医学统计学复习重点.doc
医学统计学复习重点
整理分析和2.计描述4.(集合)。
1.抽样随机2.分组随机3.实验顺序随机。
称全距,用离散系数,为标准差与均数只比,常:CV=s/x究,1.抽样研究2.个体变异。
系统误差:指数据搜集和测量过程中由于仪器不准确、造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差由于一些非人真实性(validity):观察值与真值的接近程度,受系统误差的影响( (reliabiliy)——也称精密度(precision)或重复性(repeatability)是直接用样本统计量作为对应的总体参数最常用的是95%10095有5在描述两变量间的关系时,若散点图呈直线趋势或有直线相关关系,可进行直线回归分析。
参数:根根据样本的分布特征而计算得到的1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
5、★频数表的用途:揭示计量资料的分布类型;揭示计量资料的分布特征;便于发现特大值和特小值;便于进一步进行统计分析★常见的统计资料的类型有:计量资料;计数资料;等级资料7、★t检验的应用条件是:①正态分布:当样本含量较小时,要求样本来自正态总体。
②方差齐性:两样本均数比较时,要求两总体方差相等。
U检验的应用条件是:①大样本(如n>50);②小样本,σ已知且样本来自正态总体。
8、★.描述分类变量常用的指标有率、构成比、相对数。
9、率是指某种现象在一定条件下,实际发生的观察单位数与可能发生该现象的总观察单位数之比,常用来描述某种现象发生的频率大小或强度构成比是指一事物内部某一组成部分的观察单位数与该事物各组成部分的观察单位总数之比,常用来描述某一事物内部各组成部分所占的比重或分布。
10、★四格表卡方专用公式应用条件n≥40,且Tmin≥5 研究事物或现象间的线性关系用相关分析,研究事物或现象间的线性数量依存关系用回归分析。
(完整版),医学统计学第三版复习总结,推荐文档
方差由Y 及 b (x - x)的方差两部分构成个体Yi 值的范围预测
直线回归方程的应用
描述两变量的依存数量关系
利用回归方程进行预测
利用回归方程进行控制
第二直线相关 ( linear correlation )
;
()0.5,
()0.5, 对比组,
(RR)无单位,比值范围在0至∞之间。
表明暴露与疾病无联系;
表明存在负联系(提示暴露是保护因子);
消除更多因素(如大于3个)的影响:
分层分析受到限制,因为很多层可能没有病例,这时通常可使用COX回归模型
期望人数?即根据两种疗法疗效相同的假设,由总死亡人数计算出的两种疗法在该日的期望死亡人数。
1.生存率分析的概念,特点(与其它统计分析比较),适用范围。
生存分析:是将事件的结果和出现这一结果所经历的时间,结合起来分析的一种统计分析方法,它不仅可以从事件结局的好坏,如疾病的治愈(成功)和死亡(失败),而且可以从事件的持续时间,如某病经治疗后存活的时间长短进行分析比较,因而能够更全面、更精确地反映该治疗的效果。
【方案】医学统计学重点.docx
1.变异:同质事物之间的差别。
2.频数分布的两个特征:集中位置,离散趋势3.数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4.统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5.集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1)算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料(2)几何平均数:适用于①等比资料②对数正态分布资料(3)中位数和百分位数:适用于①偏态分布的资料②开口资料③资料分布不明等6.离散趋势的描述(1)全距亦称极差,适用于单峰小样本资料(2)四分位数间距,适用于单峰小样本资料(3)方差和标准差,适用于对称分布尤其是正态分布资料(4)变异系数,常用于①比较度量衡单位不同的两组或多种资料的变异度②比较均数相差悬殊的两组或多组资料的变异度7.常用相对数(1)率,是二分类指标(2)构成比(3)比8.正确应用相对数应注意几个问题:(1)计算相对数的分母不宜过小(2)分析时不能以构成比代替率(3)对观察单位数不等的几个率,不能直接相加求其总率(4)计算率时要注意资料的同质性,对比分析时应注意资料的可比性(5)也有抽样误差,需要假设检验。
9.率的标准法(1)基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2)目的:控制混杂因素对研究结果的影响。
10.正态分布(1)概念P16(2)标准正态分布,u变换:u=σμ-X,u是标准正态离差,μ是均数,σ是标准差。
