高一数学人教版A版必修二模块综合检测(C) Word版含解析
高中数学人教A版必修二 模块综合测评 Word版含答案
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为() A.6 B.1C.2 D.4【解析】由题意知k AB=m+4-2-3=-2,∴m=6.【答案】 A2.在x轴、y轴上的截距分别是-2、3的直线方程是() A.2x-3y-6=0 B.3x-2y-6=0C.3x-2y+6=0 D.2x-3y+6=0【解析】由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.【答案】 C3.已知正方体外接球的体积是323π,那么正方体的棱长等于()A.2 2 B.22 3C.423 D.433【解析】设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=43 3.【答案】 D4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;③与点P 关于x 轴对称的点的坐标为(-1,-2,-3); ④与点P 关于坐标原点对称的点的坐标为(1,2,-3); ⑤与点P 关于坐标平面xOy 对称的点的坐标为(1,2,-3). 其中正确的个数是( ) A .2 B .3 C .4D .5【解析】 点P 到坐标原点的距离为12+22+32=14,故①错;②正确;与点P 关于x 轴对称的点的坐标为(1,-2,-3),故③错;与点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.【答案】 A5.如图1,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为( )图1A .30°B .45°C .60°D .90°【解析】 因为MN ⊥DC ,MN ⊥MC , 所以MN ⊥平面DCM . 所以MN ⊥DM .因为MN ∥AD 1,所以AD 1⊥DM . 【答案】 D6.(2015·福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于( )图2A.8+2 2 B.11+2 2C.14+2 2 D.15【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.【答案】 B7.已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是()A.(-2,+∞) B.(-∞,2)C.(-2,2) D.(-∞,-2)∪(2,+∞)【解析】因为方程x2+y2+2x+2y+k=0表示一个圆,所以4+4-4k>0,所以k<2.由题意知点P(1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k>0,解得k>-2,所以-2<k<2.【答案】 C8.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【解析】如图,取BC的中点E,连接DE、AE、AD.依题设知AE⊥平面BB1C1C.故∠ADE为AD与平面BB1C1C所成的角.设各棱长为2,则AE=32×2=3,DE=1.∵tan∠ADE=AEDE=31=3,∴∠ADE=60°,故选C.【答案】 C9.(2015·开封高一检测)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是()①若直线m、n都平行于平面α,则m、n一定不是相交直线;②若直线m、n都垂直于平面α,则m、n一定是平行直线;③已知平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n⊥β;④若直线m、n在平面α内的射影互相垂直,则m⊥n.A.②B.②③C.①③D.②④【解析】对于①,m与n可能平行,可能相交,也可能异面;对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;对于③,还有可能n∥β;对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错.因此选A.【答案】 A10.(2015·全国卷Ⅱ)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为()A.53 B.213C.253 D.43【解析】在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以|AE|=23|AD|=233,从而|OE|=|OA|2+|AE|2=1+43=213,故选B.【答案】 B11.(2016·重庆高一检测)已知P(x,y)是直线kx+y+4=0(k>0)上一点,P A 是圆C:x2+y2-2y=0的一条切线,A是切点,若P A长度的最小值为2,则k的值是()【导学号:09960153】A.3 B.21 2C.2 2 D.2【解析】圆C:x2+y2-2y=0的圆心是(0,1),半径是r=1,∵P A 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,P A 长度的最小值为2,∴圆心到直线kx +y +4=0的最小距离为5,由点到直线的距离公式可得|1+4|k 2+1=5,∵k >0,∴k =2,故选D. 【答案】 D12.(2016·德州高一检测)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )A.212a 3 B.a 312 C.24a 3D.a 36【解析】 取AC 的中点O ,如图,则BO =DO =22a ,又BD =a ,所以BO ⊥DO ,又DO ⊥AC , 所以DO ⊥平面ACB , V D -ABC=13S △ABC ·DO =13×12×a 2×22a =212a 3. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知两条平行直线的方程分别是2x +3y +1=0,mx +6y -5=0,则实数m =________.【解析】 由于两直线平行,所以2m =36≠1-5,∴m =4.【答案】 414.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【解析】 设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x . 横放时水桶底面在水内的面积为⎝ ⎛⎭⎪⎫14πR 2-12R 2,水的体积为V 水=⎝ ⎛⎭⎪⎫14πR 2-12R 2h .直立时水的体积不变,则有V 水=πR 2x , ∴x ∶h =(π-2)∶4π. 【答案】 (π-2)∶4π15.已知一个等腰三角形的顶点A (3,20),一底角顶点B (3,5),另一顶点C 的轨迹方程是________.【解析】 设点C 的坐标为(x ,y ), 则由|AB |=|AC |得 (x -3)2+(y -20)2 =(3-3)2+(20-5)2,化简得(x -3)2+(y -20)2=225.因此顶点C 的轨迹方程为(x -3)2+(y -20)2=225(x ≠3). 【答案】 (x -3)2+(y -20)2=225(x ≠3)16.(2015·湖南高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.【解析】 如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+(-4)2=1.∵∠AOB=120°,OA=OB,∴∠OBD=30°,∴|OB|=2|OD|=2,即r=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1,l2的方程.【解】若直线l1,l2的斜率都不存在,则l1的方程为x=0,l2的方程为x=5,此时l1,l2之间距离为5,符合题意;若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0,在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=25k2+25,∴k=125.∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l2:x=5或l1:12x-5y+5=0,l2:12x-5y-60=0.18.(本小题满分12分)已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.【导学号:09960154】【解】(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5,则圆心坐标分别为C1(2,-1)与C2(0,1),半径都为5,故圆心距为(2-0)2+(-1-1)2=22,又0<22<25,故两圆相交.(2)将两圆的方程作差即可得出两圆的公共弦所在直线的方程,即(x2+y2-4x +2y)-(x2+y2-2y-4)=0,得x-y-1=0.19.(本小题满分12分)如图3,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M 为AB中点,D为PB中点,且△PMB为正三角形.图3(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.【证明】(1)∵M为AB的中点,D为PB的中点,∴MD∥AP.又∵DM⊄平面APC,AP⊂平面APC,∴DM∥平面APC.(2)∵△PMB为正三角形,D为PB中点,∴MD⊥PB.又∵MD∥AP,∴AP⊥PB.又∵AP⊥PC,PC∩PB=P,∴AP⊥平面PBC.∵BC⊂平面PBC,∴AP⊥BC.又∵AC⊥BC,且AC∩AP=A,∴BC⊥平面APC.又∵BC ⊂平面ABC ,∴平面ABC ⊥平面APC .20.(本小题满分12分)已知△ABC 的顶点A (0,1),AB 边上的中线CD 所在的直线方程为2x -2y -1=0,AC 边上的高BH 所在直线的方程为y =0.(1)求△ABC 的顶点B 、C 的坐标;(2)若圆M 经过A 、B 且与直线x -y +3=0相切于点P (-3,0),求圆M 的方程. 【解】 (1)AC 边上的高BH 所在直线的方程为y =0,所以AC 边所在直线的方程为x =0,又CD 边所在直线的方程为2x -2y -1=0, 所以C ⎝ ⎛⎭⎪⎫0,-12,设B (b,0),则AB 的中点D ⎝ ⎛⎭⎪⎫b 2,12,代入方程2x -2y -1=0, 解得b =2, 所以B (2,0).(2)由A (0,1),B (2,0)可得,圆M 的弦AB 的中垂线方程为4x -2y -3=0,① 由与x -y +3=0相切,切点为(-3,0)可得,圆心所在直线方程为y +x +3=0,②①②联立可得,M ⎝ ⎛⎭⎪⎫-12,-52,半径|MA |=14+494=502,所以所求圆方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +522=252.21.(本小题满分12分)如图4,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图4(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.【解】(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=12AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形.所以C1F∥EG. 又因为EG⊂平面ABE,C1F⊄平面ABE,所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值.【导学号:09960155】【解】 (1)法一 线段AB 的中点为(0,0),其垂直平分线方程为x -y =0.解方程组⎩⎪⎨⎪⎧x -y =0,x +y -2=0.所以圆M 的圆心坐标为(1,1),半径r =(1-1)2+(-1-1)2=2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.法二 设圆M 的方程为(x -a )2+(y -b )2=r 2,(r >0),根据题意得⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PCMD 的面积为S =S △PMC +S △PMD =12|CM |·|PC |+12|DM |·|PD |.又|CM |=|DM |=2,|PC |=|PD |,所以S =2|PC |,而|PC |=|PM |2-|CM |2 =|PM |2-4,即S =2|PM |2-4. 因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以 |PM |min =|3×1+4×1+8|32+42=3,所以四边形PCMD 面积的最小值为S =2|PM |2-4=232-4=2 5.。
高中数学模块综合测评含解析人教A版必修2.doc
模块综合测评(教师独具)(满分:150分 时间:120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若α∥β, a ⊂α, b ⊂β, 则a 与b 的位置关系是( ) A .平行或异面 B .相交 C .异面D .平行A [满足条件的情形如下:]2.直线y =kx 与直线y =2x +1垂直,则k 等于( ) A .-2 B .2 C .-12 D .13C [由题意,得2k =-1,∴k =-12.]3.两圆C 1:x 2+y 2=r 2与C 2:(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值为( ) A .10-1 B .102C .10D .10-1或10+1B [因为两圆外切且半径相等,所以|C 1C 2|=2r .所以r =102.] 4.在空间直角坐标系中,O 为坐标原点,设A ⎝ ⎛⎭⎪⎫12,12,12,B ⎝ ⎛⎭⎪⎫12,12,0,C ⎝ ⎛⎭⎪⎫13,13,13, 则( )A .OA ⊥AB B .AB ⊥AC C .AC ⊥BCD .OB ⊥OCC [|AB |=12,|AC |=36,|BC |=66,因为|AC |2+|BC |2=|AB |2,所以AC ⊥BC .]5.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( ) A .1 B .2 C . 2 D .2 2C [圆心(-1,0),直线x -y +3=0,所以圆心到直线的距离为|-1-0+3|12+(-1)2= 2.]6.直线2ax +y -2=0与直线x -(a +1)y +2=0互相垂直, 则这两条直线的交点坐标为( )A.⎝ ⎛⎭⎪⎫-25,-65B .⎝ ⎛⎭⎪⎫25,-65C .⎝ ⎛⎭⎪⎫25,65D .⎝ ⎛⎭⎪⎫-25,65 C [由题意知:2a -(a +1)=0,得a =1,所以2x +y -2=0,x -2y +2=0,解得x =25,y =65.]7.如图, 在长方体ABCD A 1B 1C 1D 1中, P 为BD 上任意一点,则一定有( )A .PC 1与AA 1异面B .PC 1与A 1A 垂直 C .PC 1与平面AB 1D 1相交 D .PC 1与平面AB 1D 1平行D [当A ,P ,C 共线时,PC 1与AA 1相交不垂直,所以A ,B 错误;连接BC 1,DC 1(图略),可以证AD 1∥BC 1,AB 1∥DC 1,所以平面AB 1D 1∥平面BDC 1.又PC 1⊂平面BDC 1,所以PC 1与平面AB 1D 1平行.]8.在长方体ABCD A 1B 1C 1D 1中, AB =2, BC =4, AA 1=6, 则AC 1和底面ABCD 所成的角为( )A .30°B .45°C .60°D .75° A [如图所示,连接AC ,在长方体ABCD A 1B 1C 1D 1中,CC 1⊥底面ABCD ,所以∠C 1AC 就是AC 1与底面ABCD 所成的角.因为AB =2,BC =4,AA 1=6,所以CC 1=AA 1=6,AC 1=2 6.所以在Rt △ACC 1中,sin ∠C 1AC =CC 1AC 1=626=12.所以∠C 1AC =30°.] 9.已知点A (-1,1),B (3,1),直线l 过点C (1,3)且与线段AB 相交,则直线l 与圆(x -6)2+y 2=2的位置关系是( )A .相交B .相离C .相交或相切D .相切或相离D [因为k AC =1,k BC =-1,直线l 的斜率的范围是(-∞,-1]∪[1,+∞),直线BC 方程为x +y -4=0,圆(x -6)2+y 2=2的圆心(6,0)到直线BC 的距离为2,因此圆(x -6)2+y 2=2与直线BC 相切,结合图象可知,直线l 与圆(x -6)2+y 2=2的位置关系是相切或相离.]10.设l ,m ,n 表示三条直线,α,β,γ表示三个平面,则下面命题中不成立的是( ) A .若l ⊥α,m ⊥α,则l ∥mB .若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥nC .若m ⊂α,n ⊄α,m ∥n ,则n ∥αD .若α⊥γ,β⊥γ,则α∥βD [若l ⊥α,m ⊥α,则l ∥m ,A 正确;由直线与平面垂直的判定和性质定理,若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥n ,B 正确;由直线与平面平行的判定定理,若m ⊂α,n ⊄α,m ∥n ,则n ∥α,C 正确;垂直于同一个平面的两个平面平行或相交, 即若α⊥γ,β⊥γ,则α∥β或α∩β=a ,D 不正确.]11.如果圆x 2+(y -1)2=1上任意一点P (x ,y )都能使x +y +c ≥0成立,那么实数c 的取值范围是( )A .c ≥-2-1B .c ≤-2-1C .c ≥2-1D .c ≤2-1C [对任意点P (x ,y )能使x +y +c ≥0成立,等价于c ≥[-(x +y )]max . 设b =-(x +y ),则y =-x -b . 所以圆心(0,1)到直线y =-x -b 的距离d =|1+b |2≤1, 解得-2-1≤b ≤2-1.所以c ≥2-1.]12.如图, 在△ABC 中, AB =BC =6, ∠ABC =90°, 点D 为AC 的中点,将△ABD 沿BD 折起到△PBD 的位置, 使PC =PD ,连接PC, 得到三棱锥P BCD, 若该三棱锥的所有顶点都在同一球面上, 则该球的表面积是( )A .πB .3πC .5πD .7πD [由题意得该三棱锥的面PCD 是边长为3的正三角形,且BD ⊥平面PCD, 设三棱锥P BDC 外接球的球心为O, △PCD 外接圆的圆心为O 1,则OO 1⊥平面PCD ,所以四边形OO 1DB 为直角梯形, 由BD =3,O 1D =1,及OB =OD ,得OB =72, 所以外接球半径为R =72,所以该球的表面积S =4πR 2=4π×74=7π.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(m +1)x -y -(m +5)=0与直线2x -my -6=0平行,则m =________. -2 [由题意知:m +1=2m,解得m =1或-2. 当m =1时,两直线方程均为2x -y -6=0,两直线重合,不合题意,舍去;当m =-2时,直线分别为x +y +3=0,x +y -3=0,两直线平行.]14.如图所示, 正方体的棱长为2, 以其所有面的中心为顶点的多面体的体积为________.43[平面ABCD 将多面体分成了两个以2为底面,边长、高为1的正四棱锥,所以其体积为2×2×1×13×2=43.]15.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.x 2+y 2-2x =0 [设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,22+2D +F =0,解得D =-2,E =0,F =0,所以圆的方程为x 2+y 2-2x =0.]16.如图,在四棱锥P ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,PA =PC =2m ,若在这个四棱锥内放一个球,则此球的最大半径是________.12(2-2)m [由PD ⊥底面ABCD ,得PD ⊥AD .又PD =m ,PA =2m ,则AD =m .设内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V P ABCD =V O ABCD +V O PAD +V O PAB +V O PBC +V O PCD ,即13·m 2·m =13·m 2×R +13×12·m 2·R +13×12·2m 2·R +13×12· 2 m 2·R +13·12·m 2·R ,解得R =12(2-2)m ,所以此球的最大半径是12(2-2)m .]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知直线l 的方程为3x +4y -12=0,分别求下列直线l ′的方程,l ′满足:(1)过点(-1,3),且与l 平行; (2)与直线l 关于y 轴对称.[解] (1)因为l ∥l ′, 所以l ′的斜率为-34,所以直线l ′的方程为:y -3=-34(x +1),即3x +4y -9=0.(2)l 与y 轴交于点(0,3),该点也在直线l ′上,在直线l 上取一点A (4,0),则点A 关于y 轴的对称点A ′(-4,0)在直线l ′上,所以直线l ′经过(0,3)和(-4,0)两点,故直线l ′的方程为3x -4y +12=0.18.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l 经过点D (-2,0),且斜率为k .(1)求以线段CD 为直径的圆E 的方程; (2)若直线l 与圆C 相离, 求k 的取值范围.[解] (1)将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为C (0,4),半径为2.所以CD 的中点E (-1,2), |CD |=22+42=25,所以r =5,故所求圆E 的方程为(x +1)2+(y -2)2=5. (2)直线l 的方程为y -0=k (x +2),即kx -y +2k =0.若直线l 与圆C 相离,则有圆心C 到直线l 的距离|0-4+2k |k 2+1>2, 解得k <34.所以k 的取值范围为⎝⎛⎭⎪⎫-∞,34.19.(本小题满分12分)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解] (1)因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求圆C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长?若存在,请求出点Q 的坐标;若不存在,请说明理由.[解] (1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知斜率k OC =ba=-1,故b =-a . 又|OC |=22,即a 2+b 2=22, 可解得a =-2,b =2或a =2,b =-2, 结合点C (a ,b )位于第二象限知a =-2,b =2. 故圆C 的方程为(x +2)2+(y -2)2=8. (2)假设存在点Q (m ,n )符合题意,则(m -4)2+n 2=16,m 2+n 2≠0, (m +2)2+(n -2)2=8,解得m =45,n =125,故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意. 21.(本小题满分12分)如图,矩形ABCD 所在平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下:如图,连接AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连接OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .22.(本小题满分12分)已知直线l :y =kx +b (0<b <1)和圆O :x 2+y 2=1相交于A ,B 两点.(1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足∠ONA =∠ONB ?若存在,请求出此点坐标;若不存在,说明理由.[解] (1)联立直线l :y =b 与圆O :x 2+y 2=1的方程, 得A ,B 两点坐标为A (-1-b 2,b ),B (1-b 2,b ).设过圆O 上点A 的切线l 1的方程是y -b =kl 1(x +1-b 2),由于k AO ·kl 1=-1,即-b1-b 2·kl 1=-1,也就是kl 1=1-b2b.所以l 1的方程是y -b =1-b2b(x +1-b 2).化简得l 1的方程为-1-b 2x +by =1. 同理得,过圆O 上点B 的切线l 2的方程为 1-b 2x +by =1.联立l 1与l 2的方程得交点的坐标为⎝⎛⎭⎪⎫0,1b .因此,当k =0时,两切线的交点坐标为⎝⎛⎭⎪⎫0,1b .(2)假设在y 轴上存在一点N (0,t ),满足∠ONA =∠ONB , 则直线NA ,NB 的斜率k NA ,k NB 互为相反数, 即k NA +k NB =0.设A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),则y 1-t x 1+y 2-tx 2=0, 即x 2(kx 1+b -t )+x 1(kx 2+b -t )=0. 化简得2kx 1x 2+(b -t )(x 1+x 2)=0.①联立直线l :y =kx +b 与圆O :x 2+y 2=1的方程, 得(k 2+1)x 2+2kbx +b 2-1=0. 所以x 1+x 2=-2kb k 2+1,x 1x 2=b 2-1k 2+1.② 将②代入①整理得-2k +2kbt =0.③因为③式对于任意的实数k 都成立,因此,t =1b.故在y 轴上存在一点N ⎝⎛⎭⎪⎫0,1b ,满足∠ONA =∠ONB .。
