2
5
小结
今天,我们一起学习了_________,知道不确定的事件可以用_________来描述,确定的事件可以用_________和_________来描述。 尽管你的表现_________不是最出色的,但只要你在今后的学习中多动脑、勤思考,你就_______没有进步。继续努力,相信你______是最棒的!
(1)哪个盒子里肯定能摸出红棋子?(2)哪个盒子里可能摸出绿棋子?(3)哪个盒子里不可能摸出绿棋子?
小游戏
请按要求往盒子里放一些球。
1、摸出的一定是红色球。
2、摸出的不可能是红色球。
3、摸出的可能是红色球。
放球游戏
对应练习
(教材第47页第1题)
说一说指针可能停在哪种颜色上?
习题巩固
习题巩固
人教版数学五年级上册
第四单元 可能性
可能性
课前导入
先来听个小故事……
课前导入
故事导入
同学们,你们说懒洋洋会抽到什么呢?
可能是生,可能是死。
第四单元 可能性
可能性
我们一起来探索吧
探究新知
探究新知
知识梳理
自学课本44页例1,完成下面各题:1、认真读一读,说一说他们抽签的顺序。2、猜一猜:这三位同学可能会抽到什么节目?抽取的节目卡片各有几种可能?为什么?(抽签试一试,做好记录。)3、尝试用“可能”“不可能”“一定”等词语来描述生活中的事情或现象。
可能
不可能
一定可能性可能Fra bibliotek不可能
一定
1、完成配套练习题《同步导学》第48页;2、背诵可能性的定义;3、预习课本第50页《方程的意义》。
《可能性》PPT优秀课件
n/shu
yin
gyu/
没有水人类也能生存
美术
分别从右面两个盒子里摸棋子。 (1)哪个盒子里一定能摸出红棋子? (2)哪个盒子里可能摸出绿棋子? (3)哪个盒子里不可能摸出绿棋子?
分别从下面的口袋里任意摸出一个苹果。根据结果连一连。
一定是红苹果 一定是青苹果 可能是青苹果
同色: ① 白1、白2 ② 黄1、黄2
黄2 白2 白1 黄1
异色: ① 白1、黄1 ② 白1、黄2 ③ 白2、黄1 ④ 白2、黄2
2 1+1
3 1+2
2+1
4 1+3
2+2
3+1
5 1+4
2+3
3+2
4+1
6 1+5
2+4
3+3
4+2
5+1
7 1+6
2+5
3+4
4+3
5+2
6+1
8 2+6
2+6
3+5
4+4
5+3
6+2
9 3+6
4+5
5+4
6+3
10 4+6
5+5
6+4
11 5+6
6+5
12 6+6
每次摸两个球,同色你们赢,异色老师赢。这样的游戏你们愿意玩吗?
正面占比 0.5181 0.5069 0.5067 0.5005 0.4932
从袋中任意摸一个球,结果会怎样?谁的可能性最大?谁的可能性最小?
人教版五年级数学上册4.1可能性课件(15张ppt)
我抽到了跳舞。
唱歌和朗诵都有可能。 不可能是跳舞。
探究新知
最后只有一张了,小 雪会抽到什么?
知识小结
事件产生的确定性和不确定性: 在一定条件下,一些事件的结果是可以
预知的,具有确定性,确定的事件用“一定” 或“不可能”来描述事件的结果。
一些事件的结果是不可预知的,具有不确 定性,不确定的事件用“可能”来描述事件的 结果。
(×)
巩固练习 (教材第47页第1题)
3.说一说指针可能停 在哪种颜色上。
可能停在蓝色、粉色、绿 色或黄色上。
巩固练习 (教材第47页第3题)
4.从盒子里摸出一个球,结果会是什么?连一连。
一定摸到黄球。
可能摸到黄球。 可能摸到红球。
不可能摸到红 球。
一定摸到蓝球。
可能摸到蓝球。
不可能摸到蓝 球不可。能摸到黄 球。
4
可能性
第1课时 可能性(1)
优 翼
情境导入
情境导入 唱歌。
你抽到了什么?
每人表演一个节 目。
探究新知 (教材第44页例1)
知识点1:事件产生的可能性
1 三张卡片分别写着唱歌、
跳舞、朗诵,小明可能 会抽到什么节目?
也可能是朗诵。
可能是唱歌。 三种情况都有可能。
探究新知
小明抽完还剩两张, 接下来小丽可能会 抽到什么?