u ~N (0,1)(3)正态分布的特征:①是单峰分布,高峰位置在均数X=μ处。
②以均数为中心,左右完全对称。
③取决于两个参数,均数μ和标准差σ。
μ为位置参数,μ越大,则曲线沿横轴向右移动;μ越小,则曲线沿横轴向左移动。
σ为形态参数,表示数据的离散程度,若σ小,则曲线形态“瘦高”;σ大,则曲线形态“矮胖”。
(完整word版)卫生统计学知识点总结
卫生统计学统计工作基本步骤:统计设计(调查设计和实验设计)、资料分析{收集资料、整理资料、分析资料【统计描述和统计推断(参数估计和假设检验)】。
★统计推断:是利用样本所提供的信息来推断总体特征,包括:参数估计和假设检验。
a参数估计是指利用样本信息来估计总体参数,主要有点估计(把样本统计量直接作为总体参数估计值)和区间估计【按预先设定的可信度(1-α),来确定总体均数的所在范围】。
b假设检验:是以小概率反证法的逻辑推理来判断总体参数间是否有质的区别。
变量资料可分为定性变量、定量变量。
不同类型的变量可以进行转化,通常是由高级向低级转化。
资料按性质可分为计量资料、计数资料和等级资料。
定量资料的统计描述1频率分布表和频率分布图是描述计量资料分布类型及分布特征的方法。
离散型定量变量的频率分布图可用直条图表达。
2频率分布表(图)的用途:①描述资料的分布类型;②描述分布的集中趋势和离散趋势;③便于发现一些特大和特小的可疑值;④便于进一步的统计分析和处理;⑤当样本含量足够大时,以频率作为概率的估计值。
★3集中趋势和离散趋势是定量资料中总体分布的两个重要指标。
(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数。
算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。
(2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。
四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。
方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。
医学统计学复习资料(完整版)
第1章绪论医学统计学是一门“运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。
1.个体:又称观察单位,是统计研究的最基本单位,也是构成总体的最基本的观察单位。
2.总体:根据研究目的确定的同质观察单位某项指标测量值(观察值)的集合。
分为有限总体(明确规定了空间、时间、人群范围内有限个观察单位)和无限总体(无时间和空间范围的限制)。
反映总体特征的指标为参数,常用小写希腊字母表示。
3.样本:从总体中随机抽取的一部分有代表性的观察单位组成的整体。
(抽样,随机化原则,样本含量)根据样本资料计算出来的相应指标为统计量,常用大写英文字母表示。
4.抽样研究:从总体中随机抽取样本,根据样本信息推断总体特征的方法。
抽样误差是由随机抽样(样本的偶然性)造成的样本指标与总体指标之间、样本指标与样本指标之间的差异。
其根源在于总体中的个体存在变异性。
只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
统计分析主要是针对抽样误差而言。
5.变量(一个个体的任意“特征”);资料(变量值的集合),资料类型:①计量资料/定量资料/数值变量资料:表现为数值大小,一般有度量衡单位,又可分为连续型和离散型两类;②计数资料/定性资料/无序分类变量资料/名义变量资料:表现为互补相容的属性或类别,一般无度量衡单位,可分为二分类和多分类;③等级资料/半定量资料/有序分类变量资料:表现为等级大小或属性程度。
各类资料间可相互转化。
①可选分析方法有:t检验、方差分析、相关回归分析等;②可选分析方法有:χ2检验、z检验等;③可选分析方法有:秩和检验、Ridit分析等。
6.误差:实测值与真实值之差。
可分为随机误差(随机测量误差+抽样误差)与非随机误差(系统误差与非系统误差)。
①随机误差:是一类不恒定、随机变化的误差,由多种尚无法控制的因素引起,它是不可避免的;②系统误差:是实验过程中产生的误差,它的值或恒定不变,或遵循一定的变化规律,其产生原因往往是可知的或可以掌握的,它是可以消除或控制的;③非系统误差:又称过失误差,是指在实验过程中由于研究者偶然失误而造成的误差,可以消除。
医学统计学复习重点和难点
一、医学统计的基本内容
• 1. 统计学:统计学是一门科学和艺术,专 门处理数据中的变异性。
如何处理:通过数据收集、整理、分析。 目的:得到可靠的结果。
• 2. 医学统计学:统计学应用于医药卫生领 域即称为医学统计学。
2020/12/9
• 3. 几个基本概念: • ⑴ 总体、样本、个体、随机抽样、
-1.96~1.96 -2.58~2.58