2019-2020学年人教A版高中数学必修二检测-模块综合检测Word版含解析
模块综合检测一、选择题1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为( )A.6 B.1C.2 D.4解析:选A 由题意知kAB=m+4-2-3=-2,∴m=6.2.圆x2+y2+2x-4y=0的圆心坐标和半径分别是( )A.(1,-2),5 B.(1,-2), 5C.(-1,2),5 D.(-1,2), 5解析:选D 圆的方程化为标准方程为(x+1)2+(y-2)2=5,其圆心是(-1,2),半径为 5.3.在空间直角坐标系Oxyz中,点A在z轴上,它到点(22,5,1)的距离是13,则点A的坐标是( )A.(0,0,-1) B.(0,1,1)C.(0,0,1) D.(0,0,13)解析:选C 由点A在z轴上,可设A(0,0,z),∵点A到点(22,5,1)的距离是13,∴(22-0)2+(5-0)2+(z-1)2=13,解得z=1,故A的坐标为(0,0,1),故选C.4.过点(1,2)且与原点距离最大的直线方程是( ) A .x +2y -5=0 B .2x +y -4=0 C .x +3y -7=0 D .x -2y +3=0解析:选A 结合图形可知,所求直线为过点(1,2)且与原点和点(1,2)连线垂直的直线,其斜率为-12,直线方程为y -2=-12(x -1),即x +2y -5=0.5.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l1,l2都不相交B .l 与l1,l2都相交C .l 至多与l1,l2中的一条相交D .l 至少与l1,l2中的一条相交解析:选D 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l 相交.6.若点P(2,-1)为圆(x -1)2+y2=25的弦AB 的中点,则直线AB 的方程是( )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0解析:选A 设圆心为C(1,0),则AB ⊥CP ,∵kCP =-1,∴kAB =1,∴直线AB 的方程是y +1=x -2,即x -y -3=0.7.某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π解析:选C 根据三视图知该几何体是由半球与圆锥构成,球的半径R =3,圆锥半径R =3,高为4,所以V 组合体=V 半球+V 圆锥=12×43π×33+13π×32×4=30π. 8.直线l :y =kx -1与曲线y -2x -1=12不相交,则k 的取值是( )A.12或3B.12C .3D.⎣⎢⎡⎦⎥⎤12,3 解析:选A 曲线y -2x -1=12表示直线x -2y +3=0(去掉点(1,2)),则直线l :y =kx -1与曲线y -2x -1=12不相交,即直线l 与x -2y +3=0平行或直线l 过点(1,2),所以k 的取值为12或3.9.在正三棱柱ABC A1B1C1中,若AB =2,AA1=1,则点A 到平面A1BC 的距离为( )A.34B.32C.334D. 3解析:选B 因为ABC A1B1C1是正三棱柱,AB =2,所以底面三角形ABC 的面积为3,所以VA1ABC=13×3×1=33.如图,在△A1BC 中,A1B =A1C =12+22=5,所以BC 边上的高为(5)2-1=2,所以S △A1BC =12×2×2=2.设点A 到平面A1BC 的距离为h ,所以13·S △A1BC ·h =VA1ABC ,解得h =32. 10.过点P(-2,4)作圆(x -2)2+(y -1)2=25的切线l ,直线l1:ax +3y +2a =0与l 平行,则l1与l 间的距离是( )A.285B.125C.85D.25解析:选B 直线l1的斜率k =-a3,l1∥l ,又l 过P(-2,4),∴l 的直线方程为y -4=-a3(x +2),即ax +3y+2a -12=0.又直线l 与圆相切, ∴|2a +3×1+2a -12|a2+9=5,∴a =-4,∴l1与l 的距离为d =125.11.若圆C :x2+y2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b)所作的圆的切线长的最小值是( )A .2B .3C .4D .6解析:选C 将圆C :x2+y2+2x -4y +3=0化为标准方程为(x +1)2+(y -2)2=2,∴圆心C(-1,2),半径r =2.∵圆C 关于直线2ax+by +6=0对称,∴直线2ax +by +6=0过圆心,将x =-1,y =2代入直线方程得-2a +2b +6=0,即a =b +3.∵点(a ,b)与圆心的距离d =(a +1)2+(b -2)2,∴由点(a ,b)向圆C 所作切线长l =d2-r2=(a +1)2+(b -2)2-2=(b +4)2+(b -2)2-2=2(b +1)2+16≥4,当且仅当b =-1时切线长最小,最小值为4.12.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 由正视图和俯视图可知,该几何体是一个半球和一个半圆柱的组合体,圆柱的半径和球的半径都为r ,圆柱的高为2r ,其表面积为12×4πr2+πr ×2r +πr2+2r ×2r =5πr2+4r2=16+20π,解得r =2,故选B.二、填空题13.若直线l1:ax +y +2a =0与l2:x +ay +3=0互相平行,则实数a =________.解析:由两直线平行的条件A1B2-A2B1=0且A1C2-A2C1≠0得⎩⎨⎧a2-1=0,3a -2a ≠0,得a =±1.答案:±114.(2018·全国卷Ⅰ)直线y =x +1与圆x2+y2+2y -3=0交于A ,B 两点,则|AB|=________.解析:由x2+y2+2y -3=0,得x2+(y +1)2=4.∴圆心C(0,-1),半径r =2.圆心C(0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB|=2r2-d2=24-2=22.答案:2215.若直线3x -4y +5=0与圆x2+y2=r2(r>0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =________.解析:由直线与圆的位置及圆的性质,可求得圆心(0,0)到直线3x -4y +5=0的距离为r2,∴|5|32+42=r2,∴r =2.答案:216.将正方形ABCD 沿对角线BD 折成直二面角A BD C ,有如下三个结论.①AC ⊥BD ;②△ACD 是等边三角形; ③AB 与平面BCD 成60°的角. 说法正确的命题序号是________.解析:如图所示,①取BD 中点E ,连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a.由①知∠AEC 是直二面角A BD C 的平面角,∴∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确.③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.答案:①② 三、解答题17.(本小题满分10分)已知两条直线l1:mx +8y +n =0和l2:2x +my -1=0,试确定m 、n 的值,使(1)l1与l2相交于点(m ,-1); (2)l1∥l2;(3)l1⊥l2,且l1在y 轴上的截距为-1. 解:(1)因为l1与l2相交于点(m ,-1),所以点(m ,-1)在l1、l2上,将点(m ,-1)代入l2,得2m -m -1=0,解得m =1.又因为m =1,把(1,-1)代入l1,所以n =7. 故m =1,n =7.(2)要使l1∥l2,则有⎩⎨⎧m2-16=0,m ×(-1)-2n ≠0,解得⎩⎨⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.(3)要使l1⊥l2,则有m ·2+8·m =0,得m =0. 则l1为y =-n8,由于l1在y 轴上的截距为-1,所以-n8=-1,即n =8.故m =0,n =8.18.(本小题满分12分)如图,长方体ABCD A1B1C1D1中,AB =16,BC =10,AA1=8,点E ,F 分别在A1B1,D1C1上,A1E =D1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M ,则AM =A1E =4,EB1=12,EM =AA1=8.因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH2-EM2=6,AH =10,HB =6.故S 四边形A1EHA =12×(4+10)×8=56,S 四边形EB1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确.19.(本小题12分)如图,在直三棱柱ABC A1B1C1中,已知AC ⊥BC ,BC =CC1.设AB1的中点为D ,B1C ∩BC1=E.求证:(1)DE ∥平面AA1C1C ; (2)BC1⊥AB1.证明:(1)∵B1C1CB 为正方形,∴E 为B1C 的中点,又D 为AB1中点,∴DE 为△B1AC 的中位线,∴DE ∥AC ,又DE ⊄平面A1C1CA ,AC ⊂平面A1C1CA ,∴DE ∥平面AA1C1C.(2)在直三棱柱中,平面ACB ⊥平面B1C1CB ,又平面ACB ∩平面B1C1CB =BC ,AC ⊂平面ABC ,且AC ⊥BC ,∴AC ⊥平面B1C1CB , ∴AC ⊥BC1,又B1C1CB 为正方形,∴B1C ⊥BC1,AC ∩B1C =C ,∴BC1⊥平面ACB1,又AB1⊂平面ACB1,∴BC1⊥AB1.20.(本小题满分12分)已知直线x -y +1=0与圆C :x2+y2-4x -2y +m =0交于A ,B 两点.(1)求线段AB 的垂直平分线的方程;(2)若|AB|=22,求m 的值;(3)在(2)的条件下,求过点P(4,4)的圆C 的切线方程.解:(1)由题意,线段AB 的垂直平分线经过圆心(2,1),斜率为-1, ∴该直线方程为y -1=-(x -2),即x +y -3=0.(2)圆x2+y2-4x -2y +m =0可化为(x -2)2+(y -1)2=-m +5. ∵|AB|=22, ∴圆心到直线的距离为-m +5-2=3-m.∵圆心(2,1)到直线的距离为d =|2-1+1|2=2, ∴3-m =2,∴m =1.(3)由题意,知圆C :x2+y2-4x -2y +1=0,即(x -2)2+(y -1)2=4.则点P(4,4)在圆外,过点P 的圆C 的切线有两条.①当所求切线的斜率存在时,设切线方程为y -4=k(x -4),即kx -y -4k +4=0. 由圆心到切线的距离等于半径,得|2k -1-4k +4|k2+1=2,解得k=512,所以所求切线的方程为5x-12y+28=0.②当所求切线的斜率不存在时,切线方程为x=4.综上,所求切线的方程为x=4或5x-12y+28=0.21.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC =FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE ∩BG =B ,所以平面BEG ∥平面ACH.(3)证明:连接FH ,与EG 交于点O ,连接BD.因为ABCD EFGH 为正方体,所以DH ⊥平面EFGH.因为EG ⊂平面EFGH ,所以DH ⊥EG.又EG ⊥FH ,DH ∩FH =H ,所以EG ⊥平面BFHD.又DF ⊂平面BFHD ,所以DF ⊥EG.同理DF ⊥BG.又EG ∩BG =G ,所以DF ⊥平面BEG.22.(本小题满分12分)已知以点C ⎝ ⎛⎭⎪⎫t ,3t (t ∈R ,t ≠0)为圆心的圆过原点O.(1)设直线3x +y -4=0与圆C 交于点M ,N ,若|OM|=|ON|,求圆C 的方程;(2)在(1)的条件下,设B(0,2),且P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PQ|-|PB|的最大值及此时点P 的坐标.解:(1)∵|OM|=|ON|,∴原点O 在线段MN 的垂直平分线上.设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线.∵直线MN 的方程是3x +y -4=0,∴直线OC 的斜率k =3t t =3t2=13,解得t =3或t =-3, ∴圆心为C(3,1)或C(-3,-1).∴圆C 的方程为(x -3)2+(y -1)2=10或(x +3)2+(y +1)2=10. 由于当圆的方程为(x +3)2+(y +1)2=10时,圆心到直线3x +y -4=0的距离d >r ,此时不满足直线与圆相交,故舍去.∴圆C 的方程为(x -3)2+(y -1)2=10.(2)由题意可知|PQ|-|PB|≤|BQ|,当B ,P ,Q 三点共线时,等号成立.又B ,C ,Q 三点共线且|BQ|=|BC|+|CQ|时|BQ|最大, 此时|BQ|=|BC|+10=210. ∵B(0,2),C(3,1),∴直线BC 的方程为y =-13x +2, ∴直线BC 与直线x +y +2=0的交点的坐标为(-6,4). 故|PQ|-|PB|的最大值为210,此时点P 的坐标为(-6,4).。
高中数学 模块综合评价(含解析)新人教A版必修2-新人教A版高一必修2数学试题
模块综合评价(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l1:2x+my=2,l2:m2x+2y=1,且l1⊥l2,则m的值为()A.0B.-1C.0或1 D.0或-1解析:因为l1⊥l2,所以2m2+2m=0,解得m=0或m=-1.答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为()A.2π B.22πC.2π D.4π解析:设底面圆的半径为r,高为h,母线长为l,由题可知,r=h=22l,则12(2r)2=1,r=1,l= 2.所以圆锥的侧面积为πrl=2π.答案:A3.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成角的大小为()A.90° B.60°C.45° D.30°解析:当三棱锥DABC体积最大时,平面DAC⊥平面ABC.取AC的中点O,则∠DBO即为直线BD和平面ABC所成的角.易知△DOB是等腰直角三角形,故∠DBO=45°.答案:C4.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则点P的轨迹方程是()A.(x-1)2+y2=4 B.(x-1)2+y2=2C.y2=2x D.y2=-2x解析:由题意知,圆心(1,0)到点P的距离为2,所以点P在以(1,0)为圆心、2为半径的圆上.所以点P 的轨迹方程是(x -1)2+y 2=2.答案:B5.下列命题中,正确的是() A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为() A.5B .2 2 C .23D .3 3解析:易知NF 的斜率k =-3, 故NF 的方程为y =-3(x -1), 即3x +y -3=0.所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:C7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A .16π B.20π C .24π D.32π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:C8.在平面直角坐标系xOy 中,圆C 与圆O :x 2+y 2=1外切,且与直线x -2y +5=0相切,则圆C 的面积的最小值为()A.45π B.3-5π C.3-52π D.(6-25)π 解析:由题可知,(0,0)到直线x -2y +5=0的距离为|5|12+22= 5.又因为圆C 与圆O :x 2+y 2=1外切,圆C 的直径的最小值为5-1,圆C 的面积的最小值为π(5-1)24=3-52π.答案:C9.已知α,β是不同的平面,m ,n 是不同的直线,则下列命题不正确的是() A .若m ⊥α,m ∥n ,n ⊂β,则α⊥β B .若m ∥n ,α∩β=m ,则n ∥α,n ∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ⊥α,m ⊥β,则α∥β 解:由m ⊥α,m ∥n ,得n ⊥α. 又n ⊂β,所以α⊥β,故A 正确. 在B 项中,m ∥n ,α∩β=m ,则n ⊂α,n ∥β或n ∥α,n ⊂β或n ∥α,n ∥β. 所以选项B 不正确.由线面垂直,面面垂直的判定,C 、D 正确. 答案:B10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则点B 到平面AB 1C 的距离是()A.32B. 3 C.33D .4 解析:由正方体的性质,易知AC =B 1C =AB 1=2,所以S △AB 1C =34×(2)2=32. 又S △ABC =12×12=12.知V 三棱柱B 1-ABC =13×12×1=16.设点B 到平面AB 1C 的距离为h , 从而V 三棱锥B-AB 1C =13·h ×32=16,所以h =13=33. 答案:C11.已知直线(1+k )x +y -k -2=0恒过点P ,则点P 关于直线x -y -2=0的对称点的坐标是()A .(3,-2)B .(2,-3)C .(1,3)D .(3,-1)解析:由(1+k )x +y -k -2=0得k (x -1)+(x +y -2)=0. 由⎩⎪⎨⎪⎧x -1=0,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1,故点P 的坐标为(1,1).设点P 关于直线x -y -2=0的对称点的坐标是(a ,b ),则⎩⎪⎨⎪⎧a +12-b +12-2=0,b -1a -1=-1,解得⎩⎪⎨⎪⎧a =3,b =-1,所以点P 关于直线x -y -2=0的对称点的坐标是(3,-1). 答案:D12.如图,多面体ABCD-A 1B 1C 1D 1为正方体,则下面结论正确的是()A .A 1B ∥B 1CB .平面CB 1D 1⊥平面A 1B 1C 1D 1 C .平面CB 1D 1∥平面A 1BDD .异面直线AD 与CB 1所成的角为30°解析:若A 1B ∥B 1C ,因为A 1B ∥CD 1,所以B 1C ∥CD 1,矛盾,故A 错误.因为BB 1⊥平面A 1B 1C 1D 1,所以平面BB 1D 1D ⊥平面A 1B 1C 1D 1,则平面CB 1D 1⊥平面A 1B 1C 1D 1也是错的,故B 错误.因为A 1B ∥CD 1,A 1D ∥CB 1,所以平面CB 1D 1∥平面A 1BD ,故C 正确.因为ABCDA 1B 1C 1D 1为正方体.所以∠BCB 1=45°,又AD ∥BC ,所以AD 与CB 1所成的角为45°,故D 错误.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.如图所示,在正方体ABCD A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P ABC 的正视图与侧视图的面积的比值为________.解析:三棱锥P ABC 的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案:114.已知直线l 1的方程为y 1=-2x +3,l 2的方程为y 2=4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线l :y =kx 与曲线M :y =1+1-(x -3)2有两个不同交点,则k 的取值X 围是________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值X 围是⎣⎢⎡⎭⎪⎫12,34.答案:⎣⎢⎡⎭⎪⎫12,34 16.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , 所以三棱锥S ABC 的体积为 V =13×⎝ ⎛⎭⎪⎫12SC ·OB ·OA =r 33, 即r 33=9.所以r =3.所以S 球表=4πr 2=36π. 答案:36π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.解:(1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1. 