1高考数列压轴题汇总
压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。
高考数列压轴题
高考数列压轴题一.解答题(共50小题)1.数列{a n }满足a 1=1,a 2=+,…,a n =++…+(n ∈N *)(1)求a 2,a 3,a 4,a 5的值;(2)求a n 与a n ﹣1之间的关系式(n ∈N *,n ≥2); (3)求证:(1+)(1+)…(1+)<3(n ∈N *)2.已知数列{x n }满足:x 1=1,x n =x n+1+ln (1+x n+1)(n ∈N *),证明:当n ∈N *时, (Ⅰ)0<x n+1<x n ; (Ⅱ)2x n+1﹣x n ≤; (Ⅲ)≤x n ≤.3.数列{a n }中,a 1=,a n+1=(n ∈N *)(Ⅰ)求证:a n+1<a n ;(Ⅱ)记数列{a n }的前n 项和为S n ,求证:S n <1.4.已知正项数列{a n }满足a n 2+a n =3a 2n+1+2a n+1,a 1=1. (1)求a 2的值;(2)证明:对任意实数n ∈N *,a n ≤2a n+1;(3)记数列{a n }的前n 项和为S n ,证明:对任意n ∈N *,2﹣≤S n <3.5.已知在数列{a n }中,.,n ∈N*(1)求证:1<a n+1<a n <2; (2)求证:;(3)求证:n <s n <n+2.6.设数列{a n }满足a n+1=a n 2﹣a n +1(n ∈N*),S n 为{a n }的前n 项和.证明:对任意n ∈N *, (I )当0≤a 1≤1时,0≤a n ≤1; (II )当a 1>1时,a n >(a 1﹣1)a 1n ﹣1; (III )当a 1=时,n ﹣<S n <n .7.已知数列{a n }满足a 1=1,S n =2a n+1,其中S n 为{a n }的前n 项和(n ∈N *). (Ⅰ)求S 1,S 2及数列{S n }的通项公式; (Ⅱ)若数列{b n }满足,且{b n }的前n 项和为T n ,求证:当n ≥2时,.8.已知数列{a n }满足a 1=1,(n ∈N *),(Ⅰ) 证明:;(Ⅱ) 证明:.9.设数列{a n }的前n 项的和为S n ,已知a 1=,a n+1=,其中n ∈N *.(1)证明:a n <2; (2)证明:a n <a n+1;(3)证明:2n ﹣≤S n ≤2n ﹣1+()n . 10.数列{a n }的各项均为正数,且a n+1=a n +﹣1(n ∈N *),{a n }的前n 项和是S n .(Ⅰ)若{a n }是递增数列,求a 1的取值范围;(Ⅱ)若a 1>2,且对任意n ∈N *,都有S n ≥na 1﹣(n ﹣1),证明:S n <2n+1.11.设a n =x n ,b n =()2,S n 为数列{a n •b n }的前n 项和,令f n (x )=S n ﹣1,x ∈R ,a ∈N *. (Ⅰ)若x=2,求数列{}的前n 项和T n ;(Ⅱ)求证:对∀n ∈N *,方程f n (x )=0在x n ∈[,1]上有且仅有一个根; (Ⅲ)求证:对∀p ∈N *,由(Ⅱ)中x n 构成的数列{x n }满足0<x n ﹣x n+p <.12.已知数列{an },{b n },a 0=1,,(n=0,1,2,…),,T n 为数列{b n }的前n 项和. 求证:(Ⅰ)a n+1<a n ; (Ⅱ); (Ⅲ).13.已知数列{a n }满足:a 1=,a n =a n ﹣12+a n ﹣1(n ≥2且n ∈N ). (Ⅰ)求a 2,a 3;并证明:2﹣≤a n ≤•3;(Ⅱ)设数列{a n 2}的前n 项和为A n ,数列{}的前n 项和为B n ,证明:=a n+1.14.已知数列{a n }的各项均为非负数,其前n 项和为S n ,且对任意的n ∈N *,都有.(1)若a 1=1,a 505=2017,求a 6的最大值;(2)若对任意n∈N*,都有Sn≤1,求证:.15.已知数列{an }中,a1=4,an+1=,n∈N*,Sn为{an}的前n项和.(Ⅰ)求证:n∈N*时,an >an+1;(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<.16.已知数列{an }满足,a1=1,an=﹣.(1)求证:an≥;(2)求证:|an+1﹣an|≤;(3)求证:|a2n ﹣an|≤.17.设数列{an }满足:a1=a,an+1=(a>0且a≠1,n∈N*).(1)证明:当n≥2时,an <an+1<1;(2)若b∈(a2,1),求证:当整数k≥+1时,ak+1>b.18.设a>3,数列{an }中,a1=a,an+1=,n∈N*.(Ⅰ)求证:an >3,且<1;(Ⅱ)当a≤4时,证明:an≤3+.19.已知数列{an }满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).(Ⅰ)证明:an>1;(Ⅱ)证明:++…+<(n≥2).20.已知数列{an}满足:.(1)求证:;(2)求证:.21.已知数列{an }满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).(1)求数列{an}的通项公式;(2)求证:++…+<;(3)记Sn =++…+,证明:对于一切n≥2,都有Sn2>2(++…+).22.已知数列{an }满足a1=1,an+1=,n∈N*.(1)求证:≤an≤1;(2)求证:|a2n ﹣an|≤.23.已知数列{an ]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:+…(n∈N*)24.已知数列{an }满足:a1=,an+1=+an(n∈N*).(1)求证:an+1>an;(2)求证:a2017<1;(3)若ak>1,求正整数k的最小值.25.已知数列{an }满足:an2﹣an﹣an+1+1=0,a1=2(1)求a2,a3;(2)证明数列为递增数列;(3)求证:<1.26.已知数列{an }满足:a1=1,(n∈N*)(Ⅰ)求证:an≥1;(Ⅱ)证明:≥1+(Ⅲ)求证:<an+1<n+1.27.在正项数列{an }中,已知a1=1,且满足an+1=2an(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)证明.an≥.28.设数列{an}满足.(1)证明:;(2)证明:.29.已知数列{an }满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.(Ⅰ)求证:{bn}是等比数列;(Ⅱ)记数列{nbn }的前n项和为Tn,求Tn;(Ⅲ)求证:﹣<+…+.30.已知数列{an }中,a1=3,2an+1=an2﹣2an+4.(Ⅰ)证明:an+1>an;(Ⅱ)证明:an≥2+()n﹣1;(Ⅲ)设数列{}的前n项和为Sn ,求证:1﹣()n≤Sn<1.31.已知数列{an }满足a1=,an+1=,n∈N*.(1)求a2;(2)求{}的通项公式;(3)设{an }的前n项和为Sn,求证:(1﹣()n)≤Sn<.32.数列{an }中,a1=1,an=.(1)证明:an <an+1;(2)证明:an an+1≥2n+1;(3)设bn =,证明:2<bn<(n≥2).33.已知数列{an}满足,(1)若数列{an}是常数列,求m的值;(2)当m>1时,求证:an <an+1;(3)求最大的正数m,使得an<4对一切整数n恒成立,并证明你的结论.34.已知数列{an}满足:,p>1,.(1)证明:an >an+1>1;(2)证明:;(3)证明:.35.数列{an }满足a1=,an+1﹣an+anan+1=0(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.36.已知数列{an }满足a1=1,an+1=an2+p.(1)若数列{an}就常数列,求p的值;(2)当p>1时,求证:an <an+1;(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.37.已知数列{an }满足a1=a>4,,(n∈N*)(1)求证:an>4;(2)判断数列{an}的单调性;(3)设Sn 为数列{an}的前n项和,求证:当a=6时,.38.已知数列{an }满足a1=1,an+1=.(Ⅰ)求证:an+1<an;(Ⅱ)求证:≤an≤.39.已知数列{an }满足:a1=1,.(1)若b=1,证明:数列是等差数列;(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;(3)若b=﹣1,求证:.40.已知数列{an }满足,(n=1,2,3…),,Sn=b1+b2+…+bn.证明:(Ⅰ)an﹣1<an<1(n≥1);(Ⅱ)(n≥2).41.已知数列{an }满足a1=1,an+1=,n∈N*,记S,Tn分别是数列{an},{a}的前n项和,证明:当n∈N*时,(1)an+1<an;(2)Tn=﹣2n﹣1;(3)﹣1<Sn.42.已知数列{an }满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).(I)求{an}的通项公式;(II)求证:1+++…+<n(n≥2);(III)若=bn,求证:2≤<3.43.已知正项数列{an }满足a1=3,,n∈N*.(1)求证:1<an≤3,n∈N*;(2)若对于任意的正整数n,都有成立,求M的最小值;(3)求证:a1+a2+a3+…+an<n+6,n∈N*.44.已知在数列{an}中,,,n∈N*.(1)求证:1<an+1<an<2;(2)求证:;(3)求证:n<sn<n+2.45.已知数列{an}中,,(n∈N*).(1)求证:;(2)求证:是等差数列;(3)设,记数列{b n }的前n 项和为S n ,求证:.46.已知无穷数列{a n }的首项a 1=,=n ∈N*.(Ⅰ)证明:0<a n <1; (Ⅱ) 记b n =,T n 为数列{b n }的前n 项和,证明:对任意正整数n ,T n.47.已知数列{x n }满足x 1=1,x n+1=2+3,求证:(I )0<x n <9; (II )x n <x n+1; (III ).48.数列{a n }各项均为正数,且对任意n ∈N *,满足a n+1=a n +ca n 2(c >0且为常数). (Ⅰ)若a 1,2a 2,3a 3依次成等比数列,求a 1的值(用常数c 表示); (Ⅱ)设b n =,S n 是数列{b n }的前n 项和,(i )求证:;(ii )求证:S n <S n+1<.49.设数列满足|a n ﹣|≤1,n ∈N *.(Ⅰ)求证:|a n |≥2n ﹣1(|a 1|﹣2)(n ∈N *)(Ⅱ)若|a n |≤()n ,n ∈N *,证明:|a n |≤2,n ∈N *. 50.已知数列{a n }满足:a 1=1,a n+1=a n +.(n ∈N *)(Ⅰ)证明:≥1+;(Ⅱ)求证:<a n+1<n+1.高考数列压轴题参考答案与试题解析一.解答题(共50小题)1.数列{a n}满足a1=1,a2=+,…,a n=++…+(n∈N*)(1)求a2,a3,a4,a5的值;(2)求a n与a n﹣1之间的关系式(n∈N*,n≥2);(3)求证:(1+)(1+)…(1+)<3(n∈N*)【解答】解:(1)a2=+=2+2=4,a3=++=3+6+6=15,a4=+++=4+4×3+4×3×2+4×3×2×1=64,a5=++++=5+20+60+120+120=325;(2)a n=++…+=n+n(n﹣1)+n(n﹣1)(n﹣2)+…+n!=n+n[(n﹣1)+(n﹣1)(n﹣2)+…+(n﹣1)!]=n+na n﹣1;(3)证明:由(2)可知=,所以(1+)(1+)…(1+)=•…==+++…+=+++…+=+++…+≤1+1+++…+=2+1﹣+﹣+…+﹣=3﹣<3(n≥2).所以n≥2时不等式成立,而n=1时不等式显然成立,所以原命题成立.2.已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n+1<x n;(Ⅱ)2x n+1﹣x n≤;(Ⅲ)≤x n≤.【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.3.数列{a n}中,a1=,a n+1=(n∈N*)(Ⅰ)求证:a n+1<a n;(Ⅱ)记数列{a n}的前n项和为S n,求证:S n<1.【解答】证明:(Ⅰ)∵>0,且a1=>0,∴a n>0,∴a n+1﹣a n=﹣a n=<0.∴a n+1<a n;(Ⅱ)∵1﹣a n+1=1﹣=,∴=.∴,则,又a n>0,∴.4.已知正项数列{a n}满足a n2+a n=3a2n+1+2a n+1,a1=1.(1)求a2的值;(2)证明:对任意实数n∈N*,a n≤2a n+1;(3)记数列{a n}的前n项和为S n,证明:对任意n∈N*,2﹣≤S n<3.【解答】解:(1)a n2+a n=3a2n+1+2a n+1,a1=1,即有a12+a1=3a22+2a2=2,解得a2=(负的舍去);(2)证明:a n2+a n=3a2n+1+2a n+1,可得a n2﹣4a2n+1+a n﹣2a n+1+a2n+1=0,即有(a n﹣2a n+1)(a n+2a n+1+1)+a2n+1=0,由于正项数列{a n},即有a n+2a n+1+1>0,4a2n+1>0,则有对任意实数n∈N*,a n≤2a n+1;(3)由(1)可得对任意实数n∈N*,a n≤2a n+1;即为a1≤2a2,可得a2≥,a3≥a2≥,…,a n≥,前n项和为S n=a1+a2+…+a n≥1+++…+==2﹣,又a n2+a n=3a2n+1+2a n+1>a2n+1+a n+1,即有(a n﹣a n+1)(a n+a n+1+1)>0,则a n>a n+1,数列{a n}递减,即有S n=a1+a2+…+a n<1+1+++…+=1+=3(1﹣)<3.则有对任意n∈N*,2﹣≤S n<3.5.已知在数列{a n}中,.,n∈N*(1)求证:1<a n+1<a n<2;(2)求证:;(3)求证:n<s n<n+2.【解答】证明:(1)先用数学归纳法证明1<a n<2.①.n=1时,②.假设n=k时成立,即1<a k<2.那么n=k+1时,成立.由①②知1<a n<2,n∈N*恒成立..所以1<a n+1<a n<2成立.(2),当n≥3时,而1<a n<2.所以.由,得,所以(3)由(1)1<a n<2得s n>n由(2)得,6.设数列{a n}满足a n+1=a n2﹣a n+1(n∈N*),S n为{a n}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤a n≤1;(II)当a1>1时,a n>(a1﹣1)a1n﹣1;(III)当a1=时,n﹣<S n<n.【解答】证明:(Ⅰ)用数学归纳法证明.①当n=1时,0≤a n≤1成立.②假设当n=k(k∈N*)时,0≤a k≤1,则当n=k+1时,=()2+∈[]⊂[0,1],由①②知,.∴当0≤a1≤1时,0≤a n≤1.(Ⅱ)由a n+1﹣a n=()﹣a n=(a n﹣1)2≥0,知a n+1≥a n.若a1>1,则a n>1,(n∈N*),从而=﹣a n=a n(a n﹣1),即=a n≥a1,∴,∴当a1>1时,a n>(a1﹣1)a1n﹣1.(Ⅲ)当时,由(Ⅰ),0<a n<1(n∈N*),故S n<n,令b n=1﹣a n(n∈N*),由(Ⅰ)(Ⅱ),b n>b n+1>0,(n∈N*),由,得.∴=(b1﹣b2)+(b2﹣b3)+…+(b n﹣b n+1)=b1﹣b n+1<b1=,∵≥,∴nb n2,即,(n∈N*),∵==,∴b1+b2+…+b n[()+()+…+()]=,即n﹣S n,亦即,∴当时,.7.