μ μ+σμ+1.96σ μ+2.58σ
0
1 1.96 2.58
正态分布 面积或概率
μ±σ
68.27%
μ±1.96σ 95.00%
μ±2.58σ 99.00%
5.参考值范围的制定及适用条件:(正态 、对数正态、百分位数法)
单侧下限---过低异常 单侧上限---过高异常 双侧---过高、过低均异常
2020/12/9
总变 组 异 内 组 变间 异 S总 S S组 S 间 S组 S内
总 组 间 组内
2020/12/9
方差分析的目的:是比较各组的总体 均数是否相同。 掌握完全随机设计及随机区组设计方 差分析变异及自由度的分解。 掌握完全随机设计方差分析的计算步 骤(方差分析表)。
2020/12/9
否
统计 描述 Md,Q
分类资料
统计 描述 率,比, 构成比
总体 均数 置信 区间
2020/12/9
t方 检差 验分
析
秩和 检验
总体 率的 置信 区间
2 检 验
五、直线相关与回归
1.直线相关与回归分析的意义和用途。 2.相关系数r、回归系数b、回归方程。 3.直线相关与回归的区别与联系及应用注 意事项。 4.等级相关的适用条件。
医学统计学考试重点资料
一、名解:1、定量资料:以定量值表达每个观察单位的某项观察指标2、定性资料:以定性方式表达每个观察单位的某项观察指标3、等级资料:以等级方式表达每个观察单位的某项观察指标4、总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
5、样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
6、参数:描述某总体特征的指标称为总体参数。
7、统计量:描述某样本特征的指标称为样本统计量。
8、小概率事件:当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件9、小概率原理:其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
小概率原理是进行统计推断的依据。
(8&9常写在一起)10∙变异,是以具有同质性的观察单位为载体,某项观察指标在其单位之间显示的差别。
11标准化率:用统一的标准对内部构成不同的各组频率进行调整和对比,对比后的率为标准化率。
12参考值范围:又称正常值范围,大多数人正常人某观察指标所在的范围。
由于正常人的形态、功能、生化等各种指标的数据因人而异,而且同一个人的某些指标还会随着时间、机体内外环境的改变而变化,因此需要确定其波动范围,即正常值范围,简称正常值。
13、抽样误差:由抽样引起的样本统计量与总体参数间的差别。
14、中心极限定理:①从均数为U,标准差为。
的总体中独立随机抽样,当样本含量?增加时,样本均数的分布将趋于正态分布,均数为标准差为。
X②从非正态分布的总体中随机抽样,只要样本含量足够大,样本均数趋于正态分布。
15、统计推断:就是根据样本所提供的信息,以一定的概率推断总体的性质。
16、区间估计/参数估计/可信区间:包括点估计和区间估计,由样本信息估计总体参数。
按一定的概率或可信度(La)用一个区间估计总体参数所在范围。
这个范围称作可信度为l-α的可信区间(ConfidenCeinterval,Cl),又称置信区间。
2023年医学统计学总结重点笔记复习资料
第一章2选1总体:总体(population)是根据研究目的拟定的同质观测单位(研究对象)的全体,事实上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都可以标记者为有限总体,反之为无限总体。
总体population根据研究目的而拟定的同质观测单位的全体。
样本:从总体中随机抽取部分观测单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
样本sample从总体中随机抽得的部分观测单位,其实测值的集合。
3选1小概率事件:我们把概率很接近于0(即在大量反复实验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的也许性大小。
记录学根据显著性检查方法所得到的P 值反映结果真实限度,一般以P ≤ 0.05 认为有记录学意义, P ≤0.01 认为有高度记录学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观测样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观测到的(实例的) 显著性水平。
4) 表达对原假设的支持限度,是用于拟定是否应当拒绝原假设的另一种方法。
小概率原理:一个事件假如发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不也许性原理。