所以直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1.又直线l 3经过l 1与l 2的交点,所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为y =12x 或2x +y -5=0.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3. (1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD , 所以PA ⊥AB ,又因为AB ⊥AD ,AD ∩PA =A , 所以AB ⊥平面PAD ,又PD ⊂平面PAD ,所以AB ⊥PD .(2)解:S 梯形ABCD =12(AB +CD )·AD =332,又PA ⊥平面ABCD ,所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点⎝⎛⎭⎪⎫0,-23.若直线l 与圆C 相离,求a 的取值X 围.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1. 又|MC |=(4-1)2+(4-0)2=5, 所以|MN |的最小值为5-1=4.(2)因为直线l 的斜率为43,且与y 轴相交于点⎝ ⎛⎭⎪⎫0,-23,所以直线l 的方程为y =43x -23. 即4x -3y -2=0. 因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则|4a -2|42+32>|a |. 又a <0,所以2-4a >-5a ,解得a >-2. 所以a 的取值X 围是(-2,0).20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1, 因为DE ⊂平面B 1CD ,AC 1⊄平面B 1CD ,所以AC 1∥平面B 1CD .(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1. 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD .又CD ⊥AB ,AA 1∩AB =A , 所以CD ⊥平面ABB 1A 1, 因为CD ⊂平面CDB 1, 所以平面ABB 1A 1⊥平面CDB 1,故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1. 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95.21.(本小题满分12分)已知圆C :x 2+y 2+2x -4y +3=0.(1)若直线l 过点(-2,0)且被圆C 截得的弦长为2,求直线l 的方程;(2)从圆C 外一点P 向圆C 引一条切线,切点为M ,O 为坐标原点,且|PM |=|PO |,求|PM |的最小值.解:(1)x 2+y 2+2x -4y +3=0可化为(x +1)2+(y -2)2=2,当直线l 的斜率不存在时,其方程为x =-2,易求得直线l 与圆C 的交点为A (-2,1),B (-2,3),|AB |=2,符合题意;当直线l 的斜率存在时,设其方程为y =k (x +2), 即kx -y +2k =0, 则圆心C 到直线l 的距离d =|-k -2+2k |k 2+1=( 2)2-12=1, 解得k =34,所以直线l 的方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. (2)如图,PM 为圆C 的切线,连接MC ,PC , 则CM ⊥PM ,所以△PMC 为直角三角形. 所以|PM |2=|PC |2-|MC |2.设点P 为(x ,y ),由(1)知点C 为(-1,2),|MC |=2, 因为|PM |=|PO |,所以(x +1)2+(y -2)2-2=x 2+y 2, 化简得点P 的轨迹方程为2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,也即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |的最小值为3510.22.(本小题满分12分)如图,在四棱锥P ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.(1)解:由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,直线PD ⊂平面PDC , 所以AD ⊥PD .word - 11 - / 11 在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5,故cos ∠DAP =ADAP =55. 所以异面直线AP 与BC 所成角的余弦值为55. (2)证明:如图,由(1)知AD ⊥PD .又因为BC ∥AD ,所以PD ⊥BC .又PD ⊥PB ,PB ∩BC =B ,所以PD ⊥平面PBC .(3)解:过点D 作DF ∥AB ,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1.由已知,得CF =BC -BF =2.又AD ⊥DC ,所以BC ⊥DC .在Rt △DCF 中,可得DF =CD 2+CF 2=25;在Rt △DPF 中,可得sin ∠DFP =PDDF =55. 所以直线AB 与平面PBC 所成角的正弦值为55.。
【新教材】2020-2021学年高中数学人教A版必修第二册全册综合检测试题 Word版含解析
全册综合检测试题时间:120分钟 分值:150分 第Ⅰ卷(选择题,共60分)一、单项选择题(每小题5分,共40分) 1.下列命题为假命题的是( D ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数的模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|解析:A 中,任何复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,所以A 正确;B 中,由复数为零的条件z =0⇔⎩⎨⎧a =0,b =0⇔|z |=0,故B 正确;C 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),且z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|;反之,由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时,|z 1|=|z 2|,故C 正确;D 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 1>z 2,则a 1>a 2,b 1=b 2=0,此时|z 1|>|z 2|;若|z 1|>|z 2|,z 1与z 2不肯定能比较大小,所以D 错误.2.随机调查某校50个同学在学校的午餐费,结果如表:餐费/元 6 7 8 人数102020这50个同学的午餐费的平均值和方差分别是( A )A .7.2,0.56B .7.2,0.56C .7,0.6D .7,0.6解析:依据题意,计算这50个同学午餐费的平均值是x =150×(6×10+7×20+8×20)=7.2,方差是s 2=150[10×(6-7.2)2+20×(7-7.2)2+20×(8-7.2)2]=150(14.4+0.8+12.8)=0.56.3.设α,β为两个平面,则α∥β的充要条件是( B ) A .α内有很多条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:当α内有很多条直线与β平行,也可能两平面相交,故A 错.同样当α,β平行于同一条直线或α,β垂直于同一平面时,两平面也可能相交,故C ,D错.由面面平行的判定定理可得B 正确.4.如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC 1与平面AB 1C 1所成的角为( A )A.π6B.π4C.π3D.π2解析:如图,取B 1C 1中点为D ,连接AD ,A 1D ,由于侧棱垂直于底面,底边是边长为2的正三角形,所以三棱柱ABC -A 1B 1C 1是正三棱柱,所以CC 1∥AA 1,所以AA 1与平面AB 1C 1所成的角即是CC 1与平面AB 1C 1所成的角,由于B 1C 1⊥A 1D ,B 1C 1⊥AA 1,所以B 1C 1⊥平面AA 1D ,所以平面AA 1D ⊥平面AB 1C 1,所以AA 1与平面AB 1C 1所成角为∠A 1AD ,由于AA 1=3,A 1D =3,所以tan ∠A 1AD =A 1D AA 1=33,所以∠A 1AD =π6,所以CC 1与平面AB 1C 1所成角为π6.5.正方形ABCD 的边长为2,点E 为BC 边的中点,F 为CD 边上一点,若AF →·AE →=|AE →|2,则|AF →|=( D )A .3B .5 C.32D.52解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立坐标系,如图所示,由于E 为BC 边的中点,所以E (2,1),由于F 为CD 边上一点,所以可设F (t,2)(0≤t ≤2),所以AF →=(t,2),AE →=(2,1),由AF →·AE →=|AE →|2可得:2t +2=22+1=5, 所以t =32,所以AF →=⎝ ⎛⎭⎪⎫32,2,所以|AF →|=(32)2+22=52.6.已知点O 是△ABC 内部一点,并且满足OA →+2OB →+3OC →=0,△BOC 的面积为S 1,△ABC 的面积为S 2,则S 1S 2=( A )A.16B.13C.23D.34 解析:由于OA →+2OB →+3OC →=0,所以OA →+OC →=-2(OB →+OC →),如图,分别取AC ,BC 的中点D ,E ,则 OA →+OC →=2OD →,OB →+OC →=2OE →, 所以OD →=-2OE →,即O ,D ,E 三点共线且|OD →|=2|OE →|, 则S △OBC =13S △DBC ,由于D 为AC 中点,所以S △DBC =12S △ABC , 所以S △OBC =16S △ABC ,即S 1S 2=16.7.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为大事A i ,B i ,C i ,i =1,2,3.由题意,大事A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =6P (A i B i C i )=6×12×13×16=16.8.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,半径为1的圆上任意一点,则AP →·BP →的取值范围是( A )A .[1,13]B .(1,13)C .(4,10)D .[4,10]解析:取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CA →·CB →-2CD →·CP →+1=(23)2cos π3-2×3×1×cos 〈CD →,CP →〉+1=7-6cos 〈CD →,CP →〉,所以当cos 〈CD →,CP →〉=1时,AB →·BP →取得最小值为1;当cos 〈CD →,CP →〉=-1时,AP →·BP →取得最大值为13,因此AP →·BP →的取值范围是[1,13].二、多项选择题(每小题5分,共20分)9.为了反映各行业对仓储物流业务需求变化的状况,以及重要商品库存变化的动向,中国物流与选购联合会和中储进展股份有限公司通过联合调查,制定了中国仓储指数.由2021年1月至2022年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.依据该折线图,下列结论错误的是( ABC ) A .2021年各月的仓储指数最大值是在3月份 B .2022年1月至7月的仓储指数的中位数约为55 C .2022年1月与4月的仓储指数的平均数约为52D .2021年1月至4月的仓储指数相对于2022年1月至4月,波动性更大 解析:2021年各月的仓储指数最大值是在11月份,所以A 错误;由题图知,2022年1月至7月的仓储指数的中位数约为52,所以B 错误;2022年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2021年1月至4月的仓储指数比2022年1月至4月的仓储指数波动更大.所以D 正确.10.已知数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个一般职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,假如再加上世界首富的年收入x n +1,对于这(n +1)个数据,下列说法错误的是( ACD )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数肯定变大,方差可能不变解析:∵数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个一般职工的年收入,而x n +1为世界首富的年收入,则x n +1会远大于x 1,x 2,x 3,…,x n ,∴对于这(n +1)个数据,年收入平均数大大增大,但中位数可能不变,也可能略微变大,但由于数据的集中程度受到x n +1比较大的影响,数据更加离散,则方差变大.故A 、C 、D 说法错误,符合题意.11.已知向量a ,e 满足a ≠e ,|e |=1,且对任意t ∈R ,恒有|a -t e |≥|a -e |成立,则( BC )A .a ⊥eB .a·e =1C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2t a ·e +2a ·e -1≥0对t ∈R 恒成立,即Δ=(-2a ·e )2-8a ·e +4≤0恒成立,∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0,即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).12.如图,在矩形ABCD 中,AB =2AD =2,E 为AB 的中点,将△ADE 沿DE 翻折到△A 1DE 的位置,A 1∉平面ABCD ,M 为A 1C 的中点,则在翻折过程中,下列结论正确的是( ABC )A .恒有BM ∥平面A 1DEB .B 与M 两点间距离恒为定值C .三棱锥A 1-DEM 的体积的最大值为212 D .存在某个位置,使得平面A 1DE ⊥平面A 1CD解析:如图,取A 1D 的中点N ,连接MN ,EN ,可得四边形BMNE 是平行四边形,所以BM ∥EN ,所以BM ∥平面A 1DE ,故A 正确;(也可以延长DE ,CB 交于H ,可证明MB ∥A 1H ,从而证 BM ∥平面A 1DE ) 由于DN =12,DE =2,∠A 1DE =∠ADE =45°,依据余弦定理得EN 2=14+2-2×2×12×22,得EN =52,由于EN =BM ,故BM =52,故B 正确; 由于M 为A 1C 的中点,所以三棱锥C -A 1DE 的体积是三棱锥M -A 1DE 的体积的两倍,故三棱锥C -A 1DE 的体积V C -A 1DE =V A 1-DEC =13S △CDE ·h ,其中h 表示A 1到底面ABCD 的距离,当平面A 1DE ⊥平面ABCD 时,h 达到最大值,此时V A 1-DEC 取到最大值26,所以三棱锥M -A 1DE 体积的最大值为212,即三棱锥A 1-DEM 体积的最大值为212,故C 正确;考察D 选项,假设平面A 1DE ⊥平面A 1C D ,由于平面A 1DE ∩平面A 1CD =A 1D ,A 1E ⊥A 1D ,故A 1E ⊥平面A 1CD ,所以A 1E ⊥A 1C , 则在△A 1CE 中,∠EA 1C =90°, A 1E =1,EC =2,所以A 1C =1,又由于A 1D =1,CD =2,所以A 1D +A 1C =CD , 故A 1,C ,D 三点共线.所以A 1∈CD ,得A 1∈平面ABCD ,与题干条件A 1∉平面ABCD 冲突,故D 不正确.故选ABC.第Ⅱ卷(非选择题,共90分)三、填空题(每小题5分,共20分)13.随着社会的进展,食品平安问题渐渐成为社会关注的热点,为了提高同学的食品平安意识,某学校组织全校同学参与食品平安学问竞赛,成果的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的同学总人数为3 000,则成果不超过60分的同学人数大约为900.解析:由题图知,成果不超过60分的同学的频率为(0.005+0.01)×20=0.3,所以成果不超过60分的同学人数大约为0.3×3 000=900.14.从3名男同学和2名女同学中任选2名同学参与志愿者服务,则选出的2名同学中至少有1名女同学的概率是710.解析:从3名男同学和2名女同学中任选2名同学参与志愿者服务,共有10种状况.若选出的2名同学恰有1名女生,有6种状况,若选出的2名同学都是女生,有1种状况,所以所求的概率为6+110=710.15.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=2OA →+OB →,则a =-3,b =-10. 解析:由于OC →=2OA →+OB →, 所以1-4i =2(2+3i)+(a +b i)即⎩⎨⎧1=4+a ,-4=6+b ,所以⎩⎨⎧a =-3,b =-10.16.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,除平面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M ,则四棱锥M -EFGH 的体积为23.解析:由于底面EFGH 的对角线EG 与FH 相互垂直, 所以S EFGH =12×EG ×FH =12×2×2=2, 又M 到底面EFGH 的距离等于棱长的一半, 即h =12×2=1,所以四棱锥M -EFGH 的体积: V M -EFGH =13×S EFGH×h =13×2×1=23.四、解答题(写出必要的计算步骤,只写最终结果不得分,共70分)17.(10分)某市举方法律学问问答活动,随机从该市18~68岁的人群中抽取了一个容量为n 的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],并绘制如图所示的频率分布直方图,再将其分别编号为第1组,第2组,…,第5组.该部门对回答问题的状况进行统计后,绘制了下表.组号 分组 回答正确的人数回答正确的人数 占本组的比例第1组 [18,28) 5 0.5 第2组 [28,38) 18 a 第3组[38,48) 27 0.9 第4组 [48,58) x 0.36 第5组[58,68]30.2(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.解:(1)第1组的人数为5÷0.5=10, 第1组的频率为0.010×10=0.1, 所以n =10÷0.1=100.第2组的频率为0.020×10=0.2, 人数为100×0.2=20, 所以a =18÷20=0.9.第4组的频率为0.025×10=0.25, 人数为100×0.25=25, 所以x =25×0.36=9.(2)第2,3,4组回答正确的人数的比为18279=231,所以第2,3,4组每组各应抽取2人、3人、1人.(3)记“第2组至少有1人获得幸运奖”为大事A ,设抽取的6人中,第2组的2人为a 1,a 2,第3组的3人为b 1,b 2,b 3,第4组的1人为c ,则从6人中任意抽取2人全部可能的结果为(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,c ),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,c ),(b 1,b 2),(b 1,b 3),(b 1,c ),(b 2,b 3),(b 2,c ),(b 3,c ),共15种.其中第2组至少有1人获得幸运奖的结果为(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,c ),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,c ),共9种.故P (A )=915=35.所以抽取的6人中第2组至少有1人获得幸运奖的概率为35.18.(12分)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成果进行统计分析,分别制成了如图所示的男生和女生数学成果的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少? (2)在(1)中所述的优秀同学中用分层随机抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)由于样本量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.设抽取的5人分别为A ,B, C, D ,E ,其中A ,B 为男生,C, D ,E 为女生,从5人中任意选取2人,试验的样本空间Ω={(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ) },共10个样本点.大事“至少有一名男生”包含的样本点有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),共7个样本点,故至少有一名男生的概率为P =710,即选取的2人中至少有一名男生的概率为710.19.(12分)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足sin 2A +sin 2B -sin 2C =-3sin A sin B .(1)求角C 大小;(2)若c =2,求3a +b 的取值范围.解:(1)由于sin 2A +sin 2B -sin 2C =-3sin A sin B , 所以由正弦定理得a 2+b 2-c 2=-3ab , 所以cos C =a 2+b 2-c 22ab =-3ab 2ab =-32, 由于C ∈(0,π),所以C =5π6. (2)由正弦定理得2R =csin C =4, 所以3a +b =2R (3sin A +sin B ) =4[3sin A +sin(π6-A )] =4(3sin A +12cos A -32sin A ) =4sin(A +π6),由于A ∈(0,π6), 所以A +π6∈(π6,π3), 所以sin(A +π6)∈(12,32), 所以3a +b 的取值范围是(2,23).20.(12分)如图,A ,C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛动身,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A ,C 两岛之间的直线距离; (2)求∠BAC 的正弦值.解:(1)在△ABC 中,由已知,AB =10×5=50,BC =10×3=30,∠ABC =180°-75°+15°=120°.依据余弦定理,得AC 2=502+302-2×50×30cos120°=4 900,所以AC =70. 