(1)鱼儿离不开水。
( √)
(2)太阳明天从西方升起。 (3)XXX会飞。
( ×) ( )×
(4)在全校师生名单中任意指出一个,是学生。
()
巩固练习
2.判断,一定画“√”,不可能画“×”,
可能画“△”。
(5)冬天青海省可能会下雪。
(√)
2024版《可能性》PPT课件(部级优课)
01课程介绍与目标Chapter《可能性》课程背景概率论与数理统计的基础知识01培养学生的思维能力02实际应用广泛03知识与技能过程与方法情感态度与价值观030201教学目标与要求教材分析与选用教材内容丰富、系统选用国家级规划教材,内容涵盖概率论与数理统计的基础知识,包括随机事件与概率、随机变量及其分布、数理期望与方差等。
教材难度适中、梯度合理教材难度符合学生的认知水平,梯度设置合理,有利于学生的逐步学习和提高。
辅助教学资源丰富教材配备有大量的习题、案例和实验等辅助教学资源,方便学生进行自主学习和实践操作。
02基础知识梳理Chapter概率论基本概念样本空间与事件概率的定义与性质等可能概型与古典概型事件及其概率计算事件的运算介绍事件的交、并、差及互斥等概念,通过文氏图进行直观展示。
概率的加法公式阐述概率的加法公式及其推论,给出多个事件的概率计算方法。
条件概率与乘法公式解释条件概率的概念及计算方法,介绍乘法公式及其应用。
条件概率与独立性条件概率的定义与性质事件的独立性独立重复试验与二项分布03经典案例分析Chapter掷骰子问题骰子点数概率分析多次掷骰子的期望值赌博游戏中的骰子摸球问题有放回摸球无放回摸球摸球游戏的策略1 2 3生日悖论原理生日悖论的应用避免生日悖论的方法生日悖论问题04拓展知识与应用Chapter贝叶斯公式及其应用贝叶斯公式基本概念01贝叶斯公式在分类问题中的应用02贝叶斯网络03排列组合在概率计算中应用排列与组合基本概念排列组合在概率计算中的应用古典概型数学期望与方差计算010203数学期望基本概念方差基本概念数学期望与方差在概率计算中的应用05实验设计与数据分析Chapter01020304设立实验组和对照组,以消除非处理因素对实验结果的影响。
对照原则随机分配实验对象到不同组别,以减少实验误差和偏倚。
随机原则重复进行实验以获得更可靠的结果和统计分析。
重复原则采用盲法实验设计,以避免主观因素对实验结果的影响。
可能性 (PPT课件)
摸出哪种颜色棋子的可能性最大? 摸出哪种颜色棋子的可能性最小?
摸出红棋子的可能性还是最大
5颗
这节课你有什么收获?
设计转盘:使指针停留在红色上的可能性最大
红球、黄球
四人小组合作 1.摸出一个棋子,记录它的颜色然后放回去。
2.摇匀再摸,记录20次的结果。
记录
红球 黄球
次数
仔细观察表格,你有什 么发现?
次数 小
颜 组 1组 2组 3组 4组 5组 6组 7组 8组 合计
色
15 16 12 18 15 16 14 17 123
一定
可能是:红色 绿色 黄色 蓝色
摸出红棋子的可能性大, 还是蓝棋子的能性大?
四人小组合作
1.摸出一个棋子,纪录它的颜色,然后放回去;
2.摇匀再摸,重复20次。
记录 次数
记录
正正正 正一
次数
14 6
正 正 正 17
T
T
3
记录
正正正 一
正
次数
16
4
记录 次数
正 正 正 15
正
5
指针停在哪种颜色上的可能性大? 停在哪种颜色上的可能性小?