已知数列{a n}满足a1=1,S n=2a n+1,其中S n为{a n}的前n项和(n∈N*).(Ⅰ)求S1,S2及数列{S n}的通项公式;(Ⅱ)若数列{b n}满足,且{b n}的前n项和为T n,求证:当n≥2时,.【解答】解:(Ⅰ)数列{a n}满足S n=2a n+1,则S n=2a n+1=2(S n+1﹣S n),即3S n=2S n+1,∴,即数列{S n}为以1为首项,以为公比的等比数列,∴S n=()n﹣1(n∈N*).∴S1=1,S2=;(Ⅱ)在数列{b n}中,,T n为{b n}的前n项和,则|T n|=|=.而当n≥2时,,即.8.已知数列{a n}满足a1=1,(n∈N*),(Ⅰ)证明:;(Ⅱ)证明:.【解答】(Ⅰ)证明:∵①,∴②由②÷①得:,∴(Ⅱ)证明:由(Ⅰ)得:(n+1)a n+2=na n∴令b n=na n,则③∴b n﹣1•b n=n④由b1=a1=1,b2=2,易得b n>0由③﹣④得:∴b1<b3<…<b2n﹣1,b2<b4<…<b2n,得b n≥1根据b n•b n+1=n+1得:b n+1≤n+1,∴1≤b n≤n∴==一方面:另一方面:由1≤b n≤n可知:.9.设数列{a n}的前n项的和为S n,已知a1=,a n+1=,其中n∈N*.(1)证明:a n<2;(2)证明:a n<a n+1;(3)证明:2n﹣≤S n≤2n﹣1+()n.【解答】证明:(1)a n+1﹣2=﹣2=,由于+2=+1>0,+2=2+>0.∴a n+1﹣2与a n﹣2同号,因此与a1﹣2同号,而a1﹣2=﹣<0,∴a n<2.(2)a n+1﹣1=,可得:a n+1﹣1与a n﹣1同号,因此与a1﹣1同号,而a1﹣1=>0,∴a n>1.又a n<2.∴1<a n<2.a n+1﹣a n=,可得分子>0,分母>0.∴a n+1﹣a n>0,故a n<a n+1.(3)n=1时,S1=,满足不等式.n≥2时,==,∴,即2﹣a n≥.∴2n﹣S n≥=1﹣.即S n≤2n﹣1+.另一方面:由(II)可知:.,=≤.从而可得:=≤.∴2﹣a n≤,∴2n﹣S n≤=.∴S n≥2n﹣>2n﹣.综上可得:2n﹣≤S n≤2n﹣1+()n.10.数列{a n}的各项均为正数,且a n+1=a n+﹣1(n∈N*),{a n}的前n项和是S n.(Ⅰ)若{a n}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有S n≥na1﹣(n﹣1),证明:S n<2n+1.【解答】(I)解:由a2>a1>0⇔﹣1>a1>0,解得0<a1<2,①.又a3>a2>0,⇔>a2,⇔0<a2<2⇔﹣1<2,解得1<a1<2,②.由①②可得:1<a1<2.下面利用数学归纳法证明:当1<a1<2时,∀n∈N*,1<a n<2成立.(1)当n=1时,1<a1<2成立.(2)假设当n=k∈N*时,1<a n<2成立.则当n=k+1时,a k+1=a k+﹣1∈⊊(1,2),即n=k+1时,不等式成立.综上(1)(2)可得:∀n∈N*,1<a n<2成立.于是a n+1﹣a n=﹣1>0,即a n+1>a n,∴{a n}是递增数列,a1的取值范围是(1,2).(II)证明:∵a1>2,可用数学归纳法证明:a n>2对∀n∈N*都成立.于是:a n+1﹣a n=﹣1<2,即数列{a n}是递减数列.在S n≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.下证:(1)当时,S n≥na1﹣(n﹣1)恒成立.事实上,当时,由a n=a1+(a n﹣a1)≥a1+(2﹣)=.于是S n=a1+a2+…+a n≥a1+(n﹣1)=na1﹣.再证明:(2)时不合题意.事实上,当时,设a n=b n+2,可得≤1.由a n+1=a n+﹣1(n∈N*),可得:b n+1=b n+﹣1,可得=≤≤.于是数列{b n}的前n和T n≤<3b1≤3.故S n=2n+T n<2n+3=na1+(2﹣a1)n+3,③.令a1=+t(t>0),由③可得:S n<na1+(2﹣a1)n+3=na1﹣﹣tn+.只要n充分大,可得:S n<na1﹣.这与S n≥na1﹣(n﹣1)恒成立矛盾.∴时不合题意.综上(1)(2)可得:,于是可得=≤≤.(由可得:).故数列{b n}的前n项和T n≤<b1<1,∴S n=2n+T n<2n+1.11.设a n=x n,b n=()2,S n为数列{a n•b n}的前n项和,令f n(x)=S n﹣1,x∈R,a∈N*.(Ⅰ)若x=2,求数列{}的前n项和T n;(Ⅱ)求证:对∀n∈N*,方程f n(x)=0在x n∈[,1]上有且仅有一个根;(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中x n构成的数列{x n}满足0<x n﹣x n+p<.【解答】解:(Ⅰ)若x=2,a n=2n,则=(2n﹣1)()n,则T n=1×()1+3×()2+…+(2n﹣1)()n,∴T n=1×()2+3×()3+…+(2n﹣1)()n+1,∴T n=+2×[()2+()3+…+()n]﹣(2n﹣1)()n+1=+2×﹣(2n﹣1)()n+1=+1﹣()n﹣1﹣(2n﹣1)()n+1,∴T n=3﹣()n﹣2﹣(2n﹣1)()n=3﹣;(Ⅱ)证明:f n(x)=﹣1+x+++…+(x∈R,n∈N+),f n′(x)=1+++…+>0,故函数f(x)在(0,+∞)上是增函数.由于f1(x1)=0,当n≥2时,f n(1)=++…+>0,即f n(1)>0.又f n()=﹣1++[+++…+]≤﹣+•()i,=﹣+×=﹣•()n﹣1<0,根据函数的零点的判定定理,可得存在唯一的x n∈[,1],满足f n(x n)=0.(Ⅲ)证明:对于任意p∈N+,由(1)中x n构成数列{x n},当x>0时,∵f n+1(x)=f n(x)+>f n(x),∴f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由 f n+1(x)在(0,+∞)上单调递增,可得 x n+1<x n,即 x n﹣x n+1>0,故数列{x n}为减数列,即对任意的 n、p∈N+,x n﹣x n+p>0.由于 f n(x n)=﹣1+x n+++…+=0,①,f n+p(x n+p)=﹣1+x n+p+++…++[++…+],②,用①减去②并移项,利用 0<x n+p≤1,可得x n﹣x n+p=+≤≤<=﹣<.综上可得,对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.12.已知数列{a n},{b n},a0=1,,(n=0,1,2,…),,T n为数列{b n}的前n项和.求证:(Ⅰ)a n+1<a n;(Ⅱ);(Ⅲ).【解答】解:证明:(Ⅰ)=,所以a n+1<a n(Ⅱ)法一、记,则,原命题等价于证明;用数学归纳法提示:构造函数在(1,+∞)单调递增,故==+>+×=+×(﹣)=,法二、只需证明,由,故:n=1时,,n≥2,可证:,(3)由,得=,可得:,叠加可得,,所以,13.已知数列{a n}满足:a1=,a n=a n﹣12+a n﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤a n≤•3;(Ⅱ)设数列{a n2}的前n项和为A n,数列{}的前n项和为B n,证明:=a n+1.【解答】解:(I)a2=a12+a1==,a3=a22+a2==.证明:∵a n=a n﹣12+a n﹣1,∴a n+=a n﹣12+a n﹣1+=(a n﹣1+)2+>(a n﹣1+)2,∴a n+>(a n﹣1+)2>(a n﹣2+)4>>(a n﹣3+)8>…>(a1+)=2,∴a n >2﹣, 又∵a n ﹣a n ﹣1=a n ﹣12>0,∴a n >a n ﹣1>a n ﹣2>…>a 1>1,∴a n 2>a n ,∴a n =a n ﹣12+a n ﹣1<2a ,∴a n <2a<2•22<2•22•24<…<2•22•24•…•2a 1=2•()=•3.综上,2﹣≤a n ≤•3. (II )证明:∵a n =a n ﹣12+a n ﹣1,∴a n ﹣12=a n ﹣a n ﹣1,∴A n =a 12+a 22+a 32+…a n 2=(a 2﹣a 1)+(a 3﹣a 2)+…+(a n+1﹣a n )=a n+1﹣,∵a n =a n ﹣12+a n ﹣1=a n ﹣1(a n ﹣1+1),∴==,∴=, ∴B n =…+=()+()+(﹣)+…+()=﹣.∴==.14.已知数列{a n }的各项均为非负数,其前n 项和为S n ,且对任意的n ∈N *,都有. (1)若a 1=1,a 505=2017,求a 6的最大值;(2)若对任意n ∈N *,都有S n ≤1,求证:.【解答】解:(1)由题意知a n+1﹣a n ≤a n+2﹣a n+1,设d i =a i+1﹣a i (i=1,2,…,504),则d 1≤d 2≤d 3≤…≤d 504,且d 1+d 2+d 3+…+d 504=2016,∵=, 所以d 1+d 2+…+d 5≤20,∴a 6=a 1+(d 1+d 2+…+d 5)≤21.(2)证明:若存在k ∈N *,使得a k <a k+1,则由,得a k+1≤a k﹣a k+1≤a k+2,因此,从a n项开始,数列{a n}严格递增,故a1+a2+…+a n≥a k+a k+1+…+a n≥(n﹣k+1)a k,对于固定的k,当n足够大时,必有a1+a2+…+a n≥1,与题设矛盾,所以{a n}不可能递增,即只能a n﹣a n+1≥0.令b k=a k﹣a k+1,(k∈N*),由a k﹣a k+1≥a k+1﹣a k+2,得b k≥b k+1,b k>0,故1≥a1+a2+…+a n=(b1+a2)+a2+…+a n=b1+2(b2+a3)+a3+…+a n,=…=b1+2b2+…+nb n+na n,所以,综上,对一切n∈N*,都有.15.已知数列{a n}中,a1=4,a n+1=,n∈N*,S n为{a n}的前n项和.(Ⅰ)求证:n∈N*时,a n>a n+1;(Ⅱ)求证:n∈N*时,2≤S n﹣2n<.【解答】证明:(I)n≥2时,作差:a n+1﹣a n=﹣=,∴a n+1﹣a n与a n﹣a n﹣1同号,由a1=4,可得a2==,可得a2﹣a1<0,∴n∈N*时,a n>a n+1.(II)∵2=6+a n,∴=a n﹣2,即2(a n+1﹣2)(a n+1+2)=a n﹣2,①∴a n+1﹣2与a n﹣2同号,又∵a1﹣2=2>0,∴a n>2.∴S n=a1+a2+…+a n≥4+2(n﹣1)=2n+2.∴S n﹣2n≥2.由①可得:=,因此a n﹣2≤(a1﹣2),即a n≤2+2×.∴S n=a1+a2+…+a n≤2n+2×<2n+.综上可得:n∈N*时,2≤S n﹣2n<.16.已知数列{a n}满足,a1=1,a n=﹣.(1)求证:a n≥;(2)求证:|a n+1﹣a n|≤;(3)求证:|a2n﹣a n|≤.【解答】证明:(1)∵a1=1,a n=﹣.∴a2=,a3=,a4=,猜想:≤a n≤1.下面用数学归纳法证明.(i)当n=1时,命题显然成立;(ii)假设n=k时,≤1成立,则当n=k+1时,a k+1=≤<1.,即当n=k+1时也成立,所以对任意n∈N*,都有.(2)当n=1时,,当n≥2时,∵,∴.(3)当n=1时,|a2﹣a1|=<;当n≥2时,|a2n﹣a n|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|a n+1﹣a n|.17.设数列{a n}满足:a1=a,a n+1=(a>0且a≠1,n∈N*).(1)证明:当n≥2时,a n<a n+1<1;(2)若b∈(a2,1),求证:当整数k≥+1时,a k+1>b.【解答】证明:(1)由a n+1=知a n与a1的符号相同,而a1=a>0,∴a n>0,∴a n+1=≤1,当且仅当a n=1时,a n+1=1下面用数学归纳法证明:①∵a>0且a≠1,∴a2<1,∴=>1,即有a2<a3<1,②假设n=k时,有a k<a k+1<1,则a k+2==<1且=>1,即a k+1<a k+2<1即当n=k+1时不等式成立,由①②可得当n≥2时,a n<a n+1<1;(2)若a k≥b,由(1)知a k+1>a k≥b,若a k<b,∵0<x<1以及二项式定理可知(1+x)n=1+C n1x+…+C n n x n≥nx,而a k2+1<b2+1<b+1,且a2<a3<…<a k<b<1∴a k+1=a2••…,=a2•>a2•()k﹣1>a2•()k﹣1=a2•(1+)k﹣1,≥a2•[1+(k﹣1)],∵k≥+1,∴1+(k﹣1)≥+1=,∴a k+1>b.18.设a>3,数列{a n}中,a1=a,a n+1=,n∈N*.(Ⅰ)求证:a n>3,且<1;(Ⅱ)当a≤4时,证明:a n≤3+.【解答】证明:(I)∵a n+1﹣3=﹣3=.=﹣=,∴()=>0,∴与同号,又a>3,∴=a﹣>0,∴>0,∴a n+1﹣3>0,即a n>3(n=1时也成立).∴==<1.综上可得:a n>3,且<1;(Ⅱ)当a≤4时,∵a n+1﹣3=﹣3=.∴=,由(I)可知:3<a n≤a1=a≤4,∴3<a n≤4.设a n﹣3=t∈(0,1].∴==≤,∴•…•≤,∴a n﹣3≤(a1﹣3)×≤,∴a n≤3+.19.已知数列{a n}满足a n>0,a1=2,且(n+1)a n+12=na n2+a n(n∈N*).(Ⅰ)证明:a n>1;(Ⅱ)证明:++…+<(n≥2).【解答】证明:(Ⅰ)由题意得(n+1)a n+12﹣(n+1)=na n2﹣n+a n﹣1,∴(n+1)(a n+1+1)(a n+1﹣1)=(a n﹣1)(na n+n+1),由a n>0,n∈N*,∴(n+1)(a n+1+1)>0,na n+n+1>0,∴a n+1﹣1与a n﹣1同号,∵a1﹣1=1>0,∴a n>1;(Ⅱ)由(Ⅰ)知,故(n+1)a n+12=na n2+a n<(n+1)a n2,∴a n+1<a n,1<a n≤2,又由题意可得a n=(n+1)a n+12﹣na n2,∴a1=2a22﹣a12,a2=3a32﹣2a22,…,a n=(n+1)a n+12﹣na n2,相加可得a1+a2+…+a n=(n+1)a n+12﹣4<2n,∴a n+12≤,即a n2≤,n≥2,∴≤2(+)≤2(﹣)+(﹣+),n≥2,当n=2时,=<,当n=3时,+≤<<,当n≥4时,++…+<2(+++)+(++﹣)=1+++++<,从而,原命题得证20.已知数列{a n}满足:.(1)求证:;(2)求证:.【解答】证明:(1)由,所以,因为,所以a n+2<a n+1<2.(2)假设存在,由(1)可得当n>N时,a n≤a N+1<1,根据,而a n<1,所以.于是,….累加可得(*)由(1)可得a N+n﹣1<0,而当时,显然有,因此有,这显然与(*)矛盾,所以.21.已知数列{a n}满足a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣).(1)求数列{a n}的通项公式;(2)求证:++…+<;(3)记S n=++…+,证明:对于一切n≥2,都有S n2>2(++…+).【解答】解:(1)a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣),可得a n+12+a n2﹣2a n+1a n﹣2a n+1+2a n+1=0,即有(a n+1﹣a n)2﹣2(a n+1﹣a n)+1=0,即为(a n+1﹣a n﹣1)2=0,可得a n+1﹣a n=1,则a n=a1+n﹣1=n,n∈N*;(2)证明:由=<=﹣,n≥2.