故A ,C 两岛之间的直线距离是70海里.(2)在△ABC 中,据正弦定理,得BC sin ∠BAC =ACsin ∠ABC ,所以sin ∠BAC =BC sin ∠ABC AC =30sin120°70=3314, 故∠BAC 的正弦值是3314.21.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面P AC ⊥平面PCD ,P A ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面P AD ; (2)求证:P A ⊥平面PCD ;(3)求直线AD 与平面P AC 所成角的正弦值. 解:(1)证明:连接BD ,如图,易知AC ∩BD =H ,BH =DH ,又BG =PG ,故GH ∥PD ,又由于GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)证明:取棱PC 的中点N ,连接DN ,如图,依题意,得DN ⊥PC , 又由于平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,所以DN ⊥平面P AC ,又P A ⊂平面P AC ,故DN ⊥P A ,又由于P A ⊥CD ,CD ∩DN =D ,所以P A ⊥平面PCD .(3)连接AN ,如图,由(2)中DN ⊥平面P AC , 可知∠DAN 为直线AD 与平面P AC 所成的角. 由于△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN =3,又DN ⊥AN , 在Rt △AND 中,sin ∠DAN =DN AD =33,所以直线AD 与平面P AC 所成角的正弦值为33.22.(12分)如图,在四棱锥P -ABCD 中,△P AD 为正三角形,平面P AD ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD =2AB =2AD =4.(1)求证:平面PCD ⊥平面P AD ; (2)求三棱锥P -ABC 的体积;(3)在棱PC 上是否存在点E ,使得BE ∥平面P AD ?若存在,请确定点E 的位置,并证明;若不存在,请说明理由.解:(1)证明:由于AB ∥CD ,AB ⊥AD , 所以CD ⊥AD .由于平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD ,所以CD ⊥平面P AD . 由于CD ⊂平面PCD ,所以平面PCD ⊥平面P AD .(2)取AD 的中点O ,连接PO ,如图.由于△P AD 为正三角形,所以PO ⊥AD .由于平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD ,所以PO 为三棱锥P -ABC 的高.由于△P AD 为正三角形,CD =2AB =2AD =4,所以PO =3,所以V 三棱锥P -ABC =S △ABC ·PO =13×12×2×2×3=233.(3)在棱PC 上存在点E ,当E 为PC 的中点时, BE ∥平面P AD .证明:如图,分别取CP ,CD 的中点E ,F , 连接BE ,BF ,EF ,所以EF ∥PD . 由于AB ∥CD ,CD =2AB , 所以AB ∥FD ,AB =FD ,所以四边形ABFD 为平行四边形,所以BF ∥AD . 由于BF ∩EF =F ,AD ∩PD =D , 所以平面BEF ∥平面P AD .由于BE ⊂平面BEF ,所以BE ∥平面P AD .。
【人教A版】高一数学必修2模块综合测评(二)(Word版,含解析)
模块综合测试(满分120分,测试时间100分钟)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①底面多边形内接于一个圆的棱锥的侧棱长相等,②棱台的各侧棱不一定相交于一点,③如果不在同一平面内的两个相似的直角三角形的对应边互相平行,则连结它们的对应顶点所围成的多面体是三棱台,④圆台上底圆周上任一点与下底圆周上任一点的连线都是圆台的母线.其中正确的个数为( )A.3B.2C.1D.0解析:命题①中:底面多边形内接于一个圆,但并不能推测棱长相等;命题②中:由棱台的性质可知,棱台的各侧棱延长后相交于一点;命题③中:因两个直角三角形相似且对应边平行,可推出连结对应顶点后延长线交于一点,即此几何体可由一个平行于底面的平面所截,故命题③正确;命题④中:上底的圆周上一点与下底圆周上任一点连线有三种可能:在圆周上的曲线、侧面上的曲线或不在侧面上的线段.答案:C2.图1是一个物体的三视图,则此三视图所描述的物体是下列几何体中的( )图1解析:从三个角度看都是符合的,故选D.答案:D3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )图2A.16πB.20πC.24πD.32π解析:由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心,即球的直径为26,根据球的表面积公式可得球的表面积为24π.答案:C4.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A.60倍B.3060倍 C.120倍 D.30120倍解析:设木星的半径为r1,地球的半径为r2,由题意,得302403231rr,则木星的表面积∶地球的表面积=.120302403024013024032231232312221=⨯=⨯=•=rrrrrr答案:C5.已知水平放置的△ABC是按“斜二测画法”得到如图3所示的直观图,其中B′O′=C′O′=1,A′O′=23,那么原△ABC是一个( )图3A.等边三角形B.直角三角形C.三边中有两边相等的等腰三角形D.三边互不相等的三角形解析:根据“斜二测画法”可得BC=B′C′=2,AO=2A′O′=3.故原△ABC是一个等边三角形. 答案:A6.已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中正确命题的个数是( )A.0B.1C.2D.3解析:通过举例可证明①错误,可知②③命题为正确命题.答案:C7.点P(2,5)关于直线x+y+1=0的对称点的坐标为( )A.(6,-3)B.(3,-6)C.(-6,-3)D.(-6,3)解析:根据两点关于直线对称的特点:两点的连线与对称轴垂直以及两点的中点在对称轴上,可得对称点为(-6,-3).答案:D8.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )A.30°B.45°C.60°D.90°解析:将图形补成一个正方体如图,则PA与BD所成角等于BC′与BD所成角即∠DBC′.在等边三角形DBC′中,∠DBC′=60°,即PA与BD所成角为60°.答案:C9.若l为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l∥α,l⊥β⇒α⊥β.其中正确的命题有( )A.0个B.1个C.2个D.3个 解析:①中可由长方体的一角证明是错误的;②③易证明是正确的. 答案:C10.已知实数x 、y 满足2x+y+5=0,那么22y x +的最小值为( )A.5B.10C.52D.102解析:22y x +表示点P(x,y)到原点的距离.根据数形结合得22y x +的最小值为原点到直线2x+y+5=0的距离,即d=555=.答案:A11.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A.1条 B.2条 C.3条 D.4条解析:与点A (1,2)的距离为1的直线即为以点A(1,2)为圆心,以1为半径的圆的切线.与点B (3,1)的距离为2的直线即为以点B(3,1)为圆心,以2为半径的圆的切线.所以到A 、B 两点距离为1和2的直线即为两圆的公切线,因|AB |=5)12()31(22=-+-,且125+<,所以两圆相交,故有两条公切线.答案:B12.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角BACD ,则四面体ABCD 的四个顶点所在球的体积为( ) A.π12125 B.π9125 C.π6125 D.π3125解析:连结矩形ABCD 的对角线AC 、BD 交于O ,则AO=BO=CO=DO ,翻折后仍然AO=BO=CO=DO ,则O 为四面体ABCD 四个顶点所在球的圆心,因此四面体ABCD 四个顶点所在球的半径为25,故球的体积为ππ6125)25(343=. 答案:C二、填空题(本大题共6小题,每小题4分,共24分)13.圆台上、下底半径为2和3,则中截面面积为________________.解析:由圆台的性质可知中截面是一个圆,圆的直径为轴截面梯形的中位线,设中截面圆的半径为x ,故有4x=4+6,解得x=π425,25=S . 答案:π42514.经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是____________.解析:由已知可设经过直线2x+3y-7=0与7x+15y+1=0的交点的直线方程为2x+3y-7+λ(7x+15y+1)=0,整理得(2+7λ)x+(3+15λ)y -7+λ=0.根据两直线平行关系得λ=1,代入得3x+6y-2=0.答案:3x+6y-2=015.过A(-3,0)、B(3,0)两点的所有圆中面积最小的圆的方程是___________________.解析:根据圆的性质,圆的半径最小时,面积最小,即以AB 为直径端点的圆满足条件,所求方程为x 2+y 2=9. 答案:x 2+y 2=916.已知圆锥的侧面积是底面积的2倍,它的轴截面的面积为Q ,则圆锥的体积为___________.解析:设圆锥的高为h,半径为r,母线为l ,则S 侧=πr l ,S 底=πr 2,∵S 侧=2S 底,∴πr l =2πr 2,即l =2r.又l 2=r 2+h 2,解得h=r 3.又∵S 轴截面=rh=Q,∴r 2=3Q ,即r=43Q.∴h=4333Qr =.故V 圆锥=31πr 2h=433Q Q π.答案:433QQ π17.已知圆柱的高为h ,底面半径为R ,轴截面为矩形A 1ABB 1,在母线AA 1上有一点P ,且PA=a ,在母线BB 1上取一点Q ,使B 1Q=b ,则圆柱侧面上P 、Q 两点的最短距离为____________.解析:如图甲,沿圆柱的母线AA 1剪开得矩形 (如图乙),过P 作PE ∥AB 交BB 1于E , 则PE=AB=21·2πR=πR ,QE=h-a-b. ∴PQ=2222)()(b a h R QE PE --+=+π.答案:22)()(b a h R --+π18.过圆x 2+y 2=4外的一点A(4,0)作圆的割线,则割线被圆截得的弦的中点的轨迹方程为________________.解析:设弦的中点是P(x 0,y 0),根据圆的几何性质得OP ⊥AP ,即点P(x 0,y 0)在以OA 为直径的圆上,即(x 0-2)2+y 02=4.因P(x 0,y 0)在圆x 2+y 2=4内,故弦的中点的轨迹方程为(x-2)2+y 2=4,x ∈[0,1).答案:(x-2)2+y 2=4,x ∈[0,1)三、解答题(本大题共4小题,共48分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)已知直线l 垂直于直线3x-4y-7=0,直线l 与两坐标轴围成的三角形的周长为10,求直线l的方程.解:设直线l方程为4x+3y+b=0,则l与x 轴、y轴的交点为A(4b-,0),B(0,3b-).∴|AB|=b125.由|OA|+|OB|+|AB|=10,得12||53||4||bbb++=10.∴b=±10.∴l方程为4x+3y+10=0,4x+3y-10=0.20.(本小题满分12分)圆锥底面半径为1 cm,高为2cm,其有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面CDD1C1,如图,设正方体棱长为x,则CC1=x,C1D1=2x.作SO⊥EF于O,则SO=2,OE=1,∵△ECC1∽△ESO,∴EOECSOCC11=.∴12212xx-=.∴x=22(cm).∴正方体棱长为22cm.21.(本小题满分12分)(2005江苏高考,19)如图4,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P的轨迹方程.图4解:如图,以直线O1O2为x轴,线段O1O2的垂直平分线为y轴,建立平面直角坐标系,则两圆心分别为O1(-2,0),O2(2,0).设P(x,y),则PM 2=O 1P 2-O 1M 2=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1. ∵PM=2PN ,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即(x-6)2+y 2=33.这就是动点P 的轨迹方程.22.(本小题满分14分)如图5,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点.图5(1)求二面角B 1MNB 的正切值; (2)求证:PB ⊥平面MNB 1.(3)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P 、B 两点间的距离.(1)解:连结BD 交MN 于F ,连结B 1F.∵平面DD 1B 1B ⊥平面ABCD,交线为BD ,AC ⊥BD, ∴AC ⊥平面DD 1B 1B.又∵AC//MN , ∴MN ⊥平面DD 1B 1B.∵B 1F,BF ⊂平面DD 1B 1B , ∴B 1F ⊥MN,BF ⊥MN. ∵B 1F ⊂平面B 1MN ,BF ⊂平面BMN ,则∠B 1FB 为二面角B 1-MN-B 的平面角. 在Rt △B 1FB 中,设B 1B=1,则FB=42, ∴tan ∠B 1FB=22.(2)证明:过点P 作PE ⊥AA 1,则PE ∥DA ,连结BE. 又DA ⊥平面ABB 1A 1,∴PE ⊥平面ABB 1A 1,即PE ⊥B 1M. 又BE ⊥B 1M ,∴B 1M ⊥平面PEB. ∴PB ⊥MB 1.由(1)中MN ⊥平面DD 1B 1B,得PB ⊥MN ,所以PB ⊥平面MNB 1. (3)解:PB=213,符合条件的正方体表面展开图可以是以下6种之一:。
【测控设计】高一数学人教A版必修2模块综合测评.doc
模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,釦卜题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的)1.己知点A(3,a)在直线2x+y-7=0上,则a=()A. 1B.-lC.2D.-2解析::'2x3+a・7=0,•:Q=1.答案:A如图SBCD-AbCQi为正方体,异面直线AD与CB\所成的角是()A.30°B.45°C.60°D.90°解析:异面直线AD与C®所成的角为上BCB\,而厶BCB、为等腰直角三角形,所以Z BCB、=45。
.答案:B3. 用若干块相同的小正方体搭成一个儿何体,该儿何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8B.7C.6D.5解析:由正视图和侧视图可知,该几何体由两层小正方体拼接成;由俯视图可知,最下层有5 个小正方体;由侧视图可知,上层仅有一个小正方体,则共有6个小正方体.答案:C4. 若球的半径扩大到原来的2倍,那么体积扩大到原来的()A.64 倍 B.16 倍 C.8 倍 D.4 倍4解析:设球原来的半径为尸,体积为匕则7=%/,当球的半径扩大到原来的2倍后,其体积变为原来的2匸8倍.答案:c5•已知m 是平面<z 的一条斜线,点A 却,1为过点A 的一条动直线,那么下列情形屮可能出 现的是()A./〃加,/丄aB./丄加,/丄a C?丄 m.l // a D.l// m,l// a 答案:C6. 圆台的一个底面周长是另一个底面周长的3倍,母线长为7,圆台的侧面积为84兀则圆台 较小底面的半径为()A.7B.4C.9D.3解析:设圆台较小底面的半径为厂,则S 同台便=兀(尸+3厂”=84兀,又/=7,• */*=3. 答案:D7. 直线宀+1=0与圆(x+l )2+y 2=l 的位置关系是() A. 相切B. 直线过圆心C. 直线不过圆心,但与圆相交D. 相离卜 1 + 1|解析:圆(x+l )2+/=l 的圆心为(-1,0),圆心到直线疋y+l=0的距离d= A /2 =0.・:直线x-y+l=0过圆心. 答案:B 8.圆F+j?・8x+6y+16=0与圆X 2+J ^2=16的位置关系是() A.相交 B.相离 C.内切 D.外切解析:设圆X 2+/=16的圆心为O,则0(0,0),n=4.设圆H+y2_8x+6y+16=0的圆心为C,半径为◎则C (4,-3)/2=3..\\OC\ =V (4 - o )2 4- (- 3 - 0)2=5,•:|厂im|V|OC|<n+厂2, •:两圆相交. 答案:A 9.正视图 侧视图俯视图一个几何体的三视图如图所示,其屮止视图是边长为2的止三角形,俯视图是正方形,那么 该儿何体的侧视图的面积是() A.2\〃 B.SC.4D.2 答案:B解析:由题意可知侧视图与正视图形状完全一样是正三 角形,面枳10.如图,在正四棱柱ABCD-A,B X C X D X中,Ef分别是AB^BC,的中点,则以下结论中不成立的是()A. EF 与35垂直B. EF 与BD 垂直C. EF 与CD 异面D. EF 与4G 异面解析:连接43,:込是力5中点,•:ES\B,・・・EF 是SBC 、的中位线,•:EF//AC, 故D 不成立. 答案:D11. EZ 知圆C 的圆心是直线x+y+l=O 与直线x-y-1 = 0的交点,直线3x+4y-11 =0与圆C 相 交于两点,且|肋|=6,则圆C 的方程为( ) A.X 2+0;+ 1 尸=18 B.H+o 1 尸=3 Q C. (X -1)2+/=18 D. (x-1F+F=3解析:直线兀+y+l=0与直线x-y-]=0的交点为(0,-1),所以圆C 的圆心为(0,-1),设半径为r, (|3 X0 + 4x(・ 1)・ 11|)2由题意可得【 倍+ 4? ) +32=/,解得尸2=1&所以圆C 的方程为X 2+(J +1)2=18. 答案:A12. 若直线y=kjc+\与圆x 2+y 2=\相交于只0两点,且乙戶00=120。
高一数学人教A版必修2练习模块测试卷 Word版含解析
模块综合检测卷
(本部分在学生用书中单独成册)
(测试时间:分钟评价分值:分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的)
.直线-=的倾斜角是()
.°.°
.°.不存在
.已知点(,,)和点(,,),且=,则实数的值是()
.-或.-或
.或-.或-
.圆+-=与圆+---=的位置关系是()
.相交.相离
.外切.内切
.在同一个直角坐标系中,表示直线=与=+正确的是()
.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()
.直线-+=与圆+--=相切,则实数=()
或-.-或
.-或.-或
.在下列命题中,不是公理的是()
.平行于同一个平面的两个平面相互平行
.过不在同一条直线上的三点,有且只有一个平面
.如果一条直线上的两点在一个平面内,那么这条线上所有的点都在此平面内
.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线
.已知两直线:++=和:+-=,若⊥且在轴上的截距为-,则,的值分别为()
.,.,
.-,.,-
.如图,有一个水平放置的透明无盖的正方体容器,容器高,。
【金版新学案】高一数学人教A版必修二练习:模块质量评估试题(含答案解析)
模块质量评估(本栏目内容,在学生用书中以独立形式分册装订)一、选择题 (本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1. (2015 景·德镇期末 ) 已知直线 x- 3y- 2= 0,则该直线的倾斜角为()A. 30°B. 60°C. 120 °D. 150 °分析:直线 x- 3y- 2= 0 的斜率 k=33,故倾斜角为 30°,选 A.答案:A2. (2015 濮·阳综合高中月考 )过点 A(4, a)和 B(5,b) 的直线与 y= x+m 平行,则 |AB|的值为()A. 6 B. 2C. 2D.不确立b- a=1,得 b-a= 1,分析:由 k AB=5- 4即 |AB|= 5- 4 2+ b- a 2= 2.应选 B.答案:B3. (2015 ·芦岛期末葫)在空间直角坐标系中已知点P(0,0,3)和点 C(- 1,2,0) ,则在 y 轴上到 P 和 C 的距离相等的点 M 坐标是 ()A. (0,1,0) B. 0,-1, 0 21C. 0,2, 0D. (0,2,0)分析:设 M(0,y,0),则 |MP |= |MC|,因此 y232=-12+21+2-y ,解得 y=2,应选 C.答案:C4.若直线 (1+ a)x+ y+1= 0 与圆 x2+ y2-2x= 0 相切,则 a 的值为 ()A.1或-1B.2 或-2C. 1D.- 1圆 x2+ y2-2x= 0 的圆心 (1,0),半径为1,依题意得|1+ a+ 0+ 1|分析:= 1,即 |a+ 2|1+ a 2+ 1=a+ 1 2+ 1,平方整理得 a=- 1,应选 D.答案: D5. (2015 中·山市杨仙逸中学检测)如图是某几何体的三视图,此中正视图是腰长为 2 的等腰三角形,俯视图是半径为 1 的半圆,则该几何体的体积是 ()431A. 3πB.2π33C. 3πD. 6π分析:由题意知,该几何体为沿轴截面切开的半个圆锥,圆锥的半径为 1 ,高为3,故所求体积为1×1× π× 12× 3=3π,选 D.2 36答案:D6. (2015 ·川一中期末银)在空间给出下边四个命题(此中 m, n 为不一样的两条直线,α,β为不一样的两个平面)①m⊥ α,n∥ α? m⊥n ②m∥ n,n∥ α? m∥ α ③m∥ n, n⊥β,m∥ α? α⊥ β ④ m∩ n =A, m∥ α, m∥ β,n∥ α, n∥ β? α∥β此中正确的命题个数有()A.1个B.2 个C.3 个D.4 个分析:②中m 也可能在平面α内,②错,①③④正确,应选 C.答案:C7.直线 l 将圆 x2+ y2- 2x- 4y=0均分,且与直线 x+2y= 0 垂直,则直线 l 的方程是 ()A. 2x- y=0B. 2x- y- 2= 0C. x+ 2y- 3=0D. x- 2y+ 3= 0分析:依题意知直线l 过圆心(1,2),斜率 k= 2,因此 l 的方程为 y- 2= 2(x-1),即2x- y= 0,应选 A.答案:A8. (2015 ·连六校联考大 )若点 A(-3,- 4), B(6,3)到直线 l : ax +y + 1= 0 的距离相等,则实数 a 的值为 ()71A. 9B .- 3C.7或1D .- 7或- 19 39 3分析:|-3a - 4+ 1||6a + 3+ 1|71 由2 = 22 ,解得 a =- 9或- 3,应选 D.2+ +1a 1 a答案:D9.点 P 在正方形 ABCD 所在平面外, PD ⊥平面 ABCD ,PD =AD ,则 PA 与 BD 所成角 的度数为()A . 30°C . 60°B . 45°D . 90°分析:利用正方体求解,以下图:PA 与 BD60°,故 PA 与所成的角,即为PA 与BD 所成角为 60°,选PQ 所成的角,由于△C.APQ 为等边三角形, 因此∠APQ =答案:C10.