《可能性》优秀课件(2024)
2024/1/29
06
CHAPTER
假设检验与回归分析初步
23
2024/1/29
基于小概率原理,通过构造检验统计量并计算其对应的P值,判断原假设是否成立。
假设检验的基本原理
明确原假设和备择假设;选择合适的检验统计量;确定显著性水平;计算检验统计量的值;根据P值做出决策。
假设检验的基本步骤
第一类错误(弃真)和第二类错误(取伪),需要合理控制两类错误的概率。
《可能性》优秀课件
1
2024/1/29
目录
课程介绍与背景基础知识:概率论与数理统计回顾事件与概率计算随机变量及其分布数字特征与参数估计假设检验与回归分析初步课程总结与展望
2
2024/1/29
01
CHAPTER
课程介绍与背景
3
2024/1/29
《可能性》是数学领域中的一门重要课程,旨在帮助学生理解概率、统计和随机过程等基本概念。
回归模型的检验
确保自变量与因变量之间存在线性关系;注意异常值和强影响点的处理;避免过度拟合和多重共线性问题。
回归分析的注意事项
26
2024/1/29
07
CHAPTER
课程总结与展望
27
2024/1/29
28
2024/1/29
教材
公开课
学习网站
数学软件
01
02
03
04
《概率论与数理统计》;
网易公开课、中国大学MOOC等平台上的概率论与数理统计相关课程;
13
2024/1/29
全概率公式
如果事件B1, B2, ..., Bn构成一个完备事件组,且都具有正概率,则对任一事件A,有全概率公式P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
五年级可能性ppt课件
天气预报中的可能性描述
总结词:概率描述
详细描述:天气预报中常用“可能性”来描述某种天气现象发生的概率。例如,预报明天下雨的可能 性为30%,意味着明天有30%的概率会下雨。
比赛结果的预测
总结词:预测分析
详细描述:在比赛结果预测中,通过分析参赛队伍的实力、历史成绩等因素,可以预测比赛结果的可能性。例如,如果一个 足球队在过去10场比赛中赢了8场,那么该队在这场比赛中有较大的可能性获胜。
CHAPTER 04
生活中的可能性问题
抛硬币的可能性
总结词
描述抛硬币出现正反面的可能性。
详细描述
当我们抛硬币时,出现正面或反面的可能性是相等的,因为硬币只有两面。在 理想情况下,每次抛硬币出现正面的概率是50%,出现反面的概率也是50%。
掷骰子的可能性
总结词
描述掷骰子出现不同点数的可能性。
详细描述
进行合理的推理和判断。
增强决策能力
了解可能性有助于学生在日常生 活和游戏中做出更明智的决策,
例如概率计算、风险评估等。
激发探索精神
可能性概念可以引导学生探索未 知领域,培养他们的好奇心和求
知欲。
可能性的局限性
数据获取难度
在某些情况下,获取足够的数据来评估可能性可 能很困难,导致评估不准确。
主观偏见
列举法
通过列举所有可能的情况 ,计算某一事件的概率。
树状图法
通过画树状图列出所有可 能的情况,计算某一事件 的概率。
条件概率
条件概率的定义
表示在某一事件B已经发生的情况下 ,另一事件A发生的概率,记作 P(A|B)。
条件概率的计算公式
条件概率的应用
在现实生活中,很多事件的发生都存 在一定的条件关系,条件概率可以帮 助我们更好地理解和预测这些事件的 发生。
人教版可能性ppt课件
概率的范围是0到1,其中0表示事件不可能 发生,1表示事件一定会发生。
可能性的分类
随机事件
指在一定条件下可能发生也可能 不发生的事件,即具有不确定性 的事件。
不可能事件
指在一定条件下一定不会发生的 事件,其概率为0。
01
确定事件
指在一定条件下一定会发生或一 定不会发生的事件,包括必然事 件和不可能事件。
02
03
04
必然事件
指在一定条件下一定会发生的事 件,其概率为1。
可能性在生活中的应用
天气预报
通过气象观测和数据分析,预测未来天气情 况的可能性。
彩票
医生通过症状和检查结果,判断患者患某种 疾病的可能性。
医学诊断
彩票中奖的可能性非常小,但仍然有很多人 购买彩票。
市场预测
企业通过市场调查和分析,预测未来市场趋 势的可能性。
中心极限定理
中心极限定理是指在独立同分布的大 量随机变量的平均值趋近于正态分布 。
中心极限定理在统计学、金融工程、 计算机科学等领域都有广泛应用,例 如在金融领域中用于风险评估和资产 定价。
中心极限定理是概率论中的另一个基 本定理,它表明即使每个随机变量的 概率分布很复杂,它们的平均值的分 布仍然是正态分布。
非负性
条件概率P(A|B)是非负的,即 P(A|B)≥0。
独立性
如果两个事件A和B是独立的,那么在 事件B发生的条件下,事件A发生的概 率等于事件A发生的概率乘以事件B发 生的概率,即P(A|B)=P(A)P(B)。
归一性
在B发生的条件下,A和B同时发生的 概率加上A不发生且B发生的概率等于 B发生的概率,即 P(A∩B)+P(¬A∩B)=P(B)。
《可能性》精品课件
9. 只有一枚硬币,猜一猜可能在哪个盒子里?