则++…+=1+++…+<1++﹣+﹣+…+﹣=﹣<,故原不等式成立;(3)证明:S n=++…+=1++…+,当n=2时,S22=(1+)2=>2•=成立;假设n=k≥2,都有S k2>2(++…+).则n=k+1时,S k+12=(S k+)2,S k+12﹣2(++…++)=(S k+)2﹣2(++…+)﹣2•=S k2﹣2(++…+)++2•﹣2•=S k2﹣2(++…+)+,由k>1可得>0,且S k2>2(++…+).可得S k2﹣2(++…+)>0,则S k+12>2(++…++)恒成立.综上可得,对于一切n≥2,都有S n2>2(++…+).22.已知数列{a n}满足a1=1,a n+1=,n∈N*.(1)求证:≤a n≤1;(2)求证:|a2n﹣a n|≤.【解答】证明:(1)用数学归纳法证明:①当n=1时,=,成立;②假设当n=k时,有成立,则当n=k+1时,≤≤1,≥=,∴当n=k+1时,,命题也成立.由①②得≤a n≤1.(2)当n=1时,|a2﹣a1|=,当n≥2时,∵()()=()=1+=,∴|a n+1﹣a n|=||=≤|a n﹣a n﹣1|<…<()n﹣1|a2﹣a1|=,∴|a2n﹣a2n﹣1|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|a n+1﹣a n|≤==()n﹣1﹣()2n﹣1≤,综上:|a2n﹣a n|≤.23.已知数列{a n]的前n项和记为S n,且满足S n=2a n﹣n,n∈N*(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明:+…(n∈N*)【解答】解:(Ⅰ)∵S n=2a n﹣n(n∈N+),∴S n﹣1=2a n﹣1﹣n+1=0(n≥2),两式相减得:a n=2a n﹣1+1,变形可得:a n+1=2(a n﹣1+1),又∵a1=2a1﹣1,即a1=1,∴数列{a n+1}是首项为2、公比为2的等比数列,∴a n+1=2•2n﹣1=2n,a n=2n﹣1.(Ⅱ)由,(k=1,2,…n),∴=,由=﹣,(k=1,2,…n),得﹣=,综上,+…(n∈N*).24.已知数列{a n}满足:a1=,a n+1=+a n(n∈N*).(1)求证:a n+1>a n;(2)求证:a2017<1;(3)若a k>1,求正整数k的最小值.【解答】(1)证明:a n+1﹣a n=≥0,可得a n+1≥a n.∵a1=,∴a n.∴a n+1﹣a n=>0,∴a n+1>a n.(II)证明:由已知==,∴=﹣,由=,=,…,=,累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.∴﹣=++…+<<1,∴a2017<1.(III)解:由(II)可得:可得:=a1<a2<…<a2016<a2017<1.∴﹣=++…+>2017×=1,∴a2017<1<a2018,又∵a n+1>a n.∴k的最小值为2018.25.已知数列{a n}满足:a n2﹣a n﹣a n+1+1=0,a1=2(1)求a2,a3;(2)证明数列为递增数列;(3)求证:<1.【解答】(1)解:∵a1=2,,∴a2=22﹣2+1=3,同理可得:a3=7.(2)证明:,对n∈N*恒成立,∴a n+1>a n.(3)证明:故=.26.已知数列{a n}满足:a1=1,(n∈N*)(Ⅰ)求证:a n≥1;(Ⅱ)证明:≥1+(Ⅲ)求证:<a n+1<n+1.【解答】证明:(I)数列{a n}满足:a1=1,(n∈N*),可得:,⇒a n+1≥a n≥a n﹣1≥…≥a1=1;(Ⅱ)由(Ⅰ)可得:;(Ⅲ),由(Ⅱ)得:,所以,累加得:,另一方面由a n≤n可得:原式变形为,所以:,累加得.27.在正项数列{a n}中,已知a1=1,且满足a n+1=2a n(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)证明.a n≥.【解答】解:(Ⅰ)∵在正项数列{a n}中,a1=1,且满足a n+1=2a n(n∈N*),∴=,=.证明:(Ⅱ)①当n=1时,由已知,成立;②假设当n=k时,不等式成立,即,∵f(x)=2x﹣在(0,+∞)上是增函数,∴≥=()k+()k﹣=()k+=()k+,∵k≥1,∴2×()k﹣3﹣3=0,∴,即当n=k+1时,不等式也成立.根据①②知不等式对任何n∈N*都成立.28.设数列{a n}满足.(1)证明:;(2)证明:.【解答】(本题满分15分)证明:(I)易知a n>0,所以a n+1>a n+>a n,所以 a k+1=a k+<a k+,所以.所以,当n≥2时,=,所以a n<1.又,所以a n<1(n∈N*),所以 a n<a n+1<1(n∈N*).…(8分)(II)当n=1时,显然成立.由a n<1,知,所以,所以,所以,所以,当n≥2时,=,即.所以(n∈N*).…(7分)29.已知数列{a n}满足a1=2,a n+1=2(S n+n+1)(n∈N*),令b n=a n+1.(Ⅰ)求证:{b n}是等比数列;(Ⅱ)记数列{nb n}的前n项和为T n,求T n;(Ⅲ)求证:﹣<+…+.【解答】(I)证明:a1=2,a n+1=2(S n+n+1)(n∈N*),∴a2=2×(2+1+1)=8.n≥2时,a n=2(S n﹣1+n),相减可得:a n+1=3a n+2,变形为:a n+1+1=3(a n+1),n=1时也成立.令b n=a n+1,则b n+1=3b n.∴{b n}是等比数列,首项为3,公比为3.(II)解:由(I)可得:b n=3n.∴数列{nb n}的前n项和T n=3+2×32+3×33+…+n•3n,3T n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2T n=3+32+…+3n﹣n•3n+1=﹣n•3n+1=×3n+1﹣,解得T n=+.(III)证明:∵b n=3n=a n+1,解得a n=3n﹣1.由=.∴+…+>…+==,因此左边不等式成立.又由==<=,可得+…+<++…+=<.因此右边不等式成立.综上可得:﹣<+…+.30.已知数列{a n}中,a1=3,2a n+1=a n2﹣2a n+4.(Ⅰ)证明:a n+1>a n;(Ⅱ)证明:a n≥2+()n﹣1;(Ⅲ)设数列{}的前n项和为S n,求证:1﹣()n≤S n<1.【解答】证明:(I)a n+1﹣a n=﹣a n=≥0,∴a n+1≥a n≥3,∴(a n﹣2)2>0∴a n+1﹣a n>0,即a n+1>a n;(II)∵2a n+1﹣4=a n2﹣2a n=a n(a n﹣2)∴=≥,∴a n﹣2≥(a n﹣1﹣2)≥()2(a n﹣2﹣2)≥()3(a n﹣3﹣2)≥…≥()n﹣1(a1﹣2)=()n﹣1,∴a n≥2+()n﹣1;(Ⅲ)∵2(a n+1﹣2)=a n(a n﹣2),∴==(﹣)∴=﹣,∴=﹣+,∴S n=++…+=﹣+﹣+…+﹣=﹣=1﹣,∵a n+1﹣2≥()n,∴0<≤()n,∴1﹣()n≤S n=1﹣<1.31.已知数列{a n}满足a1=,a n+1=,n∈N*.(1)求a2;(2)求{}的通项公式;(3)设{a n}的前n项和为S n,求证:(1﹣()n)≤S n<.【解答】(1)解:∵a1=,a,n∈N+.∴a2==.(2)解:∵a1=,a,n∈N+.∴=﹣,化为:﹣1=,∴数列是等比数列,首项与公比都为.∴﹣1=,解得=1+.(3)证明:一方面:由(2)可得:a n=≥=.∴S n≥+…+==,因此不等式左边成立.另一方面:a n==,∴S n≤+++…+=×<×3<(n≥3).又n=1,2时也成立,因此不等式右边成立.综上可得:(1﹣()n)≤S n<.32.数列{a n}中,a1=1,a n=.(1)证明:a n<a n+1;(2)证明:a n a n+1≥2n+1;(3)设b n=,证明:2<b n<(n≥2).【解答】证明:(1)数列{a n}中,a1=1,a n=.可得a n>0,a n2=a n a n+1﹣2,可得a n+1=a n+>a n,即a n<a n+1;(2)由(1)可得a n a n﹣1<a n2=a n a n+1﹣2,可得a n a n+1﹣a n a n﹣1>2,n=1时,a n a n+1=a12+2=3,2n+1=3,则原不等式成立;n≥2时,a n a n+1>3+2(n﹣1)=2n+1,综上可得,a n a n+1≥2n+1;(3)b n=,要证2<b n<(n≥2),即证2<a n<,只要证4n<a n2<5n,由a n+1=a n+,可得a n+12=a n2+4+,且a2=3,a n+12﹣a n2=4+>4,且4+<4+=4+=,即有a n+12﹣a n2∈(4,),由n=2,3,…,累加可得a n2﹣a22∈(4(n﹣2),),即有a n2∈(4n+1,)⊆(4n,5n),故2<b n<(n≥2).33.已知数列{a n}满足,(1)若数列{a n}是常数列,求m的值;(2)当m>1时,求证:a n<a n+1;(3)求最大的正数m,使得a n<4对一切整数n恒成立,并证明你的结论.【解答】解:(1)若数列{a n}是常数列,则,得.显然,当时,有a n=1.…(3分)(2)由条件得,得a2>a1.…(5分)又因为,,两式相减得.…(7分)显然有a n>0,所以a n+2﹣a n+1与a n+1﹣a n同号,而a2﹣a1>0,所以a n+1﹣a n>0,从而有a n<a n+1.…(9分)(3)因为,…(10分)所以a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)≥1+(n﹣1)(m﹣2).这说明,当m>2时,a n越来越大,显然不可能满足a n<4.所以要使得a n<4对一切整数n恒成立,只可能m≤2.…(12分)下面证明当m=2时,a n<4恒成立.用数学归纳法证明:当n=1时,a1=1显然成立.假设当n=k时成立,即a k<4,则当n=k+1时,成立.由上可知a n<4对一切正整数n恒成立.因此,正数m的最大值是2.…(15分)34.已知数列{a n}满足:,p>1,.(1)证明:a n>a n+1>1;(2)证明:;(3)证明:.【解答】证明:(1)先用数学归纳法证明a n>1.①当n=1时,∵p>1,∴;②假设当n=k时,a k>1,则当n=k+1时,.由①②可知a n>1.再证a n>a n+1.,令f(x)=x﹣1﹣xlnx,x>1,则f'(x)=﹣lnx<0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0,所以,即a n>a n+1.(2)要证,只需证,只需证其中a n>1,先证,令f(x)=2xlnx﹣x2+1,x>1,只需证f(x)<0.因为f'(x)=2lnx+2﹣2x<2(x﹣1)+2﹣2x=0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0.再证(a n+1)lna n﹣2a n+2>0,令g(x)=(x+1)lnx﹣2x+2,x>1,只需证g(x)>0,,令,x>1,则,所以h(x)在(1,+∞)上单调递增,所以h(x)>h(1)=0,从而g'(x)>0,所以g(x)在(1,+∞)上单调递增,所以g(x)>g(1)=0,综上可得.(3)由(2)知,一方面,,由迭代可得,因为lnx≤x﹣1,所以,所以ln(a1a2…a n)=lna1+lna2+…+lna n=;另一方面,即,由迭代可得.因为,所以,所以=;综上,.35.数列{a n}满足a1=,a n+1﹣a n+a n a n+1=0(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…a n<1.【解答】解(Ⅰ):由已知可得数列{a n}各项非零.否则,若有a k=0结合a k﹣a k﹣1+a k a k﹣1=0⇒a k﹣1=0,继而⇒a k﹣1=0⇒a k﹣2=0⇒…⇒a1=0,与已知矛盾.所以由a n+1﹣a n+a n a n+1=0可得.即数列是公差为1的等差数列.所以.所以数列{a n}的通项公式是(n∈N*).(Ⅱ)证明一:因为.所以a1+a1a2+a1a2a3+…+a1a2…a n=.所以a1+a1a2+a1a2a3+…+a1a2…a n<1.证明二:a1+a1a2+a1a2a3+…+a1a2…a n===.所以a1+a1a2+a1a2a3+…+a1a2…a n<1.36.已知数列{a n}满足a1=1,a n+1=a n2+p.(1)若数列{a n}就常数列,求p的值;(2)当p>1时,求证:a n<a n+1;(3)求最大的正数p,使得a n<2对一切整数n恒成立,并证明你的结论.【解答】解:(1)若数列{a n}是常数列,则,;显然,当时,有a n=1(2)由条件得得a2>a1,又因为,两式相减得显然有a n>0,所以a n+2﹣a n+1与a n+1﹣a n同号,而a2﹣a1>0,所以a n+1﹣a n>0;从而有a n<a n+1.(3)因为,所以a n=a1+(a2﹣a1)+…(a n﹣a n﹣1)>1+(n﹣1)(p﹣1),这说明,当p>1时,a n越来越大,不满足a n<2,所以要使得a n<2对一切整数n恒成立,只可能p≤1,下面证明当p=1时,a n<2恒成立;用数学归纳法证明:当n=1时,a1=1显然成立;假设当n=k时成立,即a k<2,则当n=k+1时,成立,由上可知对一切正整数n恒成立,因此,正数p的最大值是137.已知数列{a n}满足a1=a>4,,(n∈N*)(1)求证:a n>4;(2)判断数列{a n}的单调性;(3)设S n为数列{a n}的前n项和,求证:当a=6时,.【解答】(1)证明:利用数学归纳法证明:①当n=1时,a1=a>4,成立.②假设当n=k≥2时,a k>4,.则a k+1=>=4.∴n=k+1时也成立.综上①②可得:∀n∈N*,a n>4.(2)解:∵,(n∈N*).∴﹣=﹣2a n﹣8=﹣9>(4﹣1)2﹣9=0,∴a n>a n+1.∴数列{a n}单调递减.(3)证明:由(2)可知:数列{a n}单调递减.一方面S n>a1+4(n﹣1)=4n+2.另一方面:=<,∴a n﹣4<,∴S n﹣4n<<.即S n<4n+.∴当a=6时,.38.已知数列{a n}满足a1=1,a n+1=.(Ⅰ)求证:a n+1<a n;(Ⅱ)求证:≤a n≤.【解答】解:(Ⅰ)证明:由a1=1,a n+1=,得a n>0,(n∈N),则a n+1﹣a n=﹣a n=<0,∴a n+1<a n;(Ⅱ)证明:由(Ⅰ)知0<a n<1,又a n+1=.,∴=≥,即a n+1>a n,∴a n>a n﹣1≥()2a n﹣1≥…≥()2a n﹣1≥()n﹣1a1=,即a n≥.由a n+1=,则=a n+,∴﹣=a n,∴﹣=a1=1,﹣=a2=,﹣=a3=()2…﹣=a n﹣1≥()n﹣2,累加得﹣=1++()2+…+()n﹣2==2﹣()n﹣2,而a1=1,∴≥3﹣()n﹣2==,∴a n≤.综上得≤a n≤.39.已知数列{a n}满足:a1=1,.(1)若b=1,证明:数列是等差数列;(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;(3)若b=﹣1,求证:.【解答】解:(1)证明:当b=1,a n+1=+1,∴(a n+1﹣1)2=(a n﹣1)2+2,即(a n+1﹣1)2﹣(a n﹣1)2=2,∴(a n﹣1)2﹣(a n﹣1﹣1)2=2,∴数列{(a n﹣1)2}是0为首项、以2为公差的等差数列;(2)当b=﹣1,a n+1=﹣1,数列{a2n﹣1}单调递减.可令a n+1→a n,可得1+a n=,可得a n→,即有a n<(n=2,3,…),再令f(x)=﹣1,可得在(﹣∞,1]上递减,可得{a2n﹣1}单调递减.