记录学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观测单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观测单位某项指标的大小,而获得的资料。
2024年度-医学统计学重点笔记一复习必备
即标准正态分布,当样本量足够大时(n>30),t分布近似u分布。
14
总体均数置信区间估计
置信区间的概念
按一定的置信水平(1-α),根据样 本统计量估计总体参数所在的范围。
置信区间的计算
根据样本均数、标准差和样本量计算 置信区间。常用的置信水平为95%和
99%。
置信区间的意义
表示总体参数有100(1-α)%的可能性 落在此区间内。
适用条件
01
R×C列联表资料,即多行多列列联表,用于分析两个多分类变
量之间的关联。
检验统计量
02
卡方值,计算公式为χ2=∑(O-E)2/E,其中O为观察频数,E为
理论频数。
拒绝域
03
根据自由度和显著性水平确定拒绝域,自由度为(R-1)(C-1)。
29
配对设计四格表资料卡方检验
01
适用条件
配对设计四格表资料,即两个相 关样本的二分类变量之间的关联 分析。
26
06
卡方检验
27
四格表资料卡方检验
适用条件
四格表资料,即2×2列联表,用于分析两个二分类变量之间的关联。
检验统计量
卡方值,计算公式为χ2=(ad-bc)2N/(a+b)(c+d)(a+c)(b+d),其 中N为样本总量。
拒绝域
根据自由度和显著性水平确定拒绝域,自由度为1。
28
R×C列联表资料卡方检验
正态分布在医学中的应用 许多医学指标如身高、体重、血压等服从或近似服从正态 分布;在估计医学参考值范围、质量控制等方面有广泛应 用。
正态性检验方法 图形法(直方图、P-P图、Q-Q图)、计算法(偏度系数 和峰度系数检验、Shapiro-Wilk检验、KolmogorovSmirnov检验等)。
医学统计学章节重点归纳
医学统计学章节重点归纳第一节概述1、主要内容:a、卫生统计学的基本原理和方法(研究设计和数据处理中的统计理论和方法)b、健康统计(医学人口统计、疾病统计和生长发育统计)c、卫生服务统计(卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理中的统计问题)。
2、卫生统计工作的步骤:设计、资料的搜集、资料的整理、资料的分析3、医学统计资料主要四个方面:统计报表、报告卡(单)、日常医疗卫生工作记录,专题研究或实验。
4、观察单位:是获得数据的最小单位,观察单位是根据研究目的确定的,观察单位可以是人、标本、家庭、国家等。
5、变异:是指客观事物的多样性和不确定性。
6、变量:观察单位的某种特征,称为变量。
a、数值变量(定量变量)b、分类变量(定型变量或字符变量)。
7、总体:根据研究目的所确定的同质研究对象的全体。
确切的说是性质相同的所有观察单位的某种变量的集合。
8、样本:从总体中随机抽取部分观察单位,其变量值就构成样本,通过样本信息来推断总体特征。
9、概率:事件发生的可能性大小的量度,通常以符号P表示。
10、误差:测量值与真值之差或样本指标和总体指标之差。
分为随机误差和系统误差。
第二节数值资料的统计描述1、频数分布就是观察值在所取得范围内分布的情况。
重要特征:集中趋势和离散趋势。
2、频数分布类型:正态分布型频数、正偏态分布型频数,负偏态分布型频数。
3、集中趋势指标:算术平均数(均数)、几何均数、中位数。
指标使用条件计算公式算术平均数适用于正态或近似正态分布的数值变量资料几何均数①对数正态分布,即数据经过对数变换后呈正态分布的资料;②等比级数资料,即观察值之间呈倍数或近似倍数变化的资料。
中位数①非正态分布资料(对数正态分布除外);②频数分布的一端或两端无确切数据的资料③总体分布不清楚的资料。
为奇数 , 为偶数,4、离散型趋势指标:极差、标准差和变异系数指标计算公式主要优缺点极差R=Xmax-Xmin 计算简单,便于理解;只考虑最大值与最小值之差异,不能反映组内其它观察值的变异度,不稳定,受样本量影响很大。
(完整版)医学统计学复习要点
(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。
②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。
③、等级资料,⼜称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。
2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。
③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。
④、样本(sample):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。