猜对的人多,还 把猜的情况记录在下表中。 是猜错的人多?
盒子 1号 2号 3号 4号 人数
10. 给 表面涂上红、蓝两种颜色,要使掷出红色面 朝上的可能性比蓝色面大,应该怎么涂?
共6个面
红色的面应比蓝色的面多。 所以可以涂 4红2蓝或5红1蓝。
一定摸到黄球。 可能摸到黄球。 可能摸到红球。 不可能摸到红球。
一定摸到蓝球。 可能摸到蓝球。 不可能摸到蓝球。 不可能摸到黄球。
有黄球,没有蓝球和红球
3. 从盒子里摸出一个球,结果会是什么?连一连。
一定摸到黄球。 可能摸到黄球。 可能摸到红球。 不可能摸到红球。
一定摸到蓝球。 可能摸到蓝球。 不可能摸到蓝球。 不可能摸到黄球。
1.可能性大说明在总数中个体所占的数量多。 2.可能性小说明在总数中个体所占的数量就少。
练习巩固(教材第47页练习十一)
1. 指针转Leabharlann ,说一说指针可能停在哪种颜色的区域上。
蓝红 黄绿
指针停在哪个地 方是随机的。
可能停在蓝色、红色、黄色 、绿色的区域上。
2. 一个正方体,六个面上分别写着数字1、2、3、4、5、 6。掷一次,可能掷出哪些数字?
12 3
45 6
1
可能掷出1、2、3、4、5、6。
3. 从盒子里摸出一个球,结果会是什么?连一连。
一定摸到黄球。 可能摸到黄球。 可能摸到红球。 不可能摸到红球。
一定摸到蓝球。 可能摸到蓝球。 不可能摸到蓝球。 不可能摸到黄球。
有蓝球和红球,没有黄球
3. 从盒子里摸出一个球,结果会是什么?连一连。
5. 按要求涂一涂。 (1)指针可能停在红色、黄色或蓝色区域。
《可能性》PPT课件
1.每次都摸出了哪些颜色的球? 2.各个小组的试验结果一样吗?有什么共同点? 3.为什么每个小组都是摸出红球的次数多,摸出黄球的次数少?
盒子里的红球和黄球数量相等吗?
归纳
次数小组 1组 2组 3组 4组 5组 6组 7组 8组 合计
颜色
15 16 12 18 15 16 14 17 123
5
4
8
2
跳 舞
朗 诵
小雪还能抽到跳舞吗? 可能 不可能 小雪一定能抽到唱歌吗? 一定 不一定
上面的抽签结果可以用下面的表格表示。
姓名 小明 小丽 小红
唱歌 可能 可能 一定
跳舞 朗诵 可能 可能 不可能 可能 不可能 不可能
小明 可能 唱歌、跳舞和朗诵
不 确
小丽 可能
唱歌和朗诵
定 性
小丽 不可能
跳舞
不可能 跳舞和朗诵
思考
17个 3个
1.如果再摸一次,摸到哪种颜色的球的可能性大? 2.如果继续摸下去,结果是不是一定摸出红球? 3. 要使摸出黄球的可能性大,可以怎么办?
巩固练习
1. 猜一猜,摸出哪种颜
摸出一个棋子, 可能是什么颜色?
色棋子的可能性最大?
摸出哪种颜色棋子的
可能性最小?
摸出一个棋子,可能是红色、蓝色或黄色。
1. 在一定条件下,一些事件的结果是可以预知的,即 一定发生或不可能发生,具有确定性,用“一定” 或“不可能”来描述。
2. 在一定条件下,一些事件的结果是无法预知的,即 可能会发生,也可能不会发生,具有不确定性,用 “可能”来描述。
可能性
第2课时
复习旧知
他闭着眼要摸出 ,在哪个箱子里更容易摸到?