(3)运用数学归纳法证明,当n=1时,a1=1<成立;设n=k时,a1+a3+…+22k﹣1<,当n=k+1时,a1+a3+…+a2k﹣1+a2k+1<+=,综上可得,成立.40.已知数列{a n}满足,(n=1,2,3…),,S n=b1+b2+…+b n.证明:(Ⅰ)a n﹣1<a n<1(n≥1);(Ⅱ)(n≥2).【解答】证明:(Ⅰ)由得:(*)显然a n>0,(*)式⇒故1﹣a n与1﹣a n﹣1同号,又,所以1﹣a n>0,即a n<1…(3分)(注意:也可以用数学归纳法证明)所以 a n﹣1﹣a n=(2a n+1)(a n﹣1)<0,即a n﹣1<a n所以 a n﹣1<a n<1(n≥1)…(6分)(Ⅱ)(*)式⇒,由0<a n﹣1<a n<1⇒a n﹣1﹣a n+1>0,从而b n=a n﹣1﹣a n+1>0,于是,S n=b1+b2+…+b n>0,…(9分)由(Ⅰ)有1﹣a n﹣1=2(1+a n)(1﹣a n)⇒,所以(**)…(11分)所以S n=b1+b2+…+b n=(a0﹣a1+1)+(a1﹣a2+1)+…(a n﹣1﹣a n+1)=…(12分)=…(14分)∴(n≥2)成立…(15分)41.已知数列{a n}满足a1=1,a n+1=,n∈N*,记S,T n分别是数列{a n},{a}的前n项和,证明:当n∈N*时,(1)a n+1<a n;(2)T n=﹣2n﹣1;(3)﹣1<S n.【解答】解:(1)由a1=1,a n+1=,n∈N*,知a n>0,故a n+1﹣a n=﹣a n=<0,因此a n+1<a n;(2)由a n+1=,取倒数得:=+a n,平方得:=+a n2+2,从而﹣﹣2=a n2,由﹣﹣2=a12,﹣﹣2=a22,…,﹣﹣2=a n2,累加得﹣﹣2n=a12+a22+…+a n2,即T n=﹣2n﹣1;(3)由(2)知:﹣=a n,可得﹣=a1,﹣=a2,…,﹣=a n,由累加得﹣=a1+a2+…+a n=S n,又因为=a12+a22+…+a n2+2n+1>2n+2,所以>,S n=a n+a n﹣1+…+a1=﹣>﹣1>﹣1;又由>,即>,得当n>1时,a n<=<=(﹣),累加得S n<a1+[(﹣1)+(﹣)+…+(﹣)]=1+(﹣1)<,当n=1时,S n成立.因此﹣1<S n.42.已知数列{a n}满足a1=3,a n+1=a n2+2a n,n∈N*,设b n=log2(a n+1).(I)求{a n}的通项公式;(II)求证:1+++…+<n(n≥2);(III)若=b n,求证:2≤<3.【解答】解:(I)由,则,由a1=3,则a n>0,两边取对数得到,即b n+1=2b n(2分)又b1=log2(a1+1)=2≠0,∴{b n}是以2为公比的等比数列.即(3分)又∵b n=log2(a n+1),∴(4分)(2)用数学归纳法证明:1o当n=2时,左边为=右边,此时不等式成立;(5分)2o假设当n=k≥2时,不等式成立,则当n=k+1时,左边=(6分)<k+1=右边∴当n=k+1时,不等式成立.综上可得:对一切n∈N*,n≥2,命题成立.(9分)(3)证明:由得c n=n,∴,首先,(10分)其次∵,∴,,当n=1时显然成立.所以得证.(15分)43.已知正项数列{a n}满足a1=3,,n∈N*.(1)求证:1<a n≤3,n∈N*;(2)若对于任意的正整数n,都有成立,求M的最小值;(3)求证:a1+a2+a3+…+a n<n+6,n∈N*.【解答】(1)证明:由正项数列{a n}满足a1=3,,n∈N*.得+a n+2=2a n+1,两式相减得(a n+2﹣a n+1)(a n+2+a n+1+1)=2(a n+1﹣a n),∵a n>0,∴a n+2﹣a n+1与a n+1﹣a n同号.∵+a2=2a1=6,∴a2=2,则a2﹣a1<0,∴a n+1﹣a n<0,即数列{a n}是单调减数列,则a n≤a1=3.另一方面:由正项数列{a n}满足a1=3,,n∈N*.可得:+a n+1=2a n,得+a n+1﹣2=2a n﹣2,得(a n+1+2)(a n+1﹣1)=2(a n﹣1),由a n+1+2>0,易知a n+1﹣1与a n﹣1同号,由于a1﹣1=2>0,可知a n﹣1>0,即a n>1.综上可得:1<a n≤3,n∈N*.(2)解:由(1)知:=,而3<a n+1+2≤a2+2=4,则≤,∴.故M的最小值为.。
高考数学压轴专题专题备战高考《数列》全集汇编含答案解析
【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高考数学压轴题突破训练--数列(含详解)
高考数学压轴题突破训练:数列1. 1. 已知数列已知数列{}n a 为等差数列,每相邻两项k a ,1+k a 分别为方程0242=+×-kc x k x ,(k是正整数)的两根. (1)求{}n a 的通项公式;(2)求 ++++n c c c 21之和之和;; (3)对于以上的数列{)对于以上的数列{a a n }和{}和{c c n },整数981是否为数列{nnc a 2}中的项?若是}中的项?若是,,则求出相应的项数;若不是相应的项数;若不是,,则说明理由则说明理由. .2. 2. 已知二次函数已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *Î均在函数()y f x =的图像上.的图像上. (Ⅰ)(Ⅰ) 求数列{}n a 的通项公式;的通项公式; (Ⅱ)(Ⅱ) 设13+=n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *Î都成立的最小正整数m.3. 3. 已知函数已知函数2)1()(-=x x f ,数列数列{{n a }是公差为d 的等差数列,数列数列{{n b }是公比为q 的等比数列(比数列(q q ≠1,R Îq ),若)1(1+=d f a ,)1(1+=q b ,)1(3-=q f b (1)求数列)求数列{{n a }和{n b }的通项公式;的通项公式;(2)设数列设数列{{n c }的前n 项和为n S ,对+ÎN n 都有+++2121b b c c …1+=+n n na b c 求¥®+n nn S S 212lim 4. 4. 各项均为正数的数列各项均为正数的数列各项均为正数的数列{a {a n }的前n 项和S n ,函数.ln )(21)(2x q x q p px x f ++-=(其中p 、q 均常为常数,数,且且p>q>0),当1a x =时,函数f(x)得取得极小极小值,值,点点))(2,(*ÎN n S n n 均在函数q x f xqpx y +¢+-=)(22的图象上,(其中f ′(x)(x)是函数是函数f(x)f(x)的导函数)的导函数)的导函数) ((1)求a 1的值;的值; ((2)求数列}{n a 的通项公式;的通项公式; ((3)记}{,34n nn n b q n S b 求数列×+=的前n 项和T n .5. 已知函数,1)21(,)1,1()(-=-f x f 上有意义在且任意的x 、)1,1(-Îy 都有).1()()(xyy x f y f x f ++=+(1)若数列).(),(12,21}{*211n nn n n x f N n x x x x x 求满足Î+==+ (2)求)21()131()111()51(12+++++++n f n n f f f 的值.6. 6. 已知函数已知函数()log (01)a f x x a a =>¹且,若数列:*122,(),(),,(),24()n f a f a f a n n N +Î 成等差数列成等差数列. .(1)(1)求数列求数列{}n a 的通项n a ;(2)(2)若若2a =,令()n n n b a f a =×,求数列{}n b 前n 项和n S ;(3)(3)在在(2)(2)的条件下对任意的条件下对任意*n N Î,都有1()n b f t ->,求实数t 的取值范围的取值范围. .7. 7. 已知函数已知函数),,()(2R c b a c bx ax x f Î++=,当]1,1[-Îx 时,1|)(|£x f(1) 证明:1||£b(2) 若1)(,1)0(=-=x f f ,求实数a 的值。
高中数学23个典型必考数列压轴题精讲,建议收藏
高考数学23个典型的数列专题解答1、等差数列{}n a 中,前三项依次为x x x 1,65,11+,求:105?a = 解:由等差数列中项公式得:511261x x x ⋅=++,则:2x =. 首项为:11113a x ==+,公差为:15151621212d x x =-=-=;则数列通项为:1113(1)31212n n n a a n d -+=+-=+=. 故:1053105391212n a ++===.2、前100个自然数(1到100)中,除以7余2的所有数之和S 是? 解:这些数构成的数列为:7(1)275n a n n =-+=-;在100之内,n 的最大数m 为:10075m =-,即15m =;这些数之和S 为:151(115)15(75)75157652k S n =+⨯⎡⎤=-=-⨯=⎢⎥⎣⎦∑3、在等差数列{}n a 中,前n 项和为n S . 若10a >,160S >,170S <,则n S 最大时,?n =解:等差数列通项为:1(1)n a a n d =+-,求和公式为:1(1)2n n n S na d -=+; 则:16116151602S a d ⨯=+>,即:11502a d +>,170a d +>,即:80a >; 17117161702S a d ⨯=+<,即:180a d +<,即:90a <.故n S 最大时,8n =.4、数列{}n a 的通项公式n a =n 项和为9n S =,求:?n =解:通项:n a==;则:119nn k S ==-==∑,于是:99n =5、等差数列{}n a ,其公差不为0,其中,2a 、3a 、6a 依次构成等比数列,求公比?q = 解:等差数列通项:1(1)n a a n d =+-,则:32a a d =+,624a a d =+,构成等比数列,则:2326a a a =,即:2222()(4)a d a a d +=+; 即:222222224a a d d a a d ++=+.因为0d ≠,故:22d a =;所以:32222233a a d a q a a a +====.6、已知等差数列{}n a 的前n 项和n S ,且11a =,1133S =. 设14na nb ⎛⎫= ⎪⎝⎭,求证:{}n b 是等比数列,并求其前n 项和n T . 证明:通项:1(1)n a a n d =+-,求和公式:1(1)2n n n S na d -=+; 则:11111011332S d ⨯=+=,即:115533d +=,故:25d =.于是:2231(1)55n n a n +=+-=;则:23514n n b +⎛⎫= ⎪⎝⎭,2(1)35114n n b +++⎛⎫= ⎪⎝⎭则:2(1)323255511144n n n n b b +++-+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 故{}n b 是首项为114b =,公比为25114n n b q b +⎛⎫== ⎪⎝⎭,的等比数列,通项为:23514n n b +⎛⎫= ⎪⎝⎭.25145111111411143124n nn n q T b q ⎛⎫-⎛⎫ ⎪-⎛⎫⎝⎭ ⎪==⋅=⋅- ⎪-⎪⎝⎭-⎝⎭7、若x y ≠,且两个数列:12,,,x a a y 和123,,,,x b b b y 均为等差数列,求:13?a xy b -=- 解:设两个等差数列的公差分别为:1d 和2d ,则:11y x a x d --==,32y xy b d --==.故:131()4313()4y x a x y b y x --==--8、已知正项数列{}n a 的前n 项和n S 满足:21056n n n S a a =++,且1a 、3a 、15a 成等比数列,求数列{}n a 的通项?n a =解:由已知:2+1+1+11056n n n S a a =++ ①21056n n n S a a =++ ②由①-②:2211110()5()n n n n n a a a a a +++=-+-移项合并:2211()5()0n n n n a a a a ++--+=,即:11()(5)0n n n n a a a a +++--=由于正项数列1()0n n a a ++>,所以:150n n a a +--=,即:15n n a a +-=; 由此得到{}n a 是公差为5的等差数列.设:15(1)n a a n =+-,则:3110a a =+,15170a a =+;由1a 、3a 、15a 成等比数列得:23115a a a =,即:2111(10)(70)a a a +=+;即:2211112010070a a a a ++=+,故:12a =. 所以:25(1)53n a n n =+-=-9、已知数列{}n a 的前n 项和1(1)(2)3n S n n n =++,试求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和?n T =解:由已知:1111(1)(2)=(1)(24)=(1)(21)(1)3662n S n n n n n n n n n n n =++++++++及:211(1)(21)6nk k n n n ==++∑ 和:11(1)2n k k n n ==+∑得到上面求和公式可分成两部分,一个2n a n =求和,一个n a n =求和. 故:2(1)n a n n n n =+=+. 那么:1111(1)1n a n n n n ==-++; 所以:1111()1111nn k nT kk n n ==-=-=+++∑.10、已知数列{}n a 的前n 项和为n S ,其首项11a =,且满足3(2)n n S n a =+,求通项?n a = 解:由已知:3(2)n n S n a =+ ①113(1)n n S n a --=+ ②由①-②:13(2)(1)n n n a n a n a -=+-+ ; 移项合并:1(1)(1)n n n a n a --=+,即:111n n n a a n -+=- 由此递推得:()1211112......1121211(1)(1)1122n n n kk n n n n n k a a a a n n n n n k n n n n n n a a k k --++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭++=+⋅⋅⋅⋅==+11、如果数列{}n a 中,相邻两项n a 和1+n a 是二次方程23=0n n n x nx c ++(n=1,2,3…)的两个根,当12a =时,试求100?c =解:由韦达定理:13n n a a n ++=- ① 1n n n a a c +⋅= ②由①式可得:121()()3n n n n a a a a ++++-+=-,即:23n n a a +-=- ③ ③式表明:13521,,,...,k a a a a -和2462,,,...,k a a a a 都是公差为-3的等差数列. 又因12a =,代入①式可得:25a =-,于是得到等差数列为:211(1)(3)23353k a a k k k -=+--=-+=-; 22(1)(3)53323k a a k k k =+--=--+=--.那么: 1002350152a =--⨯=-,1015351148a =-⨯=- 代入②式得:100100101(152)(148)22496c a a =⋅=-⨯-=12、有两个无穷的等比数列{}n a 和{}n b ,其公比的绝对值都小于1,其各项和分别是11n k k S a ∞===∑和12n k k T b ∞===∑,对一切自然数都有:2n n a b =,求这两个数列的首项和公比. 