⑥、频率(frequency):指的是样本的实际发⽣率。
⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。
⽤⼤写的P表⽰。
3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。
第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。
(完整版)医学统计学重点总结
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
医学统计学重点word精品
医学统计学重点第一章绪论1. 基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2. 样本特点:足够的样本含量、可靠性、代表性。
3. 资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析第二章实验研究的三要素1. 实验设计三要素:被试因素、受试对象、实验效应2. 误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则4. 实验设计方法有/X析因设计---------- ►正交试验设计------- * 均匀试验设计交互作用两组:异体配对设计一同体配对设计一交叉设计无、随机同期对照实验设计(单因素两水平)扩展多组:单因素多水平一配伍组设计一拉丁方设计(两因素多水平)(三因素多水平)配伍组设计:也称随机区组设计,将条件相近的受试对象配伍,每个配伍组中的对象随机分配到各处理组中。
(完整word版)医学统计学考试重点(人卫第七版)
1、同质:是指观察单位或观察指标受共同因素制约的部分2、观察单位:亦称个体,是统计研究中最基本的单位3、变异:在同质的基础上个体间的差距4、总体:根据研究目的所确定的同质观察单位的全体,既是同质的所有观察单位某项观察值的集合5、有限总体:总体若受一定的时间和空间控制,其观察单位数是有限的,称为有限总体无限总体:理论上其观察单位数是无法穷尽的6、样本:是指从总体中随机抽取部分观察单位其某项指标实测值的集合7、抽样:从总体中抽取部分个体的过程称为抽样8、抽样必须遵循随机化原则,即总体中每一个体都有同等的机会被抽取到9、抽样研究的方法,利用样本的信息推论总体的特征来达到研究目的10、参数:描述总体特征的量11、统计量:根据样本个体值计算得到的描述样本特征的量12、总体参数是常数,而样本统计量可随样本不同而不同13、随机误差:指一类不恒定、随机变化的误差,有多种尚无法控制的因素所引起14、抽样误差:指抽样引起的样本统计量与总体参数之间的差异15、系统误差:在实际观测过程中,由于仪器未校正、观测者感官的某种倾向、研究者掌握的标准偏高或偏低等原因,使观察值不是随机分散在真值两侧,而是具有方向性、系统性或周期性的偏离真值,这类误差称为系统误差16、过失误差:指各种失误所导致的误差17、随机事件:在一定条件下某一现象可能发生也可能不发生的事件18、概率:反映某一随机事件发生可能性大小的量,用符号P表示19、小概率事件:统计学上一般把P≤0。
05的事件称为小概率事件,表示某事件发生的可能性很小20、变量:观察单位的某个特征21、变量值:变量的观察结果或测定值22、按变量值是定性的还是定量的,可将变量分为数值变量和分类变量23、数值变量又称定量变量,其变量值是用定量方法测得的,所的资料是计量资料24、分类变量又称定性变量,其变量值是用定性方法测得的25、分类变量根据类别是否有程度上的差别,可分为无序分类变量(构成的资料为计数资料)和有序分类变量(所得资料为等级资料)25、医学统计工作的基本步骤:一、设计;二、收集资料;三、整理资料;四、分析资料26、统计表和统计图是描述统计资料的重要工具27、统计表的结构:①标题位于统计表的上中方②标目用来说明表内各纵横数字的含义,注意标明指标的单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t检验t检验应用条件:%1小样本(n<100),且总体标准差。
未知%1样本取自正态分布的总体,;%1两样本总体方差相等(。
12二。