小亮赢: 1 2 小强赢: 1 1 1 2 2 1 2 2 不分输赢: 1 2
小升初数学衔接知识讲解---《可能性》PPT课件
A.摸到红球的可能性大。
对事件发生可能性的大
B.摸到白球的可能性大。 C.摸到红球、白球的可能性相等
小的方法掌握不熟练。
易错:A
在一个不透明的袋子里装有2个 红球,2个白球,它们除颜色外完 全相同,任意摸一个球( ) A.摸到红球的可能性大。 B.摸到白球的可能性大。 C.摸到红球、白球的可能性相等
6>3
箱子上面画“☆”。
>0
题2右面每个转盘有红、黄、蓝三种
颜色,说一说两个转盘的指针停在哪
个颜色的机会多?请你再设,停在另两种颜色的机会差不多。
区域 最大
机会 相等
区域 相等
机会 多
区域 大
题2 下面每个转盘有红、黄、蓝三种
颜色,说一说下面两个转盘的指针停 在哪个颜色的机会多?请你再设计一 (1)转盘1中蓝色区域最大, 个转盘,使指针停在红色部分的机会 机会多;转盘2中黄色区域最大, 最多,停在另两种颜色的机会差不多。 机会多。
思路点拨
数量相等,机会相同,可能 性就相等。 故正确答案: C
归纳总结
事件发生可能性的三种情况
一定
不可能
可能
可能性大
数量多, 区域大
可能性大小的 判定
数量少, 区域小
可能性小
小升初数学衔接知识讲解---《可能性》 PPT课件
可能性
重点透视
确定
老
幼
一定 不可能
明天
不确定
可能 可能
抽到绿球 不可能
数量 多
少
可能性 大
小
数量 多 可能性 大
中
少
0
中
小 不可能
确定
一定 不可能
西师大版数学五年级上册第六单元《可能性》(课件)(共16张PPT)
△、□
△、○
□、○
答:可能是正面和正面,可能是正面和反面,可能是反面和反面。
答:有4种方式可以选择。 第一种:从重庆乘火车到成都,再乘公交车到都江堰。 第二种:从重庆乘火车到成都,再乘火车到都江堰。 第三种:从重庆乘汽车到成都,再乘公交车到都江堰。 第四种:从重庆乘汽车到成都,再乘火车到都江堰。
你有什么收获呢?
答:按数字(或字母)分,有13种可能的结果。
想:一副扑克牌中,抽到数字和字母,哪个可能性大? 答:一副扑克牌中数字比字母多,抽到数字的可能性大。
想一想:
在这个转盘中,当转动转盘停止时,指针
落在“A”区的可能性 大 ;
在这个转盘中,当转动转盘停止时,指针
落在“B” 区的可能性 小 。
想一想: 在下面两个盒子里摸球,摸到哪颜色的球可能性大些?摸到黄色球的可能性大 摸到灰色球的可能性大
小强、小刚、小明在平时的50m短跑训练和比赛中,成绩 相当。他们要进行一场50m短跑比赛,你能说出比赛可能出现 的每一种结果吗(不并列)?再说说你是怎么想的。
我们可以画个表格来分析。
第一名 第1种可能 小强 第2种可能 小强 第3种可能 小刚 第4种可能 小刚 第5种可能 小明 第6种可能 小明
第二名 小刚 小明 小强 小明 小强 小刚
第三名 小明 小刚 小明 小强 小刚 小强
第一名 第二名 第三名
第1种可能
小强
小刚
小明
第2种可能
小强
小明
小刚
第3种可能
小刚
小强
小明
第4种可能
小刚
小明
小强
第5种可能
小明
小强
小刚
第6种可能
小明
小刚
可能性ppt课件
01
02
03
事件定义
在一定条件下,并不确定 出现,只是有可能出现 的一种结果。
概率定义
表示某一事件发生的可能 性大小的数值,常用P(A) 表示。
概率的性质
非负性、规范性、可加性 。
独立性与互斥性
独立性
独立与互斥的关系
两个事件相互独立,一个事件的发生 不会影响另一个事件的发生概率。
独立不一定互斥,互斥也不一定独立 。
07
总结与展望
课程重点内容回顾
可能性定义与分类
介绍了可能性的基本概念,包括定义、分类以及与概率的关系。
可能性计算方法
详细讲解了如何计算简单事件和复杂事件的可能性,包括排列组合 、概率论等方法。
可能性在生活中的应用
通过实例分析了可能性在决策、风险评估、金融等领域的应用。
学生自我评价报告
知识掌握程度
介绍置信水平、置信区间等基本概念,以及置信区间的构造方法。
02
单个正态总体参数的区间估计
包括均值、方差等参数的置信区间构造方法。
03
两个正态总体参数的区间估计