解:由111a S q==-和121bT r ==-得:11a q =-,及12(1)b r =-. 数列的首项设这两个等比数列的通项公式分别为:111(1)n n n a a q q q --==- ① 1112(1)n n n b b r r r --==- ②将①②两式代入2n n a b =,并采用赋值法,分别令1n =和2n =得:211a b =,即:2(1)2(1)q r -=- ③222a b =,即:22(1)2(1)q q r r -=- ④由③④得:2r q = ⑤ 将⑤式代入③式得:22(1)2(1)q q -=-因为:1q ≠,则上式化简为:12(1)q q -=+,即:13q =-将13q =-代入⑤式得:19r = 这是这两个数列的公比.将13q =-和19r =分别代入①式和②式得:()1114114(1)413333n nn n n n a q q-+-⎛⎫⎛⎫=-=⋅-=--=-⋅ ⎪ ⎪⎝⎭⎝⎭;1181162(1)2999n n n nb r r --⎛⎫=-=⨯⨯=⎪⎝⎭13、已知数列{}n a 的前n 项和为n S ,112a =,当2n ≥时,满足:120n n n a S S -+=;求证:数列1n S ⎧⎫⎨⎬⎩⎭为等差数列;并求{}n S 的通项公式?n S =解:由120n n n a S S -+=得:1120n n n n S S S S ---+=,即:11120n nS S --+=,则:1112n n S S --=,11112S a ==. 上式表明:1n S ⎧⎫⎨⎬⎩⎭是一个首项为2,公差为2的等差数列.则:122(1)2n n n S =+-=,即:12n S n =,112(1)n S n -=-; 于是:111122(1)2(1)n n n a S S n n n n -=-=-=--- 故:1(1)21(2)2(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩14、已知等比数列{}n a 的首项112a =,且满足:10103020102(21)0S S S -++=. (1)求{}n a 的通项;(2)求{}n nS 的前n 项和n T .解:将3030111q S a q -=-、2020111q S a q -=-、1010111q S a q-=-代入上面等式得:10301020102(1)(21)(1)(1)0q q q --+-+-= 化简得:10102010102(1)(21)(1)10q q q ++-+++= 即:101010201010102(1)22(1)(1)10q q q q ++-+-++=整理得:10201020q q -=,即:12q =±则:111111222n n n n a a q --⎛⎫==⋅= ⎪⎝⎭或1111111(1)222n n n n na a q ---⎛⎫==⋅-=- ⎪⎝⎭第14题第(2)问解答:(2)A.对于等比数列:12a n n =,其求和公式为:11112112212n S n n -=⋅=--故:1(1)221111n n n n k T kS k k n k k k k k k k ⎛⎫==-=-∑∑∑∑ ⎪⎝⎭====1> (1)21n n n k k +=∑=2> 23123 (222)221n n n knR kk ⎛⎫==++++∑⎪⎝⎭= ①则:231234221 (22222)1n n n knR kk -⎛⎫==+++++∑⎪⎝⎭= ② 由②-①得:22331121324311()()()...()222222222n n n n n n nR ---=+-+-+-++--23112311...22222n n n -=+++++-111222(1)21222212nn n n n n n n -+=-=--=-- 综合1>和2>得:(1)2222211nn n kn n nT k n kk k ⎛⎫++=-=+-∑∑⎪⎝⎭== (2)B.对于等比数列:11(1)2n n n a -=-其求和公式为:11()11111(1)2[1(1)]12333221()2n n n S n n n ---=⋅=⋅--=-⋅-- 故:11[1(1)](1)333221111k kn n n n k k k T kS n k k k k k k k ⎛⎫==⋅--=--∑∑∑∑⎪⎝⎭==== 1> (1)361n k n n k +=∑= 2> 2311123(1)...(1)33222221k n n n nk n U kk ⎛⎫⎡⎤=-=-+-++-∑⎪⎢⎥⎣⎦⎝⎭= ③ 则:12111232...(1)31222n n n n U -⎡⎤=-+-++-⎢⎥⎣⎦④由③+④得:1221112132131()()...(1)()(1)32222222n n n n n n n n n U ---⎡⎤=-+---++--+-⎢⎥⎣⎦2111111...(1)(1)32222n n n n n -⎡⎤=-+-++-+-⎢⎥⎣⎦21111111...(1)(1)322232n n n n n -⎡⎤=-+-++-+⋅-⎢⎥⎣⎦ (1)1112(1)13321()2nnn n n --=-⋅+⋅---2(1)1[1](1)9232n n n n n -=-⋅-+⋅- 故:2(1)[1](1)322n n n n n nU -=-⋅-+-于是:1(1)2(1)(1)[1](1)336322211n k n n nn n k kn n n T nk k k ⎛⎫+-=--=-⋅-+-∑∑⎪⎝⎭== 15、若等差数列{}2log n x 的第m 项等于k ,第k 项等于m(其中m k ≠),求数列{}n x 的前m k +项的和。
数列-2024高考数学压轴小题(解析版)
数列-2024高考压轴小题一.选择题(共13小题)1.数列{a n}中,>1(∈∗),点(a n,a n+1)在双曲线2y2﹣x2=1上.若a n+2﹣a n+1>λ(a n+1﹣a n)恒成立,则实数λ的取值范围为()A.[12,+∞)B.(12,+∞)C.+∞)D.(1,+∞)2.已知等比数列{a n}的公比为−13,其前n项和为S n,且a1,2+43,a3成等差数列,若对任意的n∈N*,均有≤−2≤恒成立,则B﹣A的最小值为()A.2B.76C.103D.53 3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.54.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109) 5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.37.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703 8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.1369.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞) 11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4 12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.13613.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4二.多选题(共5小题)(多选)14.已知数列{a n}满足a1=2,a n+1a n=2a n﹣1(n∈N*),b1=20a4,b n+1=a n b n(n∈N •),数列{b n}的前n项和为T n,且对∀n∈N*,2T n+400≥λn恒成立,则()A.a4=45B.数列{1−1}为等差数列C.b n=16n D.λ的最大值为225(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.22024高考压轴练--数列小题参考答案与试题解析一.选择题(共13小题)1.数列{a n }中,>1(∈∗),点(a n ,a n +1)在双曲线2y 2﹣x 2=1上.若a n +2﹣a n +1>λ(a n +1﹣a n )恒成立,则实数λ的取值范围为()A .[12,+∞)B .(12,+∞)C .+∞)D .(1,+∞)【解答】解:由题意可知:双曲线2y 2﹣x 2=1的渐近线方程为,因为点(a n ,a n +1)在双曲线2y 2﹣x 2=1上,则2r12−2=1,且>1(∈∗),可得r12−2=1−r12<0,可知{2}为递减数列,且>1(∈∗),则{a n }为递减数列,可得a n +1﹣a n <0,且a n +2﹣a n +1>λ(a n +1﹣a n ),可得>r2−r1r1−,记点A n (a n ,a n +1),则r2−r1r1−为直线A n A n +1的斜率,记=r2−r1r1−,由双曲线的性质以及{a n }为递减数列可知,直线A n A n +1的斜率{k n }为递减数列,即k n ≤k 1,且随着a 1增大,直线A 1A 2越接近渐近线=,故k 1接近于22,所以则≥故选:C .2.已知等比数列{a n }的公比为−13,其前n 项和为S n ,且a 1,2+43,a 3成等差数列,若对任意的n ∈N *,均有≤−2≤恒成立,则B ﹣A 的最小值为()A .2B .76C .103D .53【解答】解:等比数列{a n}的公比为−13,因为a1,2+43,a3成等差数列,所以2×−131+43= 1+191,解得a1=2,所以=2[1−(−13)]1−(−13)=32−32⋅(−13),当n为奇数时,=32+32⋅(13),易得S n单调递减,且32+32⋅(13)>32,所以32<≤1=2;当n为偶数时,=32−32⋅(13),易得S n单调递增,且32−32⋅(13)<32,所以43=2≤<32.所以S n的最大值与最小值分别为2,43.函数=−2在(0,+∞)上单调递增,所以≤(−2)m=43−243=−16.≥(−2)B=2−22=1.所以B﹣A的最小值1−(−16)=76.故选:B.3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.5【解答】解:依题意,a n≠0,由r1=(r1)+,得1r1=+(r1),即r1r1=+1,因此数列{}是首项11=3,公差d=1的等差数列,则=11+o−1)=+2,即=r2,则当n≥2时,12⋯=13⋅24⋅35⋅⋯⋅r2=2(r1)(r2)=2(1r1−1r2),1=13= 22×3也符合上式,1+12+⋯+12⋯=2(12−13+13−14+⋯+1r1−1r2)=1−2r2<1,所以m≥1,即m的最小值为1.故选:A.4.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109)【解答】解:由1+22+⋯+2K1=⋅2①,当n=1时,a1=2,当n≥2时,1+22+⋯+2K2K1=(−1)⋅2K1②,①﹣②可得a n=n+1(n≥2),又a1也符合上式,∴a n=n+1,令b n=a n﹣tn=n+1﹣tn=(1﹣t)n+1,∴b n+1﹣b n=(1﹣t)(n+1)+1﹣[(1﹣t)n+1]=1﹣t为常数,∴数列{b n}是等差数列,首项b1=2﹣t,∴=2−r(1−pr12×=1−22+3−2,其对称轴为=−3−21−=−3−2−2,∵S n≤S10对任意的n∈N*恒成立,3−2−2≤10.5,解得1211≤≤1110,∴t的取值范围是[1211,1110].故选:A.5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)【解答】解:由142+4K3=1(2r3)(2K1)=14(12K1−12r3),可得T n=14(1−15+13−17+15−19+...+12K3−12r1+12K1−12r3)=14(1+13−12r1−12r3)<14×43=13.由对任意的n∈N*,不等式12T n<3a2﹣a恒成立,可得3a2﹣a≥12×13,解得a≥43或a≤﹣1.故选:C.6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.3【解答】解:对于①,由<r1r1,可得(n+1)S n<nS n+1,则S n<n(S n+1﹣S n),即S n<na n+1,若a n<a n+1,则S n<na n<na n+1,故①正确;对于②,设等差数列{a n}的公差为d,则=22+(1−),则=2+1−2,即{}为公差为2的等差数列,若{a n}为和谐数列,即<r1r1,则2>0,所以关于n的二次函数=22+(1−)开口向上,则在n∈N•上一定存在最小值,故②正确;对于③,取1<0,=−14,则=11−⋅(1−)=451[1−(−14)],B r1=B1⋅(−14),下面证明S n<na n+1,即说明存在公比为负数的一个等比数列是和谐数列,即证451[1−(−14)]<B1(−14),即证45[1−(−14)]>o−14),即证(+45)(−14)<45,当n=2k+1,k∈N时,上式左边为负数,显然成立;当n=2k,k∈N•时,即证(2+45)⋅116<45,即证16−52−1>0(⋅),设op=16−52−1,′(p=16B16−52>B16−52>0,则f(k)>f(1)>0,即(*)式成立,故③正确.故选:D.7.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703【解答】解:由S n+1=2S n+2n+1,得r12r1−2=1,∵S1=a1=2,∴121=1,∴{2}是首项为1,公差为1的等差数列,则2=1+1×(n﹣1)=n,即S n=n•2n,∴当n≥2时,a n=S n﹣S n﹣1=n•2n﹣(n﹣1)•2n﹣1=(n+1)•2n﹣1,验证n=1也满足,∴a n=(n+1)•2n﹣1,由λa n≤(n﹣19)S n,得λ(n+1)•2n﹣1≤(n﹣19)•n•2n,即λ≤2oK19)r1.令f(n)=2oK19)r1,则f(n+1)﹣f(n)=2(r1)(K18)r2−2oK19)r1=2(2+3K18)(r1)(r2)= 2(K3)(r6)(r1)(r2),可得f(1)>f(2)>f(3)=f(4)<f(5)<…,∴f(n)min=f(3)=f(4)=﹣24,而λ≤2oK19)r1,∴λ≤﹣24,得λ的最大值为﹣24.故选:A.8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.136【解答】解:S n=2[1−(−13)]1−(−13)=32−32•(−13),①n为奇数时,S n=32+32•(13),可知:S n单调递减,且m m∞=32,∴32<S n≤S1=2;②n为偶数时,S n=32−32•(13),可知:S n单调递增,且m m∞=43,∴43=S2≤S n<32.∴S n的最大值与最小值分别为:2,43.考虑到函数y=3t−1在(0,+∞)上单调递增,∴A≤(3−1)m=3×43−143=134.B≥(3−1)B=3×2−12=112.∴B﹣A的最小值=112−134=94.故选:B.9.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:由等差数列的性质知a3+a6=a8+a1=a8+1,则a1=1,又a2=2,则等差数列{a n}的公差d=a2﹣a1=1,∴a n=1+(n﹣1)=n.