在四周体 A -BCD中,棱AB ,AC ,AD两两相互垂直,则极点A 在底面BCD上的投影H 为△ BCD的 ()A .垂心B .重心C .外心D .心里分析:由于 AB ⊥AC , AB ⊥AD , AC ∩ AD =A ,由于 AB ⊥平面 ACD ,因此 AB ⊥CD.由于 AH ⊥平面BCD ,因此 AH ⊥CD , AB ∩ AH =A ,因此 CD ⊥平面 ABH ,因此 CD ⊥BH .同理可证 CH ⊥BD ,DH ⊥BC ,则 H 是△BCD 的垂心.应选 A.答案:A11.圆 x2+ y2+ 2x+ 4y- 3=0 上到直线 x+ y+ 1=0 的距离为2的点共有 ()A.1个B.2 个C.3 个D.4 个分析:圆 x2+ y2+ 2x+4y- 3= 0 的圆心坐标是 (- 1,- 2),半径是22,圆心到直线x+ y+ 1= 0的距离为 2,∴过圆心平行于直线x+ y+ 1= 0 的直线与圆有两个交点,另一条与直线 x+ y+ 1= 0 的距离为2的平行线与圆相切,只有一个交点,共有 3 个交点,应选 C.答案:C12. (2014 德·州高一期末 )将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD= a,则三棱锥 D -ABC 的体积为 ()23a3A. 12aB.122 3a3C. 4 aD. 6分析:取 AC 的中点 O,如图,则 BO=DO=22 a,又 BD =a,因此 BO ⊥DO ,又 DO ⊥AC,因此 DO ⊥平面 ACB,V D -=1 △ABC3S ABC·DO=1×1× a2×2a=2a3.应选 A. 32212答案:A二、填空题 (本大题共 4 小题,每题 4 分,共 16 分.请把正确答案填在题中横线上 ) 13.以下列图所示, Rt△ A′B′ C′为水平搁置的△ ABC 的直观图,此中 A′C′⊥ B′ C′,B′ O′= O′ C′= 1,则△ ABC 的面积为 ________.分析:由直观图画法例则将△A′ B′ C′复原为△ABC,以下图,则有 BO= OC= 1, AO= 2△11× 2× 2 2=2 2.2.故 S ABC=BC·AO=22答案:2214.已知 A(0,8),B(- 4,0), C(m,- 4) 三点共线,则实数m 的值是 ________.8- 00+ 4分析:k AB== 2,k BC=0+ 4- 4- m∵k AB= k BC,∴m=- 6.答案:- 615.直线 y= 2x+ 3 被圆 x2+ y2- 6x- 8y= 0 所截得的弦长等于________.分析:先求弦心距,再求弦长.圆的方程可化为 (x- 3)2+ (y-4) 2= 25,故圆心为 (3,4),半径 r =5.又直线方程为2x- y+ 3=0,|2× 3- 4+ 3|5,因此圆心到直线的距离为d=4+1=因此弦长为 2r 2- d2= 2× 25- 5= 220= 4 5.答案:4516.已知正四棱锥 O- ABCD 的体积为32,底面边长为3,则以 O 为球心, OA 为半2径的球的表面积为________.分析:此题先求出正四棱锥的高h,而后求出侧棱的长,再运用球的表面积公式求解.V 四棱锥O-ABCD=1× 3×3h=32,得 h=32,32222AC 2186∴OA = h + 2 =4+4= 6.∴S 球= 4πOA2= 24π.答案:24π三、解答题 (本大题共 6 小题,共 74 分.解答时应写出必需的文字说明、证明过程或演算步骤 )17.(本小题满分12 分 )(2015 河·源市高二 (上 )期中 )轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为2,求球的体积.分析:以下图,作出轴截面,由于△ABC 是正三角形,1因此 CD =2AC= 2,因此 AC= 4, AD=23× 4= 23,由于 Rt△AOE∽Rt△ACD,OE CD因此AO=AC.设 OE=R,则 AO= 2 3- R,R1R=23因此=2,因此 3 .2 3-R因此 V球4342 3 3323π=πR =π·3=27. 33323π因此球的体积等于.2718. (本小题满分12 分 )(2015 福·建八县一中联考)已知直线 l : kx- y+ 1- 2k=0(k∈R).(1)证明:直线 l过定点;(2)若直线 l 交 x 轴正半轴于点A,交 y 轴正半轴于点 B, O 为坐标原点,且 |OA |= |OB|,求 k 的值.分析: (1)证明:法一:直线 l 的方程可化为y- 1=k( x-2),故不论 k 取何值,直线l 总过定点 (2,1) .法二:设直线过定点0,y0),(x则kx0-y0+1-2k=0 对随意k∈R恒建立,即 (x0- 2)k- y0+ 1= 0 恒建立,x0- 2= 0,因此-y0+ 1= 0解得 x0=2, y0= 1,故直线 l 总过定点 (2,1).(2)由于直线l 的方程为y= kx- 2k+ 1,1则直线 l 在 y 轴上的截距为1- 2k,在 x 轴上的截距为2-k,依题意 1- 2k= 2-1> 0,解得 k=- 1 或 k=1k2( 经查验,不合题意 )因此所求 k=- 1.19. (本小题满分 12分 )(2015 西·安一中期末 )已知正方体ABCD - A1B1C1D1, O 是底面ABCD 对角线的交点.求证: (1)C1O∥平面 AB1D 1;(2)A1C⊥平面 AB1D 1.证明:(1)连结 A1C1,设 A1C1∩ B1D1=O1,连结 AO1,由于 ABCD -A1B1C1D1是正方体,因此 A1ACC1是平行四边形,D1 B1∩ AB1= B1,因此 A1C1∥AC,且 A1C1=AC ,又 O1, O 分别是 A1C1, AC 的中点,因此 O1C1∥AO 且 O1C1= AO,因此 AOC1O1是平行四边形,因此 C1O∥AO1, AO1? 平面 AB1D 1,C1O?平面 AB1D 1,因此 C1O∥平面AB1D1,(2)由于 CC1⊥平面 A1B1C1D1,因此 CC 1⊥B1D 1,又由于 A1C1⊥B1D 1,因此 B1D 1⊥平面 A1C1C,即 A1C⊥B1D1,同理可证 A1C⊥AB1,又 D1B1∩ AB1=B1,因此 A1C⊥平面 AB1D 1.20. (本小题满分12 分 )求圆心在直线y=- 2x 上,而且经过点A(0,1) ,与直线x+ y=1相切的圆的标准方程.分析:由于圆心在直线y=- 2x 上,设圆心坐标为( a,- 2a),则圆的方程为(x- a)2+(y+ 2a)2= r2,圆经过点 A(0,1)且和直线x+y= 1 相切,2+ 2a+122a=r ,因此有|a- 2a- 1|= r ,212解得 a=-3,r=3,12222因此圆的方程为x+3+ y-3=9.21.(本小题满分13 分 )以下图,在四棱锥V- ABCD 中,底面 ABCD 是正方形,侧面VAD 是正三角形,平面VAD⊥底面 ABCD .(1)求证: AB⊥平面 VAD;(2)求平面 VAD 与平面 VDB 所成的二面角的大小.分析:(1) 证明:∵底面 ABCD 是正方形,∴AB⊥ AD .∵平面 VAD⊥底面 ABCD ,平面 VAD∩底面 ABCD = AD, AB⊥ AD, AB? 底面 ABCD ,∴AB⊥平面 VAD.(2)取 VD 的中点 E ,连结 AE , BE.∵△ VAD 是正三角形,∴ AE ⊥ VD , AE = 3AD.2∵ AB ⊥平面 VAD ,VD ? 平面 VAD ,∴ AB ⊥ VD .又 AB ∩ AE = A ,∴ VD ⊥平面 ABE.∵ BE? 底面 ABE ,∴ VD ⊥ BE.∴∠ ABE 就是平面 VAD 与平面 VDB 所成的二面角的平面角.在 Rt △BAE 中, tan ∠ BEA =BA= AD=2 3.AE332 AD∴平面 VAD 与平面 VDB 所成的二面角的正切值为233.22.(本小题满分 132 2上的动点,点 D 是 P分)如图,设 P 是圆 x + y = 25 在 x 轴上的投影, M 为 PD 上一点,且 |MD |= 4|PD |.5(1)当 P 在圆上运动时,求点 M 的轨迹 C 的方程;(2)求过点 (3,0) 且斜率为 4的直线被 C 所截线段的长度.5分析: (1)设 M 的坐标为 (x , y), P 的坐标为 (x p , y p )p = xx由已知得, y p =5y4252∵P 在圆上,∴ x + 4y= 25,即 C 的方程为 x 2 + y 2= 1.25 164 4(2)过点 (3,0)且斜率为 5的直线方程为 y = 5(x - 3),设直线与 C 的交点为 A(x 1, y 1) , B(x 2 ,y 2)4将直线方程 y = 5(x -3) 代入 C 的方程,得 x 2+ x - 3 2= 1 整理得 x 2- 3x - 8= 025253- 413+ 41∴x 1=,x 2=22∴线段 AB 的长度为|AB|=x1- x22+ y1- y22162=1+25x1- x24141=25× 41=5 .。
高一数学人教A版必修2试题综合学业质量标准检测 Word版含解析
本册综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分分.考试时间分钟.第Ⅰ卷(选择题共分)一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).(·泰安二中高一检测)直线=与直线=+垂直,则等于( ).-...-[解析]由题意,得=-,∴=-..空间中到、两点距离相等的点构成的集合是( ).线段的中垂面.线段的中垂线.一个圆.过中点的一条直线[解析]空间中线段的中垂面上的任意一点到、两点距离相等..若一个三角形的平行投影仍是三角形,则下列命题:①三角形的高线的平行投影,一定是这个三角形的平行投影的高线;②三角形的中线的平行投影,一定是这个三角形的平行投影的中线;③三角形的角平分线的平行投影,一定是这个三角形的平行投影的角平分线;④三角形的中位线的平行投影,一定是这个三角形的平行投影的中位线.其中正确的命题有( ).②④.③④.①②.②③[解析]垂直线段的平行投影不一定垂直,故①错;线段的中点的平行投影仍是线段的中点,故②正确;三角形的角平分线的平行投影,不一定是角平分线,故③错;因为线段的中点的平行投影仍然是线段的中点,所以中位线的平行投影仍然是中位线,故④正确.选..如图,在同一直角坐标系中,表示直线=与=+正确的是( )[解析]当>时,直线=的斜率=>,直线=+在轴上的截距等于>,此时,选项、、、都不符合;当<时,直线=的斜率=<,直线=+在轴上的截距等于<,只有选项符合,故选..已知圆++-+=截直线++=所得弦的长度为,则实数的值是( )....[解析]圆++-+=的圆心(-),半径=(<).圆心(-)到直线++=的距离==,由题意,得=..在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是( )[解析]如图所示,由图可知选..(·天水市高一检测)圆+-+=和圆+-=交于、两点,则的垂直平分线的方程是( ).++=.--=.--=.-+=[解析]圆+-+=的圆心(,-),圆+-=的圆心(),的垂直平分线过圆心、,∴所求直线的斜率==,所求直线方程为=(-),即--=..(·南平高一检测)已知直线与直线-+=关于直线=对称,则直线的方程为( ).+-=.-+=.+-=.+-=[解析]由(\\(-+==)),得(\\(==)).由题意可知直线的斜率与直线-+=的斜率互为相反数,∴=-,故直线的方程为-=-(-),即+-=..某几何体的三视图如下所示,则该几何体的体积是( )....[解析]该几何体是一个正三棱柱和一个三棱锥的组合体,故体积=××+×××=..(~·郑州高一检测)过点()的直线与圆:(-)+(-)=交于,两点,为圆心,当∠最小时,直线的方程是( ).+-=.-+=.+-=.-+=[解析]由圆的几何性质知,圆心角∠最小时,弦的长度最短,此时应有⊥.∵=,。
高中数学模块综合检测新人教A版必修第二册
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i z +2=i,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A2.在△ABC 中,a =3,b =2,A =30°,则sin B =( ) A .13 B .23 C .23D .223【答案】A3.某校高一年级有男生450人,女生550人,若在各层中按比例抽取样本,总样本量为40,则在男生、女生中抽取的人数分别为( )A .17,23B .18,22C .19,21D .22,18【答案】B4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则a -2b 与b 的夹角是( ) A .30° B .60° C .120° D .150° 【答案】C5.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A .25B .20C .18D .15【答案】D6.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,首批21支短视频全网发布,传扬中国共产党伟大精神,为广大青年群体带来精神感召.小李同学打算从《青春之歌》《闪闪的红星》《英雄儿女》《焦裕禄》等四支短视频中随机选择两支观看,则选择观看《青春之歌》的概率为( )A .12B .13C .14D .25【答案】A7.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里记载了这样一个题目:“今有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一块三角形的沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为( )A .15平方千米B .18平方千米C .21平方千米D .24平方千米【答案】C【解析】设在△ABC 中,a =13里,b =14里,c =15里,∴由余弦定理得cos C =132+142-1522×13×14=513,∴sin C =1213.故△ABC 的面积为12×13×14×1213×5002×11 0002=21(平方千米).故选C .8.在三棱锥ABCD 中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为2015π,则△ABC 的边长为( )A .332 B .634 C .633 D .6【答案】D【解析】如图,取BC 中点M ,连接AM ,DM .设等边△ABC 与等边△BCD 的外心分别为N ,G ,三棱锥外接球的球心为O ,连接OA ,OD ,ON ,OG .由V =4π3R 3=2015π,得外接球半径R =15.设△ABC 的边长为a ,则ON =GM =13DM =36a ,AN =23AM =33a .在Rt △ANO 中,由ON 2+AN 2=R 2,得a 212+a 23=15,解得a =6.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是( )A .若事件A 与事件B 互斥,则P (A )+P (B )=1B .若事件A 与事件B 满足P (A )+P (B )=1,则事件A 与事件B 为对立事件C .“事件A 与事件B 互斥”是“事件A 与事件B 对立”的必要不充分条件D .某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【答案】ABD【解析】若事件A 与事件B 互斥,则有可能P (A )+P (B )<1,故A 不正确;若事件A 与事件B 为同一事件,且P (A )=0.5,则满足P (A )+P (B )=1,但事件A 与事件B 不是对立事件,B 不正确;互斥不一定对立,对立一定互斥,故C 正确;某人打靶时连续射击两次,事件“至少有一次中靶”与事件“至多有一次中靶”既不互斥也不对立,D 错误.故选ABD .10.如图是民航部门统计的今年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门 【答案】ABC【解析】由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,A 正确;深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,B 正确;条形图由高到低居于前三位的城市为北京、深圳和广州,C 正确;平均价格的涨幅由高到低分别为天津、西安和南京,D 错误.故选ABC .11.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是( )A .a 为单位向量B .a ⊥bC .b ∥BC →D .(4a +b )⊥BC →【答案】ACD【解析】由AB →=2a ,得a =12AB →,又AB =2,所以|a |=1,即a 是单位向量,A 正确;a ,b 的夹角为120°,B 错误;因为AC →=AB →+BC →=2a +b ,所以BC →=b ,C 正确;(4a +b )·BC →=4a ·b +b2=4×1×2×cos 120°+4=-4+4=0,D 正确.故选ACD .12.如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则( )A .三棱锥A -D 1PC 的体积不变B .A 1P ∥平面ACD 1C .DP ⊥BC 1D .平面PDB 1⊥平面ACD 1【答案】ABD【解析】连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥PAD 1C 的体积不变,又因为V 三棱锥PAD 1C =V 三棱锥AD 1PC ,所以A 正确;因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,B 正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故C 不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面ACD 1,又因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,D 正确.故选ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z =1+3i 1-i ,z -为z 的共轭复数,则z 的虚部为________.【答案】-2【解析】由z =1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,得z -=-1-2i,∴复数z 的虚部为-2.14.一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,已知该组数据的中位数为众数的2倍,则:(1)该组数据的上四分位数是________; (2)该组数据的方差为________. 【答案】(1)9 (2)11.25【解析】(1)一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,∵该组数据的中位数为众数的2倍,∴x +72=2×3,解得x =5.∵8×0.75=6,∴该组数据的上四分位数是8+102=9.(2)该组数据的平均数为:18(1+3+3+5+7+8+10+11)=6,∴该组数据的方差为18[(1-6)2+(3-6)2+(3-6)2+(5-6)2+(7-6)2+(8-6)2+(10-6)2+(11-6)2]=11.25.15.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知ab cos(A -B )=a 2+b 2-c 2,A =45°,a =2,则c =________.【答案】4105【解析】由ab cos(A -B )=a 2+b 2-c 2,得cos(A -B )=2·a 2+b 2-c 22ab=2cos C =-2cos(A+B ),整理,得3cos A cos B =sin A sin B ,所以tan A tan B =3.又A =45°,所以tan A =1,tan B =3.由sin B cos B =3,sin 2B +cos 2B =1,得sin B =31010,cosB =1010.所以sin C =sin(A +B )=22⎝ ⎛⎭⎪⎫31010+1010=255.由正弦定理,得c =a sin C sin A =4105. 16.如图,AB →=3AD →,AC →=4AE →,BE 与CD 交于P 点,若AP →=mAB →+nAC →,则m =________,n =________.【答案】311 211【解析】因为AB →=3AD →,AC →=4AE →,且E 、P 、B 三点共线,D 、P 、C 三点共线,所以存在x ,y 使得AP →=xAE →+(1-x )AB →=14xAC →+(1-x )AB →.因为AP →=yAC →+(1-y )AD →=yAC →+13(1-y )AB →,所以⎩⎪⎨⎪⎧14x =y ,1-x =13(1-y ),解得x =811,y =211,所以AP →=14×811AC →+⎝ ⎛⎭⎪⎫1-811AB →=211AC →+311AB →=311AB →+211AC →.又因为AP →=mAB →+nAC →,所以m =311,n =211.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知复数z =m 2-m i(m ∈R),若|z |=2,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若z 2+az +b =1+i,求实数a ,b 的值.解:(1)∵z =m 2-m i,|z |=2,∴m 4+m 2=2,得m 2=1.又∵z 在复平面内对应的点位于第四象限,∴m =1,即z =1-i.(2)由(1)得z =1-i,∴z 2+az +b =1+i ⇒(1-i)2+a (1-i)+b =1+i.∴(a +b )-(2+a )i =1+i,∴⎩⎪⎨⎪⎧a +b =1,2+a =-1,解得a =-3,b =4.18.在①b +b cos C =2c sin B ,②S △ABC =2CA →·CB →,③(3b -a )cos C =c cos A ,三个条件中任选一个,补充在下面问题中,并解决问题.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足________. (1)求cos C 的值;(2)若点E 在AB 上,且AE →=2EB →,EC =413,BC =3,求sin B .解:(1)若选①:因为b +b cos C =2c sin B ,由正弦定理可得sin B +sin B cos C =2sin C sin B .因为sin B ≠0,所以1+cos C =2sin C .联立⎩⎨⎧1+cos C =2sin C ,sin 2C +cos 2C =1,解得cos C =13,sin C =223,故cos C =13. 若选②:因为S △ABC =2CA →·CB →,所以12ab sin C =2ba cos C ,即sin C =22cos C >0,联立sin 2C +cos 2C =1,可得cos C =13.若选③:因为(3b -a )cos C =c cos A ,由正弦定理可得(3sin B -sin A )cos C =sin C cosA ,所以3sinB cosC =sin A cos C +sin C cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos C =13.