22)o1)总之,六个字:正态性、方差齐(1)建立假设、确定检验水准HO: n = pO铅作业工人与正常成年男性血红蛋白平均值相等H1:日走口0铅作业工人与正常成年男性血红蛋白平均值不等a =0.05(2)选定检验方法,计算检验统计量(3)确定P值,作出推断结论一、单样本t检验单样本t检验--- 例4-1(1)正态性检验Analyze-* Descriptive statistics-* Explore-* "皂忒含量" 选入Dependent list 框中—点击plots 复选框并选中Normlity plots with test 一Continue -* OK(2)t检验Analyze —Compare Means—One-samples T Test —"皂贰含量"选入Test Variables 框中Test Value 框中填“8.9” 一Continue — OK二、配对样本t检验配对t检验一一例4-3(1)计算差值dTransform —Compute variable —Target variable (d) = Numeric Express (new・ old)— OK (2)正态性检验(同前)(3)t检验Analyze —Compare Means— Paired-samples T Test —“new "、“old"选入Paired Variables 框中一OK三、独立样本的方差齐性检验与t检验两独立样本t检验——例4-4(1)正态性检验和方差齐性检验Analyze— Descriptive statistics — Explore-* “转化率” 选入Dependent list 框中一“group” 选入Factor框中一点击plots复选框并选中Normlity plots with test 同时选中Spread vs level with levene test 勺untransformed 按钮—Continue — OK(2)t检验Analyze —Compare Means Independent-samples T Test-* u转化率”选入Dependent list 框中一“Group” 选入Grouping Variables 框中,并点击u Define Groups nGroupl对应的框中填“1” Group2对应的框中填“2”方差分析方差分析的应用条件:⑴各样本是相互独立的随机样本。
⑵各样本均服从正态分布;检验资料是否正态分布,可用正态性检验。
⑶相互比较的各样本的总体方差相等,即具有方差齐性(homogeneity of variance)。
一、完全随机设计的方差分析也称单因素方差分析(一)正态性检验(二)方差齐性检验(三)方差分析H0:四组总体均数相等,即#1=〃2=〃3=#4H1:四组总体均数不全相等。
检验水准:。
=0・05二、随机区组设计的方差分析完全随机设计资料的方差分析一一例5-1(1)正态性检验和方差齐性检验(略)(2)方差分析Analyze— Compare Mean一One-Way ANOVA Dependent List:Factor: group 一Options: V Descriptive; J Homogeneity・of・variance一Continue—Post Hoc Multiple Comparison: V S-N-K —Continue—OK随机区组设计资料的方差分析一一例5-2(1)正态性检验和方差齐性检验(略)(2)方差分析Analyzef General linear Models Univariate-^ Dependent: Fixed Factor: block, group—Model —(DCustom— Model: block, group—Continue —Post Hoc Tests for: block, groupV LSD J SNK—Continue—Options —univariate: Options(组别—Display Mean for 框)—Continue—Ok卡方检验应用条件1)当n》40且所有的TN5时,用检验的基本公式;当PR a时,改用四格表资料的Fisher 确切概率法。
(2)当nN40但有1WTV5时,用四格表资料的校正公式;或改用四格表资料的Fisher确切概率法。
(3)当nV40,或TV1时,用四格表资料成组RXC,n>40,lWT<5的格子数不超过格子数的1/5时一、成组设计2X2表资料的2检验例8-9/8-101.加权频数Data—Weight Cases~*Weight Cases:0Weight cases by: Frequency2.2检验Analyze-*Descriptive Statistics—Crosstabs・・・group—Rows 框effect—Columns 框—Statistics: J Chi-square (检验)fContinue—Cells…:Counts: V Expected) Percentages: V Row—Continue—OK。
二、R X C表资料的2检验例8-12/8-131.加权频数(略)2.2检验Analyze—Descriptive Statistics一Crosstabs・・・group一Rows 框e ffect一Columns 框—Statistics: J Chi-square (检验)一Continue—Cells…:Counts: V Expected) Percentages: V Row—Continue—OK c三、配对设计2X2表资料的2检验例8-14/8-151.加权频数(略)2.2检验Analyze-*Descriptive Statistics—Crosstabs。