由b n a n+1a n=a n+1﹣a n,得=1−1r1=1−1r1,∴=(1−12)+(12−13)+(13−14)+⋯+(1K1−1)+(1−1r1)=1−1r1,则不等式<22+B−3恒成立等价于1−1r1<22+B−3恒成立,而1−1r1<1,∴问题等价于对任意的a∈[﹣2,2],n∈N*,2t2+at﹣4≥0恒成立.设f(a)=2t2+at﹣4,a∈[﹣2,2],则o2)≥0o−2)≥0,即2+−2≥02−−2≥0,解得:t≥2或t≤﹣2.故选:A.10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞)【解答】解:因为S n+1=2S n+3n+1,所以当n≥2时,S n=2S n﹣1+3(n﹣1)+1,两式相减,得a n+1=2a n+3,所以a n+1+3=2(a n+3),又a1+3=4,a1+a2=S2=2S1+3×1+1=6,所以a2=5,a2+3=2(a1+3),所以数列{a n+3}是以4为首项、2为公比的等比数列,所以+3=4×2K1=2r1,所以c n=log2(a n+3)=n+1,所以−1(r16)=(r16)(r1)=2+17r16=1r16+17≤18+17=125,当且仅当n=4时等号成立,所以≥125,所以k的取值范围为[125,+∞).故选:C.11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4【解答】解:令r1=+2−1=,解得a n=2,即数列{a n}的不动点为2,其生成函数为=+2−1,所以,作出函数=+2−1与函数y=x的图像如图:故由上图:2<a n+1<a n≤3,∴13≤1<12,∴r1=22−1+1=2(1−14)2+78∈[89,1),即89≤r1<,又∵r1−=2−1=2−,∴a n﹣2=a n(a n﹣a n+1),一方面,由r1≥89得+r1≥179,∴≤917(+r1),−2=(−K1)≤917(2−r12),∴=(1−2)+(2−2)+⋯(−2)≤917[(12−22)+(22−32)+⋯+(2−r12)]=917(9−r12)∵a n+1>2,且当n→+∞,a n+1→2,∴<917(9−4)=4517,∵4517≥4517,3512>4517,∴4517,3512∈,另一方面,由r1−2=(−2)(−1),2<≤3,得r1−2−2=1−1>12,又∵1−2=1,2−2=23,3−2=512,∴=(1−2)+(2−2)+⋯(−2)≥1+23+512+512⋅12+⋯+512⋅(12)K3=52−53⋅2K1,又当→+∞,52−53⋅2K1→52,∴λ必须大于等于52,∵125<52,6225<52,∴125,6225∉,所以集合N的元素个数是2,故选:B.12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.136【解答】解:当n=1时,1=321−32,所以a1=18,由=32−3r1,当n≥2时,K1=32K1−3,所以=−K1=32−3r1−32K1+2,所以=3K1+4⋅3,两边同除以3n,所以3=K13K1+4,所以数列{3}是以6为首项,以4为公差的等差数列,所以34(−1)=4+2,所以=(4+2),由≥n∈N+恒成立,即2(2+1)⋅3≥所以≥2⋅3,设=2⋅3,则r1=r12⋅3r12⋅3=r13=13+13<1,所以数列{c n}为递减数列,所以≥12×3=16,所以≥136,所以k的最小值为136,故选:D.13.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4【解答】解:依题意知:当n=3时有S4﹣3S3+3S2﹣S1+m=0=a4﹣2a3+a2+m,∵a2=5,a3=10,a4=17,∴m=﹣2,S n+1﹣3S n+3S n﹣1﹣S n﹣2﹣2=0,即(S n+1﹣S n)﹣2(S n﹣S n﹣1)+(S n﹣1﹣S n)﹣2=0,﹣2∴a n+1﹣2a n+a n﹣1﹣2=0,即(a n+1﹣a n)﹣(a n﹣a n﹣1)=2,n≥3,又a2﹣a1=3,a3﹣a2=5,(a3﹣a2)﹣(a2﹣a1)=2,∴数列{a n+1﹣a n}是以3为首项,2为公差的等差数列,∴a n+1﹣a n=2n+1,故a2﹣a1=3,a3﹣a2=5,a4﹣a3=7,…,a n﹣a n﹣1=2n﹣1(n≥2),由上面的式子累加可得:a n ﹣2=(K1)(3+2K1)2=(n ﹣1)•(n +1),n ≥2,∴1−2=1(K1)(r1)=12(1K1−1r1),n ≥2.由12−2+13−2+⋯+1K1−2+1−2≥2542可得:12[(11−13)+(12−14)+(13−15)+…+(1K1−1r1)]=12(1+12−1−1r1)≥2542,整理得1+1r1≤1342,∵k ∈N *且k ≥2,∴解得:k ≥6.所以k 的最小值为6.故选:B .二.多选题(共5小题)(多选)14.已知数列{a n }满足a 1=2,a n +1a n =2a n ﹣1(n ∈N *),b 1=20a 4,b n +1=a n b n (n ∈N •),数列{b n }的前n 项和为T n ,且对∀n ∈N *,2T n +400≥λn 恒成立,则()A .a 4=45B .数列{1−1}为等差数列C .b n =16n D .λ的最大值为225【解答】解:∵数列{a n }满足a 1=2,a n +1a n =2a n ﹣1,∴r1=2−1,∴r1−1=−1,∴1r1−1=−1=1−1+1,∴1r1−1−1−1=1,又11−1=12−1=1,∴{1−1}是以1为首项,公差为1的等差数列,∴B 选项正确;∴1−1=,∴=r1,∴4=54,∴A 选项错误;∴1=20×54=25,∴r1=(r1),∴r1=r1,∴21=21,32=32,•••,K1=K1,累乘可得:21⋅32⋅⋅⋅⋅⋅K1=21×32×⋅⋅⋅×K1,∴1=,∴b n =b 1n =25n ,∴C 选项错误,∴=(25+25p2,又对∀n ∈N *,2T n +400≥λn ,∴对∀n ∈N *,25n 2+25n +400≥λn ,∴对∀n∈N*,λ≤25+400+25,又25+400+25≥225×400+25=225,当且仅当25=400,即n=4时,等号成立,∴λ≤225,∴λ的最大值为225,∴D选项正确.故选:BD.(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4【解答】解:∵4=235,∴41+4×32=23(51+5×42),整理得12a1+18d=10a1+20d,即a1=d,由S7=28,可得71+7×62=28,即a1+3d=4,∴a1=d=1,∴=+oK1)2=or1)2,1=2or1)=2(1−1r1),∴=11+12+...+1=2(1−12+12−13+...+1−1r1)=2(1−1r1)=2−2r1.∵T n<λ恒成立,∴λ≥2.结合选项可知,λ的值可以是2或3或4.故选:BCD.(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列【解答】解:∵=2−1K1,(n≥2,n∈N*),∴r1=2−1,(n∈N*),∴r1−1=1−1,又a1﹣1=1≠0,∴1r1−1=11−1=−1=1−1+1,∴1r1−1−1−1=1,且11−1=1,∴数列{1−1}是以首项为1,公差为1的等差数列,∴1−1=,∴=1+1,∴D正确;对A,∵5=1+15=65,∴A正确;对B,∵r1−=(1+1r1)−(1+1)=−1or1)<0,∴a n+1<a n,∴B正确;对C,若存在正整数p,q,r使a p,a r,a q成等差数列,则2a r=a p+a q,∴2+2=2+1+1,∴2=1+1,令p=3,r=4,q=6,满足等式,∴C错误;故选:ABD.(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4【解答】解:根据题意,r1=(r1)+2,两边同时取倒数可得,r1r1=1+2,即得r1r1+1=2(+1),由此可得数列{1+}是首项为2,公比为2的等比数列,所以1+=2⇒=2−1,∴3⋅2=3(2−1)2=3−32<3,∴2t2+at﹣1≥3,又因为at+2t2﹣4≥0在a∈[﹣2,2]上恒成立,所以−2+22−4≥02+22−4≥0⇒t∈(﹣∞,﹣2]∪[2,+∞).故选:BD.(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.2【解答】解:由a n+1−1=(1+1),得a n+1−1=r1,∴r1r1−=1or1)=1−1r1,∴=(−K1K1)+(K1K1−K2K2)+⋯+⋯+(a2﹣a1)+a1,=(1K1−1)+(1K2−1K1)+…+(1−12)+1=2−1<2,∵不等式<−22−(+1)+2−a+2恒成立,∴2≤﹣2t2﹣(a+1)t+a2﹣a+2,∴2t2+(a+1)t﹣a2+a≤0,在t∈[1,2]上恒成立,设f(t)=2t2+(a+1)t﹣a2+a,t∈[1,2],∴o1)=2++1−2+≤0o2)=8+2(+1)−2+≤0,解得a≤﹣2或a≥5,∴实数a可能为﹣4,﹣2.故选:AB.。
2024全国数学高考压轴题(数列选择题)附答案
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
1高考数列压轴题汇总
1高考数列压轴题汇总2高考数列压轴题1、已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n nan N =∈(1)求数列}{na 的通项公式; (2)设n n nnnb b b T a b +++==21,2,若)(Z m m Tn∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n pa a a n对一切*N n ∈均成立的最大实数p .34又已知1-=x,111>=a x,.(1)若()()*+∈=N n x f xn n 1,求()x f 的表达式;(2)已知点B ()0a ,,记()*∈=N n BA an n,且nn a a<+1成立,试求a 的取值范围;(3)设(2)中的数列{}na 的前n 项和为nS ,试求:aa Sn--<21 。
4、已知()f x 在(1,1)-上有定义,1()12f =且满足,x y (1,1)∈-时有()()(),1x y f x f y f xy--=-若数列{}nx 满足11221,21n n n x x x x +==+。
(1)求(0)f 的值,并证明()f x 在(1,1)-上为奇函数; (2)探索1()()n n f xf x +与 的关系式,并求()nf x 的表达式;5(3)是否存在自然数m ,使得对于任意的*n N ∈,有12311118()()()()4n m f x f x f x f x -++++<恒成立?若存在,求出m的最小值,若不存在, 请说明理由。
5、数列{}na 满足11,2a =112n naa +=-.(Ⅰ)求数列{na }的通项公式;(Ⅱ)设数列{na }的前n 项和为nS ,证明2ln()2nn S n +<-.66、已知二次函数2()()f x xax a x R =-+∈同时满足:①不等式()f x ≤0的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立,设数列{na }的前n 项和()nSf n =.(1)求函数()f x 的表达式;(2) 设各项均不为0的数列{nb }中,所有满足1ii b b+⋅<的整数i 的个数称为这个数列{nb }的变号数,令1nnaba =-(n N *∈),求数列{nb }的变号数;7(3)设数列{nc }满足:111nni i i c a a =+=⋅∑,试探究数列{nc }是否存在最小项?若存在,求出该项,若不存在,说明理由.7、已知数列{}na 的前n 项和nS 满足:(1)1nn aSa a =--(a为常数,且0,1a a ≠≠). (Ⅰ)求{}na 的通项公式;(Ⅱ)设21=+nnnS b a ,若数列{}nb 为等比数列,求a 的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设11111nn n c a a +=++-,数列{}nc 的前n 项和为T n. 求证:123nT n >-.88、已知214)(x x f +-=数列}{na 的前n 项和为nS ,点)1,(1+-n nna a P 在曲线)(x f y =上)(*N n ∈且0,11>=n a a.(1)求数列}{na 的通项公式; (2)数列}{n b 的前n 项和为且nT 满足381622121--+=++n n a T a T n n n n ,设定1b 的值使得数列}{nb 是等差数列;(3)求证:*,11421N n n S n∈-+>.99、已知函数)(x f 的定义域为]1,0[,且同时满足:对任意]1,0[∈x ,总有2)(≥x f ,3)1(=f ; 若01≥x ,02≥x 且121≤+x x ,则有2)()()(2121-+≥+x f x f x x f . (1)求)0(f 的值;(2)试求)(x f 的最大值;(3)设数列}{n a 的前n 项和为nS ,且满足*)3(21,11N n a S a nn ∈--==, 求证:121321223)()()(-⨯-+≤+++n nn a f a f a f .1010、已知函数112y x =-+的图象按向量(2,1)m =平移后便得到函数()f x 的图象,数列{}na 满足1()nn af a -=(n≥2,n ∈N *).(Ⅰ)若135a =,数列{}nb 满足11nn ba =-,求证:数列{}nb 是等差数列;(Ⅱ)若135a =,数列{}na 中是否存在最大项与最小项,若存在,求出最大项与最小项,若不存在,说明理由;(Ⅲ)若112a <<,试证明:112n n a a +<<<.11、设数列{}na 满足:11a =,且当n N *∈时,3211(1)1n n n n a a a a +++-+= (1) 比较n a 与1n a +的大小,并证明你的结论;(2) 若2211(1)nn n n ab a a +=-,其中*∈N n ,证明:10 2.n k k b =<<∑12、已知函数2()ax b f x x c +=+是定义在R 上的奇函数,且当x =1时f (x )取最大值1.(1)求出a ,b ,c 的值并写出f (x )的解析式;(2)若x 1∈(0,1),x n+1=f (x n ),试比较x n+1与x n 的大小并加以证明;(3)若111,()2n n x x f x +==,求证2222311212231()()()516n n n n x x x x x x x x x x x x ++---+++<.。
2024年高考数学专项突破数列大题压轴练(解析版)
数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。
2024年新高考一卷数学压轴题
2024年新高考一卷数学压轴题一、设函数f(x) = ax3 + bx2 + cx + d,若f(x)在x=1和x=2处取得极值,且f(1) = 1,f(2) = 4,则a的取值范围是:A. (-∞, -1) ∪ (1, +∞)B. (-1, 0) ∪ (0, 1)C. (-∞, -2) ∪ (2, +∞)D. (-2, 0) ∪ (0, 2)(答案)A解析:本题考查函数极值的应用,通过求导得到极值条件,结合给定的函数值,可以解出a 的取值范围。
二、在三角形ABC中,角A,B,C的对边分别为a,b,c,若a = 2,b = 3,cosC = -1/2,则三角形ABC的面积是:A. 3√3/2B. 3√3C. 3/2D. 3(答案)B解析:本题考查余弦定理和三角形面积公式的应用,通过余弦定理求出c的值,再结合三角形面积公式求出面积。