(2)由余弦定理可得cos ∠AEC =AE 2+EC 2-AC 22AE ·EC =49c 2+EC 2-b 243c ·EC ,cos ∠BEC =BE 2+EC 2-BC 22BE ·EC=19c 2+EC 2-a 223c ·EC ,因为cos ∠AEC +cos ∠BEC =0,所以49c 2+EC 2-b 243c ·EC +19c 2+EC 2-a 223c ·EC =0,即2c 2+9EC 2-3b 2-6a 2=0,则2c 2-3b 2=6a 2-9EC 2=6×9-9×419=13,①同时cos C =a 2+b 2-c 22ab =13,即b 2-c 2=2b -9,②联立①②可得b 2+4b -5=0,解得b =1,则c =22,故cos B =a 2+c 2-b 22ac =223,则sin B=13. 19.如图所示,在四棱锥MABCD 中,底面ABCD 为直角梯形,BC ∥AD ,∠CDA =90°,AD =4,BC =CD =2,△MBD 为等边三角形.(1)求证:BD ⊥MC ;(2)若平面MBD ⊥平面ABCD ,求三棱锥CMAB 的体积. (1)证明:取BD 中点O ,连接CO 、MO ,如图所示: ∵△MBD 为等边三角形,且O 为BD 中点,∴MO ⊥BD . 又BC =CD ,O 为BD 中点,∴CO ⊥BD .又MO ∩CO =O ,∴BD ⊥平面MCO . ∵MC ⊂平面MCO ,∴BD ⊥MC .(2)解:∵平面MBD ⊥平面ABCD ,且平面MBD ∩平面ABCD =BD ,MO ⊥BD , ∴MO ⊥平面ABCD .由(1)知MB =MD =BD =22,MO =MB 2-BO 2=6,S △ABC =12BC ·CD =2,∴V CMAB =V MABC =13×S △ABC ×MO =263.20.某冰糖橙为甜橙的一种,云南著名特产,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5 kg).某采购商打算采购一批该橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:等级 珍品 特级 优级 一级 箱数 40 30 10 20 售价/(元·kg -1)36302418(2)按照分层抽样的方法,从这100箱橙子中抽取10箱,试计算各等级抽到的箱数; (3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起,再从中抽取2箱,求抽取的2箱中两种等级均有的概率.解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为36×410+30×310+24×110+18×210=29.4(元/kg). (2)依题意,珍品抽到110×40=4(箱),特级抽到110×30=3(箱),优级抽到110×10=1(箱),一级抽到110×20=2(箱).(3)抽到的特级有3箱,编号为A 1,A 2,A 3,抽到的一级有2箱,编号为B 1,B 2. 从中抽取2箱,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种可能,两种等级均有的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)共6种可能,∴所求概率p =610=35.21.已知向量a =(3cos ωx ,sin ωx ),b =(cos ωx ,cos ωx ),其中ω>0,记函数f (x )=a ·b .(1)若函数f (x )的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a=4,b +c =5,求△ABC 的面积.解:(1)f (x )=a ·b =3cos 2ωx +sin ωx ·cos ωx =3(cos 2ωx +1)2+sin 2ωx2=sin ⎝⎛⎭⎪⎫2ωx +π3+32. ∵f (x )的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.∵f ⎝ ⎛⎭⎪⎫A 2=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32. 由0<A <π,得π3<A +π3<4π3,∴A +π3=2π3,解得A =π3.由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-bc .联立b +c =5,得bc =3. ∴S △ABC =12bc sin A =12×3×32=334.22.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~5 组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,解得x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32.(3)①5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.。
高一数学人教A版必修2模块综合测评二 含解析 精品
模块综合测试(满分120分,测试时间100分钟)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①底面多边形内接于一个圆的棱锥的侧棱长相等,②棱台的各侧棱不一定相交于一点,③如果不在同一平面内的两个相似的直角三角形的对应边互相平行,则连结它们的对应顶点所围成的多面体是三棱台,④圆台上底圆周上任一点与下底圆周上任一点的连线都是圆台的母线.其中正确的个数为( )A.3B.2C.1D.0解析:命题①中:底面多边形内接于一个圆,但并不能推测棱长相等;命题②中:由棱台的性质可知,棱台的各侧棱延长后相交于一点;命题③中:因两个直角三角形相似且对应边平行,可推出连结对应顶点后延长线交于一点,即此几何体可由一个平行于底面的平面所截,故命题③正确;命题④中:上底的圆周上一点与下底圆周上任一点连线有三种可能:在圆周上的曲线、侧面上的曲线或不在侧面上的线段. 答案:C2.图1是一个物体的三视图,则此三视图所描述的物体是下列几何体中的()图1解析:从三个角度看都是符合的,故选D. 答案:D3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()图2A.16πB.20πC.24πD.32π解析:由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心,即球的直径为26,根据球的表面积公式可得球的表面积为24π. 答案:C4.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( ) A.60倍 B.3060倍 C.120倍 D.30120倍 解析:设木星的半径为r 1,地球的半径为r 2,由题意,得302403231 r r ,则木星的表面积∶地球的表面积=.120302403024013024032231232312221=⨯=⨯=∙=r r r r r r答案:C5.已知水平放置的△ABC 是按“斜二测画法”得到如图3所示的直观图,其中B′O′=C′O′=1,A′O′=23,那么原△ABC 是一个()图3A.等边三角形B.直角三角形C.三边中有两边相等的等腰三角形D.三边互不相等的三角形解析:根据“斜二测画法”可得BC=B′C′=2,AO=2A′O′=3.故原△ABC 是一个等边三 角形. 答案:A6.已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ;②若m ∥α,n ⊥α,则n ⊥m ; ③若m ⊥α,m ∥β,则α⊥β.其中正确命题的个数是( )A.0B.1C.2D.3 解析:通过举例可证明①错误,可知②③命题为正确命题. 答案:C7.点P(2,5)关于直线x+y+1=0的对称点的坐标为( )A.(6,-3)B.(3,-6)C.(-6,-3)D.(-6,3)解析:根据两点关于直线对称的特点:两点的连线与对称轴垂直以及两点的中点在对称轴上,可得对称点为(-6,-3). 答案:D8.点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°解析:将图形补成一个正方体如图,则PA 与BD 所成角等于BC′与BD 所成角即∠DBC′.在等边三角形DBC′中,∠DBC′=60°,即PA 与BD 所成角为60°.答案:C9.若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题: ①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l ∥α,l ⊥β⇒α⊥β.其中正确的命题有( )A.0个B.1个C.2个D.3个 解析:①中可由长方体的一角证明是错误的;②③易证明是正确的. 答案:C10.已知实数x 、y 满足2x+y+5=0,那么22y x +的最小值为( )A.5B.10C.52D.102 解析:22y x +表示点P(x,y)到原点的距离.根据数形结合得22y x +的最小值为原点到直线2x+y+5=0的距离,即d=555=.答案:A11.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A.1条 B.2条 C.3条 D.4条解析:与点A (1,2)的距离为1的直线即为以点A(1,2)为圆心,以1为半径的圆的切线.与点B (3,1)的距离为2的直线即为以点B(3,1)为圆心,以2为半径的圆的切线.所以到A 、B 两点距离为1和2的直线即为两圆的公切线,因|AB |=5)12()31(22=-+-,且125+<,所以两圆相交,故有两条公切线.答案:B12.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角BACD ,则四面体ABCD 的四个顶点所在球的体积为( ) A.π12125 B.π9125 C.π6125 D.π3125解析:连结矩形ABCD 的对角线AC 、BD 交于O ,则AO=BO=CO=DO ,翻折后仍然AO= BO=CO=DO ,则O 为四面体ABCD 四个顶点所在球的圆心,因此四面体ABCD 四个顶点所在球的半径为25,故球的体积为ππ6125)25(343=. 答案:C二、填空题(本大题共6小题,每小题4分,共24分)13.圆台上、下底半径为2和3,则中截面面积为________________.解析:由圆台的性质可知中截面是一个圆,圆的直径为轴截面梯形的中位线,设中截面圆的半径为x ,故有4x=4+6,解得x=π425,25=S . 答案:π42514.经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是____________.解析:由已知可设经过直线2x+3y-7=0与 7x+15y+1=0的交点的直线方程为2x+3y-7+λ(7x+15y+1)=0,整理得(2+7λ)x+(3+15λ)y -7+λ=0.根据两直线平行关系得λ=1,代入得3x+6y-2=0.答案:3x+6y-2=015.过A(-3,0)、B(3,0)两点的所有圆中面积最小的圆的方程是___________________.解析:根据圆的性质,圆的半径最小时,面积最小,即以AB 为直径端点的圆满足条件,所求方程为x 2+y 2=9. 答案:x 2+y 2=916.已知圆锥的侧面积是底面积的2倍,它的轴截面的面积为Q ,则圆锥的体积为___________.解析:设圆锥的高为h,半径为r,母线为l ,则S 侧=πr l ,S 底=πr 2,∵S 侧=2S 底,∴πr l =2πr 2,即l =2r.又l 2=r 2+h 2,解得h=r 3. 又∵S 轴截面=rh=Q,∴r 2=3Q ,即r=43Q.∴h=4333Qr =.故V 圆锥=31πr 2h=433Q Q π.答案:433QQ π17.已知圆柱的高为h ,底面半径为R ,轴截面为矩形A 1ABB 1,在母线AA 1上有一点P ,且PA=a ,在母线BB 1上取一点Q ,使B 1Q=b ,则圆柱侧面上P 、Q 两点的最短距离为____________.解析:如图甲,沿圆柱的母线AA 1剪开得矩形 (如图乙),过P 作PE ∥AB 交BB 1于E , 则PE=AB=21·2πR=πR ,QE=h-a-b. ∴PQ=2222)()(b a h R QE PE --+=+π.答案:22)()(b a h R --+π18.过圆x 2+y 2=4外的一点A(4,0)作圆的割线,则割线被圆截得的弦的中点的轨迹方程为________________.解析:设弦的中点是P(x 0,y 0),根据圆的几何性质得OP ⊥AP ,即点P(x 0,y 0)在以OA 为直径的圆上,即(x 0-2)2+y 02=4.因P(x 0,y 0)在圆x 2+y 2=4内,故弦的中点的轨迹方程为(x-2)2+y 2=4,x ∈[0,1).答案:(x-2)2+y 2=4,x ∈[0,1)三、解答题(本大题共4小题,共48分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)已知直线l 垂直于直线3x-4y-7=0,直线l 与两坐标轴围成的三角形的周长为10,求直线l 的方程.解:设直线l 方程为4x+3y+b=0,则l 与 x 轴、y 轴的交点为A(4b -,0),B(0,3b -). ∴|AB |=b 125.由|OA |+|OB |+|AB |=10,得12||53||4||b b b ++=10.∴b=±10. ∴l 方程为4x+3y+10=0,4x+3y-10=0.20.(本小题满分12分)圆锥底面半径为1 cm ,高为2 cm ,其有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1,如图,设正方体棱长为x ,则CC 1=x,C 1D 1=2x.作SO ⊥EF 于O ,则SO=2,OE=1, ∵△ECC 1∽△ESO,∴EOEC SO CC 11=. ∴12212x x -=. ∴x=22(cm). ∴正方体棱长为22cm. 21.(本小题满分12分)(2005江苏高考,19)如图4,圆O 1与圆O 2的半径都是1, O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P 的轨迹方程.图4解:如图,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则两圆心分别为O 1(-2,0),O 2(2,0).设P(x,y),则PM 2=O 1P 2-O 1M 2=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1. ∵PM=2PN ,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即 (x-6)2+y 2=33.这就是动点P 的轨迹方程.22.(本小题满分14分)如图5,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点.图5(1)求二面角B 1MNB 的正切值; (2)求证:PB ⊥平面MNB 1.(3)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P 、B 两点间的距离.(1)解:连结BD 交MN 于F ,连结B 1F.∵平面DD 1B 1B ⊥平面ABCD,交线为BD ,AC ⊥BD, ∴AC ⊥平面DD 1B 1B.又∵AC//MN , ∴MN ⊥平面DD 1B 1B.∵B 1F,BF ⊂平面DD 1B 1B , ∴B 1F ⊥MN,BF ⊥MN. ∵B 1F ⊂平面B 1MN ,BF ⊂平面BMN ,则∠B 1FB 为二面角B 1-MN-B 的平面角. 在Rt △B 1FB 中,设B 1B=1,则FB=42, ∴tan ∠B 1FB=22.(2)证明:过点P 作PE ⊥AA 1,则PE ∥DA ,连结BE. 又DA ⊥平面ABB 1A 1,∴PE ⊥平面ABB 1A 1,即PE ⊥B 1M. 又BE ⊥B 1M ,∴B 1M ⊥平面PEB. ∴PB ⊥MB 1.由(1)中MN ⊥平面DD 1B 1B,得PB ⊥MN ,所以PB ⊥平面MNB 1. (3)解:PB=213,符合条件的正方体表面展开图可以是以下6种之一:。
新教材 人教A高中数学必修第二册全册各章测验及模块综合测验 精选最新配套习题含解析
人教A 必修第二册各章综合测验1、平面向量及其应用............................................................................................................ - 1 -2、复数 ................................................................................................................................. - 11 -3、立体几何初步 ................................................................................................................. - 17 -4、统计 ................................................................................................................................. - 30 -5、概率 ................................................................................................................................. - 41 - 模块综合测验 ....................................................................................................................... - 52 -1、平面向量及其应用(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量a =(2,-1),b =(-1,2),则(2a +b )·a =( ) A .6 B .5 C .1D .-6A [由向量数量积公式知,(2a +b )·a =(3,0)·(2,-1)=6.]2.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60°D .30°B [设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .]3.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,则a ·b 的值为( ) A .1 B .2 C .3D .4 A [a +b =(3,k +2),∵a +b 与a 共线, ∴3k -(k +2)=0,解得k =1.]4.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若b 2+c 2-a 2=65bc ,则sin(B +C )的值为( )A .-45B .45C .-35D .35B [由b 2+c 2-a 2=65bc ,得cos A =b 2+c 2-a 22bc =35,则sin(B +C )=sin A =45.]5.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值是( )A .-25B .25C .-24D .24A [因为|AB →|2+|BC →|2=9+16=25=|CA →|2, 所以∠ABC =90°,所以原式=AB →·BC →+CA →(BC →+AB →)=0+CA →·AC → =-AC →2=-25.]6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a 等于( )A .2B .1C .45D .53A [设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ), ∵AC →=2CB →,∴⎩⎨⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎨⎧x =3,y =3,∴C (3,3),又∵C 在直线y =12ax 上,所以3=12a ×3, ∴a =2.]7.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .49B .89C .23D .43 B [∵BP →=13BD →, ∴AP →-AB →=13(AD →-AB →), ∴AP →=23AB →+13AD →,又AD →=23AC →, ∴AP →=23AB →+29AC →=λAB →+μAC →, ∴λ=23,μ=29,∴λ+μ=89.]8.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是( )A .[-1,0]B .[-1,2]C .[-1,3]D .[-1,4]C [建立如图所示坐标系,设M (x ,y ),其中A (-1,-1),B (1,-1),易知x 2+y 2≤1,而MA →·MB →=(-1-x ,-1-y )·(1-x ,-1-y )=x 2+(y +1)2-1,若设E (0,-1),则MA →·MB →=|ME →|2-1,由于0≤|ME →|≤2,所以MA →·MB →=|ME →|2-1的取值范围是[-1,3],故选C .] 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.对任意向量a ,b ,下列关系式中恒成立的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2ACD [|a ·b |=|a |·|b |·|cos 〈a ,b 〉|≤|a |·|b |,故A 正确;由向量的运算法则知C ,D 正确;当b =-a ≠0时,|a -b |>||a |-|b ||,故B 错误.故选ACD .]10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若A =π6,a =2,c =23,则角C 的大小是( )A .π6B .π3C .5π6D .2π3BD [由正弦定理可得a sin A =c sin C ,所以sin C =c a sin A =32,而a <c ,所以A <C ,所以π6<C <56π,故C =π3或23π.]11.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足B =π3,a +c =3b ,则ac =( )A .2B .3C .12D .13AC [∵B =π3,a +c =3b , ∴(a +c )2=a 2+c 2+2ac =3b 2,①由余弦定理可得,a 2+c 2-2ac cos π3=b 2,② 联立①②,可得2a 2-5ac +2c 2=0, 即2⎝ ⎛⎭⎪⎫a c 2-5⎝ ⎛⎭⎪⎫a c +2=0,解得a c =2或a c =12.故选AC .]12.