••新法—Rows 框旧法—Columns 框-^Statistics: V McNemar (检验)—Continue—Cells…:Counts: V Expected) Percentages: V Row—Continue—OK。
秩和检验可应用秩和检验的情况1.不满足正态和方差齐性条件的小样本资料;2.总体分布类型不明的小样本资料;3.一端或两端是不确定数值(如<0.002> >65等)的资料(必选);4.单向有序列联表资料步骤1.建立检验假设,确定检验水准HO: Md=0,治疗前后血小板总数差值的总体中位数为0;Hl: Md公0,治疗前后血小板总数差值的总体中位数不为0; a =0.052.求检验统计量T值%1省略所有差值为0的对子数,观察单位数减去0对子数的个数%1按差值的绝对值从小到大编秩,绝对值相等的差值若符号不同取平均值,并保持原差值的正负号;%1任取正秩和或负秩和为T,本例取T-=3o一、完全随机设计两样本比较的秩和检验3.确定P值,作出推断结论1.建立检验假设:H0:两组疗效总体分布相同H1:两组疗效总体分布不同a =0.052.计算检验统计量⑴编秩⑵求秩和⑶计算z 值(z=0.4974, c=0.8443, zc=0.5413)3.确定P值;做出推断结论二、完全随机设计多个样本比较的秩和检验1、建立检验假设,确定检验水准2、混合编秩,分组求秩和Ti3、计算检验统计量H4、确定P值,作出推断结论小样本情况:当组数kW3,且niW5时,可查H界值表,确定P值。
如果H>H ,则P< ;反之,P> o大样本情况:若k>3或ni>5时理论上,H近似服从自由度为k-1的X2分布,可查x 2 界值表确定P值。
三、随机区组设计的秩和检验1.建立检验假设:H0: 3种剂量雌激素注射后子宫重量总体分布相同H1: 3种剂量雌激素注射后子宫重量总体分布不同或不全相同a =0.052.计算检验统计量M值3.确定P值;做出推断结论注:当各区组相同秩次太多时,应计算校正X2值配对设计的符号秩检验:analyze nonparametric tests-* 2 related samples -* test pair list:治疗前-治疗后test type:wilcoxonf ok完全随机设计的两样本比较的秩和检验:analyze-*nonparametric tests—2 independent-samples —test variable list:分析变量一grouping variable:分组变量一define groups:分组变量的值test type:Mann-Whitney U~*ok配伍组设计的秩和检验:analyze—nonparametric tests—k related samples —test variables:变量1、变量2、变量3… test type:Friedmanf ok相关与回归直线回归的条件1.线性(linearity)2.独立(independency)3.正态(normal distribution)4.等方差(equal variance) LINE直线相关(1)正态性检验(略)(2)散点图Graphs—Legacy Dialogs—Scatter/Dot—Simple Scatter-*Define: Y Axis: y X Axis: xSet Markers by: group —Ok.(3)求相关系数并对其进行假设检验Analyze -* Correlate -* Bivariate -* Bivariate Correlations (x 和y-* Variables 框)Correlation Coefficients: J PearsonTest of Significance: J Two-tailed—OK直线回归(1)正态性检验(略)(2)散点图(略)(3)求回归系数并对•其进行假设检验Analyze-*Regression-*Linear-*Linear Regression (y-*Dependent 框,x—Independent 框)—OK秩相关(1)正态性检验(略)(2)求等级相关系数并对其进行假设检验Analyze—Correlate—Bivariate—Bivariate Correlations (x 禾口y-*Variables 框)Correlation Coefficients: J SpearmanTest of Significance: V Two-tailedJ Flag significant correlationsOK。