三、设等差数列{an}的前n项和为Sn,若a1 = 1,S3 = -3,则S_n / (2n) 的最大值是:A. 1/2B. 1/4C. 1/8D. 1/16(答案)C解析:本题考查等差数列和等比数列的性质,通过等差数列的求和公式求出Sn,再结合等比数列的性质求出S_n / (2n)的最大值。
四、在平面直角坐标系xOy中,直线l: x + y - 1 = 0与圆C: x2 + y2 - 2x - 2y + 1 = 0交于A,B两点,则线段AB的长度是:A. √2B. 2C. √6D. 2√2(答案)A解析:本题考查直线与圆的位置关系,通过求出圆心到直线的距离,再结合圆的半径和勾股定理求出线段AB的长度。
五、设函数f(x) = ex - ax - 1,若f(x) ≥ 0在R上恒成立,则a的取值范围是:A. [0, 1]B. (0, 1]C. [1, +∞)D. (1, +∞)(答案)B解析:本题考查函数单调性和最值的应用,通过求导判断函数的单调性,再结合函数的最值求出a的取值范围。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高三第一轮复习数列压轴题归纳总结
高三数列压轴题归纳总结一、奇偶数列求和问题: 1、相邻两项符号相异:例:求和:)34()1(139511--++-+-=-n S n n ;2、相邻两项之和为常数;例:已知数列{a n }中a 1=2,a n +a n+1=1,S n 为{a n }前n 项和,求S n3、相间两项之差为常数;例:已知数列{a n }中a 1=1,a 2=4,a n =a n-2+2 (n ≥3),S n 为{a n }前n 项和,求S n4、相间两项之比为常数;例:已知a n ,a n+1为方程21()03n n x C x -+=的两根n ∈N +,a 1=2,S n =C 1+C 2+…+C n ,求a n 及S 2n 。
二、几个字母的取整问题:1.设3x x f =)(,等差数列{}n a 中73=a ,12321=++a a a ,记n S =()31+n a f ,令n n n S a b =,数列}1{nb 的前n项和为n T .(1)求{}n a 的通项公式和n S ; (2)求证:31<n T ; (3)是否存在正整数n m ,,且n m <<1,使得n m T T T ,,1成等比数列?若存在,求出n m ,的值,若不存在,说明理由.2...等比数列....{}n c 满足11410-+⋅=+n n n c c ,*N n ∈,数列{}n a 满足n an c 2= (1)求{}n a 的通项公式;(5分) (2)数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.求n n T ∞→lim ;(5分)(3)是否存在正整数(),1m n m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.(6分)3.数列{}n a 的前n 项和记为n S ,且满足12-=n n a S . (1)求数列{}n a 的通项公式;(2)求和nnn n n n C S C S C S C S ⋅++⋅+⋅+⋅+1231201 ; (3)设有m 项的数列{}n b 是连续的正整数数列,并且满足:)lg(log )11lg()11lg()11lg(2lg 221m ma b b b =+++++++ . 问数列{}n b 最多有几项?并求这些项的和.4.设数列}{n a 的前n 项和为n S ,已知q pS S n n +=+1(*N ∈n ,p 、q 为常数),21=a ,12=a ,p q a 33-=.(1)求p 、q 的值;(2)求数列}{n a 的通项公式;(3)是否存在正整数m ,n ,使得1221+<--+mmn n m S m S 成立?若存在,请求出所有符合条件的有序整数对),(n m ;若不存在,请说明理由.5.已知数列{a n }满足761-=a ,12110n n a a a a +++++-λ= (其中λ≠0且λ≠–1,n ∈N*),n S 为数列{a n }的前n 项和.(1) 若3122a a a ⋅=,求λ的值;(2) 求数列{a n }的通项公式n a ; (3) 当13λ=时,数列{a n }中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.6.已知递增的等差数列{}n a 的首项11a =,且1a 、2a 、4a 成等比数列. (1)求数列{}n a 的通项公式n a ; (2)设数列}{n c 对任意*n N ∈,都有1212222n n nc c c a ++++= 成立,求122012c c c +++ 的值. (3)若1n n na b a +=*()n N ∈,求证:数列{}n b 中的任意一项总可以表示成其他两项之积.三、用放缩法求和问题及证明不等式问题:1.已知数列{}n a 的前n 项和n S 满足:.1,)1(2≥-+=n a S nn n(1)求证数列⎭⎬⎫⎩⎨⎧-+n n a )1(32是等比数列; (2)求数列{}n a 的通项公式;(3)证明:对任意的整数m >4,有.8711154<+++m a a a2、已知曲线C :)(21:,1*-∈+==N n x y C x y n n ,从C 上的点),(n n n y x Q 作x 轴的垂线,交n C 于点n P ,在从点n P 作y 轴的垂线,交C 与点),(111+++n n n y x Q ,设n n n x x a x -==+11,1,1+-=n n n y y b 。
高考数学压轴专题专题备战高考《数列》难题汇编附答案解析
高中数学《数列》期末考知识点一、选择题1.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.4.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.5.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.6.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( )A .8B .9C .8或9D .8.5【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】设等比数列{a n }的公比为q ,∵a n >0,∴q >0. ∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=. ∴a n =25611()2n -⨯=29﹣n .T n =28•27•……•29﹣n=28+7+…+9﹣n()217289[)89242222n n n ⎛⎤--- ⎥+-⎝⎦==.∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.7.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.8.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.9.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==,设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.10.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r, 所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.15.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.16.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.17.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.18.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C【解析】【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S .【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。
高考数学压轴专题新备战高考《数列》难题汇编含答案解析
《数列》知识点汇总一、选择题1.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.2.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====--故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.3.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.4.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】 【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.5.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--,所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.6.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.7.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.8.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.9.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.10.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C .232D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.11.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用12.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.13.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题14.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.15.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.16.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.17.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.18.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d < ②110S < ③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定. 【详解】Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确; Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>, ∴③⑤正确,②错误.故选:B . 【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
数列—不等式 (高考数学压轴题常考题型)
数列—不等式 (高考数学压轴题常考题型)例1. 数列{an}满足)1(21)11(1211≥+++==+n a n n a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….(Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立.(2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立.(Ⅱ)证法一:由递推公式及(Ⅰ)的结论有)1.()2111(21)11(221≥+++≤+++=+n a n n a n n a n n n nn两边取对数并利用已知不等式得nn n a n n a ln )2111ln(ln 21++++≤+.211ln 2n n n n a +++≤ 故n nn n n a a 21)1(1ln ln 1++≤-+ ).1(≥n 上式从1到1-n 求和可得121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n n n a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=n n n n n即).1(,2ln 2≥<<n e a a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n 对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a n n a nnn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得nn b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得)1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=n n因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立.例 2.已知数列{}n a 中的相邻两项21,2k ka a -是关于x 的方程的两个根,且212(1,2,3,)k k a a k -≤=(Ⅰ)求1,357,,a a a a ;(Ⅱ)求数列{}n a 的前2n 项的和2nS ;(Ⅲ)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++求证:*15()624n T n N ≤≤∈(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,,所以12a =; 当2k =时,16x =,24x =,所以34a =;当3k =时,19x =,28x =,所以58a =时;当4k =时,112x =,216x =,所以712a =.(II )解:2122n nS a a a =+++2(363)(222)n n =+++++++2133222n n n++=+-.(III )证明:(1)123456212111(1)f n n n n T a a a a a a a a +--=+-++,所以112116T a a ==,2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++,345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥ 2311111662622n ⎛⎫+-++⎪⎝⎭≥1116626n =+>,同时,(1)5678212511(1)24f n n n n T a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++⎪⎝⎭≤31511112492922n⎛⎫-+++⎪⎝⎭≤515249224n =-<.综上,当n ∈N*时,15624n T ≤≤例3. 设数列{}n a 满足3110,1,*n n a a ca c n N +==+-∈,其中c 为实数。