点P 是△ABC 所在平面内一点,满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 的形状不可能是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形ACD [∵P 是△ABC 所在平面内一点,且 |PB →-PC →|-|PB →+PC →-2P A →|=0, ∴|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AC →+AB →|, ∴|AB →-AC →|=|AC →+AB →|,两边平方并化简得AC →·AB →=0,∴AC →⊥AB →,∴∠A =90°,则△ABC 一定是直角三角形.故选ACD .]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.与向量a =(1,2)平行,且模等于5的向量为________.(1,2)或(-1,-2) [因为所求向量与向量a =(1,2)平行,所以可设所求向量为(x,2x ),又因为其模为5,所以x 2+(2x )2=5,解得x =±1.因此所求向量为(1,2)或(-1,-2).]14.已知向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,点P (m ,n )在圆x 2+y 2=5上,则m +n =________,|2a +b |=________.(本题第一空2分,第二空3分)334 [因为向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,P (m ,n )在圆x 2+y 2=5上,∴⎩⎨⎧-m +2n =0,m 2+n 2=5,解得m =2,n =1,即m +n =2+1=3. ∴2a +b =(3,5),∴|2a +b |=34.]15.在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a =2,则c =________.1 [∵S △ABC =12ab sin C , ∴12ab sin C =14(a 2+b 2-c 2), ∴a 2+b 2-c 2=2ab sin C .由余弦定理得,2ab cos C =2ab sin C ,∴tan C =1,∴C =45°,∴c =a 2+b 2-2ab cos C =3-2=1.]16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.-12 [因为点O 是AB 的中点, 所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1), 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2⎝ ⎛⎭⎪⎫x -122-12. 所以当x =12时,(P A →+PB →)·PC →取到最小值-12.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解] (1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a·b -3|b |2=61.因为|a |=4,|b |=3,所以a·b =-6, 所以|a +b |=|a |2+|b |2+2a·b =42+32+2×(-6)=13.(2)因为a ·(a +b )=|a |2+a·b =42-6=10,所以向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.18.(本小题满分12分)如图所示,在平面直角坐标系中,|OA →|=2|AB →|=2,∠OAB=2π3,BC →=(-1,3).(1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.[解] (1)连接OB (图略),设B (x B ,y B ),则x B =|OA →|+|AB →|·cos(π-∠OAB )=52, y B =|AB →|·sin(π-∠OAB )=32,∴OC →=OB →+BC →=⎝ ⎛⎭⎪⎫52,32+(-1,3)=⎝ ⎛⎭⎪⎫32,332, ∴B ⎝ ⎛⎭⎪⎫52,32,C ⎝ ⎛⎭⎪⎫32,332. (2)证明:∵OC →=⎝ ⎛⎭⎪⎫32,332, AB →=⎝ ⎛⎭⎪⎫12,32,∴OC →=3AB →,∴OC →∥AB →. 又易知OA 与BC 不平行, |OA →|=|BC →|=2,∴四边形OABC 为等腰梯形.19.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . [解] (1)由c =3a sin C -c cos A ,及正弦定理得 3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A , 故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β. 代入sin α+sin β=1, 得sin α=sin β=12, 而α>β,所以α=5π6,β=π6.21.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值. [解] (1)∵BP →=P A →, ∴BO →+OP →=PO →+OA →, 即2OP →=OB →+OA →,∴OP →=12OA →+12OB →,即x =12,y =12. (2)∵BP →=3P A →,∴BO →+OP →=3PO →+3OA →, 即4OP →=OB →+3OA →,∴OP →=34O A →+14OB →.∴x =34,y =14. OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.22.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为3 5 n mile.小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积; (2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.[解] (1)∵sin A =35,且角A 为钝角, ∴cos A =-1-⎝ ⎛⎭⎪⎫352=-45. 在△ABD 中,由余弦定理得:AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ·5·⎝ ⎛⎭⎪⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍).∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得: CD 2+CB 2-2CD ·CB ·cos C =BD 2, ∴CD 2+52-2CD ·5·45=(35)2⇒CD 2-8CD -20=0, 解得CD =-2(舍)或CD =10. ∴S 四边形ABCD =S △ABD +S △BCD=12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18. ∴四个小岛所形成的四边形的面积为18平方n mile.(2)在△BDC 中,由正弦定理得:BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55.∵DC 2+DB 2>BC 2, ∴α为锐角,∴cos α=255.又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎪⎫-45+255×35=2525.2、复数(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=11-20i,则1-2i-z等于()A.z-1B.z+1C.-10+18i D.10-18iC[1-2i-z=1-2i-(11-20i)=-10+18i.]2.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-iD[3+i1+i=(3+i)(1-i)(1+i)(1-i)=3-3i+i+12=2-i.故选D.]3.若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+iC.-1-i D.-1+iA[由已知得z=i(1-i)=i+1,则z=1-i,故选A.]4.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A.(2,4) B.(2,-4)C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,则b =( ) A . 2 B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为()A.(3,1) B.(-2,0)C.(0,4) D.(-1,-5)ACD[易知选项A、B、C、D中的点对应的复数分别为3+i、-2、4i、-1-5i,因此A、C、D中的点对应的复数为虚数.]10.已知复数z=a+b i(a,b∈R,i为虚数单位),且a+b=1,下列命题正确的是()A.z不可能为纯虚数B.若z的共轭复数为z,且z=z,则z是实数C.若z=|z|,则z是实数D.|z|可以等于1 2BC[当a=0时,b=1,此时z=i为纯虚数,A错误;若z的共轭复数为z,且z=z,则a+b i=a-b i,因此b=0,B正确;由|z|是实数,且z=|z|知,z是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y=x ,即Z 点在直线y =x 上,C 正确;易知点P 0到直线y =x 的垂线段的长度即为P 0、Z 之间距离的最小值,结合平面几何知识知D 正确.故选ACD .]12.对任意z 1,z 2,z ∈C ,下列结论成立的是( ) A .当m ,n ∈N *时,有z m z n =z m +nB .当z 1,z 2∈C 时,若z 21+z 22=0,则z 1=0且z 2=0C .互为共轭复数的两个复数的模相等,且|z |2=|z |2=z ·zD .z 1=z 2的充要条件是|z 1|=|z 2| AC [由复数乘法的运算律知A 正确;取z 1=1,z 2=i ,满足z 21+z 22=0,但z 1=0且z 2=0不成立,B 错误;由复数的模及共轭复数的概念知结论成立,C 正确; 由z 1=z 2能推出|z 1|=|z 2|, 但|z 1|=|z 2|推不出z 1=z 2,因此z 1=z 2的必要不充分条件是|z 1|=|z 2|,D 错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.] 15.设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________. 8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧ m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数. (2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0, 解得-1<a <1,即实数a 的取值范围为(-1,1).3、立体几何初步(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 2.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]3.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]4.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]5.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA为定值,点F到直线AO的距离也为定值,即△AOF的面积是定值,所以四面体O-AEF的体积与x,y都无关,故选B.]6.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB 的中点,则EF的长是()A.1 B. 2C.22D.12B[取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=12SB=1,DF=12AC=1,所以EF=ED2+DF2= 2.]7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .12B .13C .33D .23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A .5π12B .π3C .π4D .π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94, ∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直BD[A错,两个平面相交时,也有无数个公共点;C错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故选BD.]10.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD[由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.∵圆柱的轴截面是四边形ABCD,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD.又AD∩AE=A,AD,AE⊂平面ADE,∴BE⊥平面ADE,∴BE⊥DE.同理可得,AE⊥CE,易得平面BCE⊥平面ADE.可得A,B,D正确.∵AD∥BC,∴∠ADE(或其补角)为DE与CB所成的角,显然∠ADE≠90°,∴DE⊥平面CEB不正确,即C错误.故选ABD.]11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面P AD 为正三角形,且平面P AD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面P ACABC[如图,对于A,取AD的中点M,连接PM,BM,∵侧面P AD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确.对于D,因为BD与P A不垂直,所以BD与平面P AC不垂直,故D错误.故选ABC.]12.如图所示,在四个正方体中,l是正方体的一条体对角线,点M、N、P 分别为其所在棱的中点,能得出l⊥平面MNP的图形为()AD[如图所示,正方体ABCD-A′B′C′D′.连接AC,BD.∵M、P分别为其所在棱的中点,∴MP∥AC.∵四边形ABCD为正方形,∴AC⊥BD,∵BB′⊥平面ABCD,AC⊂平面ABCD,∴BB′⊥AC,∵AC⊥BD,BD∩BB′=B,∴AC⊥平面DBB′,∵DB′⊂平面DBB′,∴AC⊥DB′.∵MP∥AC,∴DB′⊥MP,同理,可证DB′⊥MN,DB′⊥NP,∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴DB′⊥平面MNP,即l垂直平面MNP,故A正确.故D中,由A中证明同理可证l⊥MP,l⊥MN,又∵MP∩MN=M,∴l⊥平面MNP.故D正确.故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)3π33π[设圆锥的底面半径为r,根据题意,得2πr=2π,解得r=1,根据勾股定理,得圆锥的高为22-12=3,所以圆锥的表面积S=12×π×22+π×12=3π,体积V=13×π×12×3=33π.]14.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.3[如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.]15.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.1∶24[因为D,E分别是AB,AC的中点,所以S△ADE ∶S△ABC=1∶4. 又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍,即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍,所以V1∶V2=13S△ADE·hS△ABC·H=124=1∶24.]16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.36π[如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×⎝⎛⎭⎪⎫12SC·OB·OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm,求圆锥的母线长.[解]如图,设圆锥的母线长为l,圆台上、下底面的半径分别为r、R.因为l-10l=rR,所以l-10l=14,所以l=403cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB=90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解](1)设圆柱的底面半径为r, 则它的侧面积为S=2πrx, rR=H-xH,解得r=R-RH x,所以S圆柱侧=2πRx-2πRH x2.(2)由(1)知S圆柱侧=2πRx-2πRH x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=H2时,圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解](1)如图,由已知AD∥BC,故∠DAP或其补角为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,所以cos∠DAP=ADAP=55.所以异面直线AP与BC所成角的余弦值为5 5.(2)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又BC∥AD,所以PD⊥BC,又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∵DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.4、统计(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN ,所以p 1=p 2=p 3,故选D .]2.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2∶3∶2∶4,则该样本中D 类产品的数量为( )A .22B .33C .40D .55C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为110×42+3+2+4=40.]3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则|a -b |等于( )A .mhB .h mC .m hD .m +hC [在频率分布直方图中小长方形的高等于频率组距,所以h =m |a -b |,|a -b |=mh ,故选C .]4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:上班时间182021262728303233353640下班时间161719222527283030323637A.28与28.5 B.29与28.5C.28与27.5 D.29与27.5D[上班时间行驶速度的中位数是28+302=29,下班时间行驶速度的中位数是27+282=27.5.]5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则()A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<xD[由条形图可知,中位数为m e=5.5,众数为m o=5,平均值为x≈5.97,所以m o<m e<x.]6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1B[体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85 B.87,85,86C.87,85,85 D.87,85,90C[∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD[设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a 0.06a 0.3a 0.04a建设后经济收入0.74a 0.56a 0.6a 0.1a10.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选ABC .]11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B 正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C 正确;由题表看不出两班学生成绩的众数,∴D错误.]12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是()A.平均数x≤3B.平均数x≤3且标准差s≤2C.平均数x≤3且极差小于或等于2D.众数等于1且极差小于或等于4CD[A错,举反例:0,0,0,0,2,6,6,其平均数x=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数x=3,且标准差s=187≤2,不符合指标.C对,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.下列数据的70%分位数为________.20,14,26,18,28,30,24,26,33,12,35,22.28[把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35,因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:。
高一数学人教A版必修2章末综合测评2 Word版含解析
章末综合测评(二) 点、直线、平面之间的位置关系(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).若,是异面直线,直线∥,则与的位置关系是( ).相交.异面.异面或相交.平行【解析】根据空间两条直线的位置关系和公理可知与异面或相交,但不可能平行.【答案】.下列说法不正确的是( ).空间中,一组对边平行且相等的四边形一定是平行四边形.同一平面的两条垂线一定共面.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内.过一条直线有且只有一个平面与已知平面垂直【解析】、、显然正确.易知过一条直线有无数个平面与已知平面垂直.选.【答案】.(·太原高二检测),,是空间三条不同的直线,则下列命题正确的是( ).⊥,⊥⇒∥.⊥,∥⇒⊥.∥∥⇒,,共面.,,共点⇒,,共面【解析】对于,通过常见的图形正方体判断,从同一个顶点出发的三条棱两两垂直,故错;对于,因为⊥,所以,所成的角是°,又因为∥,所以,所成的角是°,所以⊥,故对;对于,例如三棱柱中的三侧棱平行,但不共面,故错;对于,例如三棱锥的三侧棱共点,但不共面,故错.故选.【答案】.设、为两条直线,α、β为两个平面,则正确的命题是( )【导学号:】.若、与α所成的角相等,则∥.若∥α,∥β,α∥β,则∥.若⊂α,⊂β,∥,则α∥β.若⊥α,⊥β,α⊥β,则⊥【解析】中,、可以平行、相交或异面;中,、可以平行或异面;中,α、β可以平行或相交.【答案】.(·山西山大附中高二检测)如图,在正方体-中,、、、分别为、、、的中点,则异面直线与所成的角等于( )图.°.°。