包括均值差、方差比等参数的置信区间构造方法。
假设检验基本思想及步骤
假设检验基本思想
假设检验步骤
阐述原假设与备择假设的设立、显著性水 平的选择等基本概念。
05
参数估计与假设检验
点估计方法介绍
矩估计法
01
利用样本矩来估计总体矩,适用于大样本情况。
最大似然估计法
02
根据样本信息选择使得似然函数达到最大的参数值作为估计值
,适用于中小样本情况。
最小二乘法
03
通过最小化误差的平方和来寻找数据的最佳函数匹配,适用于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12个白球
一定是白球
10个红球
一定是红球 不可能是白球
12个白球 10个红球
可能是白球,也可能是红球
小组合作,摸球游戏
1、小组内准备一个黑袋,装9个白球, 1个黄球。 2、每人轮换摸球,把结果记录在课本 82页“摸一摸”表格内。 3、开展游戏遵守规则,游戏结束,组 内成员交流想法,填写在课本“填一填” 中。
人教新课标版三年级数学上册
• 教学目标
• 1.使学生初步体验有些事情的发生是确定的, 有些则是不确定的。 2.使学生能够列出简单试验中所有可能的结果。 3.初步使学生感受事件发生的可能性有大有小, 能对一些简单的事件发生的可能性作描述,并 和同伴交换思想。
•
一天,阿凡提牵着自己心爱的小毛驴,
背着一袋金币往家赶。刚到村口,就碰到 那个贪财、吝啬的大财主。他看到阿凡提
看!!
手里的一袋金币就眼红。眼珠转了转,对 阿凡提说:“如果你能把口袋里的金币往
是谁来了?
空中一抛,落下后个个都是正面朝上,那
么这些金币就是你的了。如果
• 不是,哼!哼!那它就是我的。
Hale Waihona Puke P P T模板下载:www.1ppt.c om /m oba n/ 节日P P T模板:www.1ppt.c om /j ie ri/ P P T背景图片:www.1ppt.c om /be ij ing/ 优秀P P T下载:www.1ppt.c om /xia za i/ Word教程: /word/ 资料下载:www.1ppt.c om /zilia o/ 范文下载:www.1ppt.c om /fa nwe n/ 教案下载:www.1ppt.c om /j ia oa n/
很 可能是白球 白球的可能性很小
武汉很少下雪 哈尔滨一定下雪 海南不可能下雪
用最少的浪费面对现在。 在灾难面前不屈服,而应更加勇敢地去正视它。 痛不痛只有自己知道,变没变只有自己才懂。不要问我过得好不好,死不了就还好。 承认自己的伟大,就是认同自己的愚疑。 坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 人生就是学校。——在那里,与其说好的教师是幸福,不如说好的教师是不幸。——海贝尔 阴谋陷害别人的人,自己会首先遭到不幸。——伊索 生活中可以没有诗歌,但不能没有诗意;行进中可以没有道路,但不能没有前进的脚步;工作中可以没有经验,但不能没有学习,人生中可以 没有闪光,但不能有污迹。 假如你从来未曾害怕受窘受伤害,那就是你从来没有冒过险。 人们结成友谊的原因很多,有出于自然的,也有出于契约的,有出于自身利益的,也有出于共同志趣的。 “不可能”只存在于蠢人的字典里。 每天告诉自己一次,“我真的很不错”。
每次口袋里该放什么球?
(1)任意摸一个,不可能是绿球。 (2)任意摸一个,可能是绿球。 (3)任意摸一个,一定是绿球。
考考你?
1.太阳(一定)从东方升起。 2.今天老师(可能)要表扬我。 3.时间永远(不可能)停止。
从下面的五个箱子里,分别摸出一个 球,结果是哪个?连一连。
可能是白 球 一定是白球 一定不是白球
行业PPT模板:/hangy e/ P P T素材下载:www.1ppt.c om /suc a i/ P P T图表下载:www.1ppt.c om /tubia o/ PPT教程: /powerpoint/ Exc e l教程:www.1ppt.c om /e xc e l/ P P T课件下载:www.1ppt.c om /ke j ia n/ 试卷下载:www.1ppt.c om /shiti/