高考数学压轴专题最新备战高考《数列》真题汇编及答案
新《数列》专题一、选择题1.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( )A .63B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0 B .55C .66D .78【答案】D 【解析】 【分析】先分n 为奇数和偶数两种情况计算出21sin 2n π+⎛⎫⎪⎝⎭的值,可进一步得到数列{}n a 的通项公式,然后代入12312a a a a +++⋅⋅⋅+转化计算,再根据等差数列求和公式计算出结果. 【详解】解:由题意得,当n 为奇数时,213sin sin sin sin 12222n n ππππππ+⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n 为偶数时,21sin sin sin 1222n n ππππ+⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭所以当n 为奇数时,2n a n =-;当n 为偶数时,2n a n =,所以12312a a a a +++⋅⋅⋅+22222212341112=-+-+-⋅⋅⋅-+ 222222(21)(43)(1211)=-+-+⋅⋅⋅+-(21)(21)(43)(43)(1211)(1211)=+-++-+⋅⋅⋅++- 12341112=++++⋅⋅⋅++ 121+122⨯=()78= 故选:D 【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C .3 D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+=== ,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( )A .-1B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.7.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.9.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.10.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a . 【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.11.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.12.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.13.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( ) A .3∶4 B .4∶3 C .1∶2 D .2∶1【答案】A 【解析】 【分析】根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =,1534S x =,从而得到155:S S 的值. 【详解】解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =, 1051122S S x x x ∴-=-=-,151014S S x ∴-=,15113244S x x x ∴=+=, 故155334:4xS S x ==, 故选:A . 【点睛】本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.14.在数列{}n a 中,()111,1nn n a a a n +==++-,则2018a 的值为( )A .2017⨯1008B .2017⨯1009C .2018⨯1008D .2018⨯1009【答案】B 【解析】 【分析】根据已知条件()nn 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】()nn 1n a a n 1+-=+-,()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,-=+--=+-=+--=+⋅⋅⋅32a a 21-=+,()21a a 11,-=+-将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)201710092+=⨯,故选:B. 【点睛】本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.15.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.16.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.17.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.18.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( )A .121n -+B .2n n ⋅C .31n -D .123n n -⋅ 【答案】B【解析】【分析】 由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n n n n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n-+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n n S n n n =⨯+⋅=⋅+. 故选:B【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( )A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .43钱B .73钱C .83钱D .103钱 【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.。
2024年新高考1卷数学压轴题
2024年新高考1卷数学压轴题一、设函数f(x)在R上可导,且f'(x)>f(x)对于所有x∈R都成立。
若f(0)=1,则下列不等式成立的是?A. f(2)>e²B. f(2)<e²C. f(2)=e²D. 无法确定f(2)与e²的大小关系(答案)A解析:构造辅助函数g(x)=f(x)/ex,求导得g'(x)=(f'(x)-f(x))/ex。
由题意知f'(x)>f(x),所以g'(x)>0,即g(x)在R上单调递增。
因此,g(2)>g(0),即f(2)/e²>f(0)/e⁰=1,所以f(2)>e²。
二、在△ABC中,内角A,B,C对应的边分别为a,b,c。
已知a=2,b=3,且cosC=-1/2。
则△ABC的面积为?A. 3√3/2B. 3√3C. 3D. 6(答案)B解析:由cosC=-1/2,且C∈(0,π),得C=2π/3。
根据三角形面积公式S=1/2absinC,代入a=2,b=3,sinC=√(1-cos²C)=√3/2,得S=1/223√3/2=3√3/2*2=3√3。
三、设等比数列{an}的前n项和为Sn,且a1=1,公比q≠1。
若S3=7,则S6/S3的值等于?A. 4B. 5C. 6D. 8(答案)D解析:由等比数列前n项和公式Sn=a1(1-qn)/(1-q),代入a1=1,S3=7,得(1-q³)/(1-q)=7。
化简得q²+q+1=7,即q²+q-6=0。
解得q=2或q=-3。
由于q≠1,且等比数列的公比不能为负(否则数列无意义),所以q=2。
代入S6/S3=(1-q⁶)/(1-q)/(1-q³)/(1-q)=1+q³=1+2³=9-1=8。
四、在平面直角坐标系xOy中,直线l=kx+b与圆C²+y²=4相交于A,B两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列压轴题
1、已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*
3,.f n n a n N =∈
(1)求数列}{n a 的通项公式; (2)设n n n
n
n b b b T a b +++==
21,2,若)(Z m m T n ∈<,求m 的最小值; (3)求使不等式12)11()11)(11(21+≥+++n p a a a n 对一切*N n ∈均成立的最大实数p .
2、设数列{}n a 的前n 项和为n S ,对一切*
n N ∈,点,n S n n ⎛⎫ ⎪
⎝
⎭
都在函数()2n
a f x x x
=+ 的图象上. (Ⅰ)求123,,a a a 的值,猜想n a 的表达式,并用数学归纳法证明;
(Ⅱ)将数列{}n a 依次按1项、2项、3项、4项循环地分为(1a ),(2a ,3a ),(4a ,5a ,
6a ),(7a ,8a ,9a ,10a );(11a ),(12a ,13a ),(14a ,15a ,16a ),(17a ,18a ,19a ,20a );(21a ),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺
序构成的数列为{}n b ,求5100b b +的值;
(Ⅲ)设n A 为数列1n n a a ⎧⎫
-⎨⎬⎩⎭
的前n 项积,是否存在实数a
,使得不等式3
()2n a A f a a +-对一切*
n N ∈都成立?若存在,求出a 的取值范围;若不存在,请说明理由
3、已知点列()0,n n x A 满足:1110-=•+a A A A A n n ,其中N n ∈,又已知10-=x ,
111>=a x ,.
(1)若()()
*
+∈=N n x f x n n 1,求()x f 的表达式;
(2)已知点B
(
)
0a ,,记()
*∈=N n BA a n n ,且n n a a <+1成立,试求a 的取值范围;
(3)设(2)中的数列{}n a 的前n 项和为n S ,试求:a
a S n --<
21 。
4、已知()f x 在(1,1)-上有定义,1()12
f =且满足,x y (1,1)∈-时有()()(),1x y f x f y f xy
--=-
若数列{}n x 满足 112
21
,21n n n x x x x +=
=
+。
(1)求(0)f 的值,并证明()f x 在(1,1)-上为奇函数; (2)探索1()()n n f x f x +与 的关系式,并求()n f x 的表达式; (3)是否存在自然数m ,使得对于任意的*n N ∈,有
123111
18()()()
()4
n m f x f x f x f x -++++
<恒成立?若存在,求出m 的最小值,若不存在, 请说明理由。
5、数列{}n a 满足11,2
a =11
2n n
a a +=
-. (Ⅰ)求数列{n a }的通项公式;
(Ⅱ)设数列{n a }的前n 项和为n S ,证明2
ln()2
n n S n +<-.
6、已知二次函数2
()()f x x ax a x R =-+∈同时满足:①不等式()f x ≤0的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立,设数列{n a }的前
n 项和()n S f n =.
(1)求函数()f x 的表达式;
(2) 设各项均不为0的数列{n b }中,所有满足10i i b b +⋅<的整数i 的个数称为这个数列{n b }的变号数,令1n n
a b a =-
(n N *
∈),求数列{n b }的变号数; (3)设数列{n c }满足:11
1
n
n i i i c a a =+=⋅∑,试探究数列{n c }是否存在最小项?若存在,求出该项,若不存在,说明理由.
7、已知数列{}n a 的前n 项和n S 满足:(1)1
n n a
S a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式; (Ⅱ)设21=
+n
n n
S b a ,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设1
11
11n n n c a a +=
+
+-,数列{}n c 的前n 项和为T n . 求证:1
23
n T n >-.
8、已知21
4)(x x f +
-=数列}{n a 的前n 项和为n S ,点)1,(1
+-n n
n a a P 在曲线)(x f y =上)(*N n ∈且0,11>=n a a .
(1)求数列}{n a 的通项公式; (2)数列}{n b 的前n 项和为且n T 满足
381622
1
21--+=++n n a T a T n n
n n ,设定1b 的值使得数列}{n b 是等差数列;
(3)求证:*,1142
1
N n n S n ∈-+>.
9、已知函数)(x f 的定义域为]1,0[,且同时满足:对任意]1,0[∈x ,总有2)(≥x f ,
3)1(=f ; 若01≥x ,02≥x 且121≤+x x ,则有2)()()(2121-+≥+x f x f x x f . (1)求)0(f 的值;
(2)试求)(x f 的最大值;
(3)设数列}{n a 的前n 项和为n S ,且满足*)3(2
1
,11N n a S a n n ∈--==,
求证:1
213
21
223)()()(-⨯-+≤+++n n n a f a f a f .
10、已知函数1
12
y x =-
+的图象按向量(2,1)m =平移后便得到函数()f x 的图象,数列{}n a 满足1()n n a f a -=(n≥2,n ∈N *
). (Ⅰ)若13
5
a =
,数列{}n b 满足11n n b a =-,求证:数列{}n b 是等差数列;
(Ⅱ)若13
5
a =
,数列{}n a 中是否存在最大项与最小项,若存在,求出最大项与最小项,若不存在,说明理由;
(Ⅲ)若112a <<,试证明:112n n a a +<<<.
11、设数列{}n a 满足:11a =,且当n N *∈时,32
11(1)1n n n n a a a a +++-+=
(1) 比较n a 与1n a +的大小,并证明你的结论;
(2) 若22
11(1)n n n n
a b a a +=-,其中*
∈N n ,证明:10 2.n
k k b =<<∑
12、已知函数2()ax b
f x x c
+=
+是定义在R 上的奇函数,且当x =1时f (x )取最大值1. (1)求出a ,b ,c 的值并写出f (x )的解析式;
(2)若x 1∈(0,1),x n+1=f (x n ),试比较x n+1与x n 的大小并加以证明; (3)若111,()2n n x x f x +==,求证2
222311212231()()()516
n n n n x x x x x x x x x x x x ++---++
+<
.。