2021学年数学人教A版必修2模块综合试含解析
模块综合试题时间:120分钟 分值:150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题正确的是( B )A .四条线段顺次首尾连接,所得的图形一定是平面图形B .一条直线和两条平行直线都相交,则三条直线共面C .两两平行的三条直线一定确定三个平面D .和两条异面直线都相交的直线一定是异面直线解析:此题主要考查三个公理及推论的应用,两条平行线确定一个平面,第三条直线与其相交,由公理1可知,这三条直线共面,故B 正确.2.已知直线(a -2)x +ay -1=0与直线2x +3y +5=0平行,则a 的值为( B )A .-6B .6C .-45D.45解析:由题意可知两直线的斜率存在,且-a -2a =-23,解得a =6.3.圆台侧面的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.则两底面的面积之和是( C )A .3πa 2B .4πa 2C .5πa 2D .6πa 2解析:设圆台上底面半径为r ,则下底面半径为2r ,如图所示,∠ASO =30°,在Rt △SA ′O ′中,rSA ′=sin30°,∴SA ′=2r .在Rt △SAO 中,2rSA =sin30°,∴SA =4r .∴SA -SA ′=AA ′,即4r -2r =2a ,r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.4.若直线l 过点A (3,4),且点B (-3,2)到直线l 的距离最远,则直线l 的方程为( D )A .3x -y -5=0B .3x -y +5=0C .3x +y +13=0D .3x +y -13=0解析:当l ⊥AB 时,符合要求. ∵k AB =4-23+3=13,∴l 的斜率为-3,∴直线l 的方程为y -4=-3(x -3),即3x +y -13=0. 5.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( D )A. 3 B .2 C. 6D .2 3 解析:直线方程为y =3x ,圆的标准方程为x 2+(y -2)2=4,圆心(0,2)到直线y =3x 的距离d =|3×0-2|(3)2+(-1)2=1.故所求弦长l =222-12=2 3.6.如图,在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是( B )A .相交B .平行C .异面D .以上都有可能解析:如图,连接SG 1,SG 2并延长分别交AB 于点M ,交AC 于点N .∵SG 1G 1M =SG 2G 2N ,∴G 1G 2∥MN .∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC .故G 1G 2∥BC .7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1,S 2,S 3,则( A )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2解析:设棱锥的底面面积为S .由截面的性质,可知S S 1=⎝ ⎛⎭⎪⎫212⇒S 1=14S ;S S 2=21⇒S 2=12S ;⎝⎛⎭⎪⎫S S 33=21⇒S 3=134S ,故S 1<S 2<S 3.8.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,则圆的位置满足(A)A.截两坐标轴所得弦的长度相等B.与两坐标轴都相切C.与两坐标轴相离D.上述情况都有可能解析:在圆的方程中令y=0得x2+Dx+F=0.∴圆被x轴截得的弦长为|x1-x2|=D2-4F.同理得圆被y轴截得的弦长为E2-4F=D2-4F.故选A.9.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为(D)A.①和②B.③和①C.④和③D.④和②解析:由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一直角顶点与另一直角边中点的连线),故正视图是④;俯视图在底面射影是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.10.在正方体ABCD-A1B1C1D1中,E,F分别是正方形ADD1A1和正方形ABCD的中心,G是CC1的中点,设GF,C1E与AB所成的角分别为α,β,则α+β等于(B)A.120°B.90°C .75°D .60°解析:根据异面直线所成角的定义知α+β=90°.11.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点.若四边形P ACB 的最小面积是2,则k 的值为( D )A. 2B.212 C .2 2D .2 解析:圆心C (0,1)到l 的距离d =5k 2+1. ∴四边形面积的最小值为2(12×1×d 2-1)=2, ∴k 2=4,即k =±2.又k >0,∴k =2.12.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( C )A.125π12B.125π9 C.125π6D.125π3解析:取AC 的中点O .由O 到各顶点距离相等,知O 是球心. 设外接球的半径为R ,则2R =5,R =52. 故外接球的体积V 球=43π⎝ ⎛⎭⎪⎫523=125π6.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为2x +3y -2=0.解析:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2).因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23.由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.14.长方体被一平行于棱的平面截成体积相等的两个几何体,其中一个几何体的三视图如图所示,则长方体的体积为48.解析:由三视图可知这个长方体的长、宽、高分别为3,4,4,所以长方体的体积为3×4×4=48.15.侧棱长为a 的正三棱锥P -ABC 的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为3πa 2.解析:侧棱长为a 的正三棱锥P -ABC 其实就是棱长为a 的正方体的一角,所以球的直径就是正方体的对角线,所以球的半径为3a2,该球的表面积为3πa 2.16.若⊙O 1:x 2+y 2=5与⊙O 2:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是4.解析:由题知O 1(0,0),O 2(m,0),且5<|m |<35,又O 1A ⊥AO 2,则有m 2=(5)2+(25)2=25,得m =±5.故|AB |=2×5×205=4. 三、解答题(本大题共6小题,共70分)17.(10分)已知直线l 平行于直线3x +4y -7=0,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程.解:设l :3x +4y +m =0.当y =0时,x =-m 3;当x =0时,y =-m4. ∵直线l 与两坐标轴围成的三角形面积为24, ∴12·|-m 3|·|-m 4|=24.∴m =±24.∴直线l 的方程为3x +4y +24=0或3x +4y -24=0.18.(12分)已知一个组合体的三视图如图所示,请根据具体的数据,计算该组合体的体积.解析:由三视图可知此组合体的结构为:上部是一个圆锥,中部是一个圆柱,下部也是一个圆柱,由题图中的尺寸可知:上部圆锥的体积V 圆锥=13π×22×2=8π3,中部圆柱的体积V 圆柱=π×22×10=40π,下部圆柱的体积V ′圆柱=π×42×1=16π,故此组合体的体积V =8π3+40π+16π=176π3.19.(12分)求过点A (-2,-4)且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C (-D2,-E2).∴k CB=6+E 28+D 2.∵k CB ·k l =-1,∴6+E 28+D 2·(-13)=-1.①又有(-2)2+(-4)2-2D -4E +F =0,② 82+62+8D +6E +F =0,③所以解①②③可得D =-11,E =3,F =-30. ∴所求圆的方程为x 2+y 2-11x +3y -30=0.20.(12分)如图,四棱锥P -ABCD 中,△P AB 是正三角形,四边形ABCD 是矩形,且平面P AB ⊥平面ABCD ,P A =2,PC =4.(1)若点E 是PC 的中点,求证:P A ∥平面BDE ;(2)若点F 在线段P A 上,且F A =λP A ,当三棱锥B -AFD 的体积为43时,求实数λ的值.解:(1)证明:如图(1),连接AC ,设AC ∩BD =Q ,连接EQ . 因为四边形ABCD 是矩形,所以点Q 是AC 的中点. 又点E 是PC 的中点,则在△P AC 中,中位线EQ ∥P A , 又EQ ⊂平面BDE ,P A ⊄平面BDE ,所以P A ∥平面BDE .(2)依据题意可得:P A =AB =PB =2,取AB 中点O ,连接PO . 所以PO ⊥AB ,且PO = 3.又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PO ⊂平面P AB ,则PO ⊥平面ABCD (如图(2));作FM ∥PO 交AB 于点M ,则FM ⊥平面ABCD . 因为四边形ABCD 是矩形,所以BC ⊥AB . 同理,可证BC ⊥平面P AB ,PB ⊂平面P AB ,则△PBC 是直角三角形. 所以BC =PC 2-PB 2=2 3.则直角三角形ABD 的面积为S △ABD =12AB ·AD =2 3. 所以43=V B -AFD =V F -ABD =13S △ABD ·FM =233FM ⇒FM =233. 由FM ∥PO ,得FM PO =F A P A =λ⇒2333=λ⇒λ=23.21.(12分)如图所示,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ;(3)求四面体B-DEF的体积.解:(1)证明:设AC与BD交于点G,则G为AC的中点,如图所示,连接EG,GH.∵H为BC的中点,∴GH∥AB.∵EF∥AB,∴EF∥GH.又∵EF=GH=12AB,∴四边形EFHG为平行四边形,∴EG∥FH.∵EG⊂平面EDB,FH⊄平面EDB,∴FH∥平面EDB.(2)证明:∵四边形ABCD为正方形,∴AB⊥BC.∵EF∥AB,∴EF⊥BC.又∵EF⊥FB,BC∩FB=B,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH.∵BF=FC,H为BC的中点,∴FH⊥BC,又AB∩BC=B,∴FH⊥平面ABCD,∴FH⊥AC.∵FH∥EG,∴AC⊥EG.∵AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.(3)∵EF⊥FB,BF⊥FC,EF∩FC=F,∴BF⊥平面CDEF,∴BF即为四面体B-DEF的高.由(2)知,EF⊥平面BFC,∴EF⊥FC.又∵EF∥AB∥CD,∴FC为△DEF中EF边上的高.∵BC=AB=2,∴BF=FC=2,晨鸟教育Earlybird ∴V 四面体B -DEF =13×12×1×2×2=13. 22.(12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程.解:(1)设点N (6,n ),因为与x 轴相切,所以圆N 的标准方程为(x -6)2+(y -n )2=n 2,n >0.又圆N 与圆M 外切,圆M :(x -6)2+(y -7)2=25,则|7-n |=n +5,解得n =1,即圆N 的标准方程为(x -6)2+(y -1)2=1.(2)由题意得|OA |=25,k OA =2,设l :y =2x +b ,则圆心M 到直线l 的距离d =|12-7+b |5=|5+b |5, 则|BC |=252-d 2=225-(5+b )25, 又|BC |=25,即225-(5+b )25=25⇒b =5或b =-15,即l :y =2x +5或y =2x -15.。
2020-2021学年新教材人教A版数学必修第二册模块综合测评 Word版含解析
模块综合测评(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+iC[由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i。
]2.已知向量a与b的夹角为30°,且|a|=1,|2a-b|=1,则|b|等于()A. 6 B.错误!C.错误!D.错误!C[由题意可得a·b=|b|cos 30°=错误!|b|,4a2-4a·b+b2=1,即4-23|b|+b2=1,由此求得|b|=错误!,故选C.]3.设z=错误!+i,则|z|等于()A.错误!B.错误!C.错误! D.2B[∵z=错误!+i=错误!+i=错误!+i=错误!+错误!i,∴|z|=错误!=错误!.]4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0。
01+0.005)×20=0.3.∴该班学生人数n=错误!=50.]5.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.错误!cmB[S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).]6.已知向量a=(cos θ-2,sin θ),其中θ∈R,则|a|的最小值为()A.1 B.2 C.错误!D.3A[因为a=(cos θ-2,sin θ),所以|a|=错误!=错误!=错误!,因为θ∈R,所以-1≤cos θ≤1,故|a|的最小值为错误!=1.故选A.]7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6C.0.8 D.1B[5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,样本点有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为P=错误!=0。
高一数学人教A版必修2模块综合测评 Word版含解析
模块综合测评(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).过点(,-),(-,)的直线的斜率为-,则的值为( )....【解析】由题意知==-,∴=.【答案】.在轴、轴上的截距分别是-、的直线方程是( ).--=.--=.-+=.-+=【解析】由直线的截距式得,所求直线的方程为+=,即-+=.【答案】.已知正方体外接球的体积是π,那么正方体的棱长等于( ).【解析】设正方体的棱长为,球的半径为,则π=π,∴=.又∵==,∴=.【答案】.关于空间直角坐标系中的一点()有下列说法:①点到坐标原点的距离为;②的中点坐标为;③与点关于轴对称的点的坐标为(-,-,-);④与点关于坐标原点对称的点的坐标为(,-);⑤与点关于坐标平面对称的点的坐标为(,-).其中正确的个数是( )....【解析】点到坐标原点的距离为=,故①错;②正确;与点关于轴对称的点的坐标为(,-,-),故③错;与点关于坐标原点对称的点的坐标为(-,-,-),故④错;⑤正确,故选.【答案】.如图,在长方体-中,、分别是棱、的中点,若∠=°,则异面直线和所成角为( )图.°.°.°.°【解析】因为⊥,⊥,所以⊥平面.所以⊥.因为∥,所以⊥.【答案】.(·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )图.+.+.+.【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.。
2019-2020学年高中数学人教A版必修2作业:模块质量检测 Word版含解析.pdf
设△ABC 的中心为点 E,连接 AE,BE,CE,由正三角形的性质
得 AE=BE=CE=2 3,
设球心为点 O,连接 OA,OB,OC,OE,OD,则 OA=OB=OC=4, 则 OE= 42-2 32=2,故 D 到平面 ABC 的距离的最大值为 OE+OD
1 =2+4=6,则(VD-ABC)max=9 3×6× =18 3.
( )
A.1
B.-3
5
17
C.1 或 D.-3 或
3
3
解析:利用点到直线的距离公式.
答案:D
4.圆(x+2)2+y2=4 与圆(x-2)2+(y-1)2=9 的位置关系为( )
A.内切 B.相交
C.外切 D.相离
解析:两圆的圆心分别为(-2,0),(2,1),半径分别为 r=2,R=3
两圆的圆心距离为 -2-22+0-12= 17,则 R-r< 17<R+r,所
A.三点构成等腰三角形
B.三点构成直角三角形
C.三点构成等腰直角三角形 D.三点构不成三角形
解析:∵|AB|= 29,|AC|=2 29,|BC|= 29,而|AB|+|BC|=|AC|,
∴三点 A,B,C 共线,构不成三角形.
答案:D
9.已知圆(x-2)2+(y+1)2=16 的一条直径通过直线 x-2y+3=0
所以 AH⊥CD,AB∩AH=A,
所以 CD⊥平面 ABH,所以 CD⊥BH.
同理可证 CH⊥BD,DH⊥BC,
则 H 是△BCD 的垂心.故选 A.
答案:A
11.若过点 A(4,0)的直线 l 与曲线(x-2)2+y2=1 有公共点,则直
线 l 的斜率的取值范围为( )
人教A版高中必修二试题高一综合考试卷(人教版)附答案.docx
高一数学必修模块2综合考试卷(人教A 版)附答案 班级 姓名 座号 分数 一、选择题(每3分,共36分) 1、若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A 、 相交B 、 异面C 、 平行D 、异面或相交2、如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为( )A、33- B、 33 C、3- D、3 3、三个平面把空间分成7部分时,它们的交线有( )A、1条 B、2条 C、3条 D、1或2条4、若A(-2,3),B(3,-2),C(21,m)三点共线, 则m的值为( ) A、21 B、21- C、-2 D、2 5、直线032=--y x 与圆9)3()2(22=++-y x 交于E、F 两点,则∆EOF (O 为原点)的面积为( )A 、 23B 、 43C 、 52D 、 5566、下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A 、 0B 、 1C 、 2D 、 37、棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是( )A 、 1∶7B 、2∶7C 、 7∶19D 、 5∶ 168、直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则∆EOF (O 是原点)的面积为( ) A、23 B、43 C、52 D、556 9一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A、8Лcm2 B、12Лcm2 C、16Лcm2 D、20Лcm2 10、已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为( )A、900 B、450 C、600 D、300 11、圆:06422=+-+y x y x 和圆:0622=-+x y x 交于A 、B 两点,则AB 的垂直平分线的方程是( )A 、 x+y+3=0B 、2x-y-5=0C 、 3x-y-9=0D 、4x-3y+7=012、圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A 、 2B 、21+C 、221+D 、221+ 二、填空题(每4分,共16分) 1、与直线5247=+y x 平行,并且距离等于3的直线方程是2、已知:A (1,2,1),B (-1,3,4,),C (1,1,1,),PB AP 2=,则PC 长为3、如图:四棱锥V-ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V-AB-C 的平面角为 度4、已知点M (a ,b )在直线1543=+y x 上,则22b a +的最小值为三、解答题(共48分)1、如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测()
(时间:分钟满分:分)
一、选择题(本大题共小题,每小题分,共分)
.如图所示,桌面上放着一个圆锥和一个长方体,其俯视图是()
.如图所示,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为,那么这个几何体的体积为()
....
.直线(+-)+(-)=-在轴上的截距为,则等于()
..
.-.或-
.直线--=与圆+-++-=总有两个不同的交点,则的取值范围是()
.-<<.-<<
.-<<.-<<
.若为平面α外一点,则下列说法正确的是()
.过只能作一条直线与平面α相交
.过可能作无数条直线与平面α垂直
.过只能作一条直线与平面α平行
.过可作无数条直线与平面α平行
.连接平面外一点和平面α内不共线的三点,,,,,分别在,,的延长线上,,,与
平面α分别交于,,,则,,三点()
.成钝角三角形.成锐角三角形
.成直角三角形.共线
.在圆+=上与直线:+-=的距离最小的点的坐标是()
..
..
.矩形的对角线,成°角,把矩形所在的平面以为折痕,折成一个直二面角--,连接
,则与平面所成角的正切值为()
....
.若⊙:+-+=和⊙:++-=-相交,则的取值范围是()
..()
.∪() .
.已知点是直线++=上的动点,是圆:+--+=的切线,为切点,则的最小值为()
....
.二面角α--β的平面角为°,在面α内,⊥于,=,在平面β内,⊥于,=,=,为棱上的一个动点,则+的最小值为()
....
.如果圆+(-)=上任意一点(,)都能使++≥成立,那么实数的取值范围是()
.≥--.≤--
.≥-.≤-
二、填空题(本大题共小题,每小题分,共分)
.如图所示,半径为的半圆内的阴影部分以直径所在直线为轴,旋转一周得到一几何体,∠=°,则此几何体的体积为.
.(,-)在直线+-=上的射影为(),则-+=关于+-=对称的直线方程为.
.由动点向圆+=引两条切线、,切点分别为,,∠=°,则动点的轨迹方程为.。