材料的塑性变形

合集下载

材料的塑性变形PPT课件

材料的塑性变形PPT课件
G E
2(1 )
:材料泊松比,表示侧向收缩能力 3)弹性变形量随材料的不同而异 。 4)工程上,弹性模量是材料刚度的度量
三、弹性的不完整性
加载线与卸载线不重合、应变的发展跟不上应力 的变化。
1.包申格效应
材料经预先加载产生少量塑性变形(小于4%),而后同向加载则 σe升高,反向加载则σe下降。
2. 弹性后效
切过粒子时必然产生一割阶,而割阶会妨碍整个位错 线的移动。
§7-5塑性变形对材料组织与性能的影响
一、显微组织的变化 1.出现大量的滑移带或孪晶带 2.晶粒将逐渐沿其变形方向伸长 ,
纤维组织
二、亚结构的变化
三、性能的变化
1.加工硬化
金属材料经冷加工变形后,强度(硬度)显著提 高,而塑性则很快下降,即产生了加工硬化现象
2G
1
( 2W )
eb
2) 位错与位错的交互作用产生的阻力
3) 运动位错交截后形成的扭折和割阶
4) 位错与其他晶体缺陷如点缺陷,其他位错、晶 界和第二相质点等交互作用产生的阻力
1 110 是纯刃型位错,滑
6 移面为(001) Lomer-cottrell位错
(二)孪生
1. 孪生变形过程 晶体的一部分相对另一部分在切应力作用下,沿特 定的晶面与晶向产生一定角度的均匀切变
在弹性极限σe范围内,应变滞后于外加应力,并和时间 有关
3. 弹性滞后
应变落后于应力,在应力-应变曲线上使加载线与卸载线 不重合而形成一封闭回线
4.黏弹性
黏性流动是指非晶态固体和液体在很小外力作用下便
会发生没有确定形状的流变,并且在外力去除后,形变不
能回复。
d
dt
§5-2单晶体的塑性变形

材料的塑性变形了解材料的可塑性特性

材料的塑性变形了解材料的可塑性特性

材料的塑性变形了解材料的可塑性特性材料的塑性变形是指在一定条件下,材料受到外界力作用而产生形状和尺寸的永久性改变的能力。

塑性变形是材料工程中非常重要的概念,我们需要深入了解材料的可塑性特性以便正确选择和应用材料。

本文将详细介绍材料的塑性变形和其可塑性特性。

一、材料的塑性变形概述在材料工程中,塑性变形是指在材料受到外力作用后,材料发生永久性变形的过程。

与之相对应的是弹性变形,即当外力作用消失后,材料恢复到原来的形状和尺寸。

材料的塑性变形主要表现为拉伸、压缩、弯曲、扭转等形式。

二、材料的可塑性特性1. 塑性变形能力:材料的可塑性特性主要体现在其对外力作用下发生塑性变形的能力上。

一般来说,金属材料更具有塑性变形能力,而脆性材料则相对较差。

2. 塑性变形的可逆性:与弹性变形不同,塑性变形是永久性的,即使外力作用消失,材料也无法完全恢复到原来的形状和尺寸。

这是材料可塑性特性的重要表现。

3. 塑性变形的抗性:材料的抗塑性变形能力与材料的应变硬化特性密切相关。

应变硬化是指材料在塑性变形过程中,随着变形程度的增加,抵抗进一步变形的能力也随之增强。

4. 塑性变形的本质:材料的塑性变形是由于材料的晶体结构的滑移和位错运动所致。

在外力的作用下,晶体中的位错沿着晶体结构中的特定平面和方向移动,导致材料的塑性变形。

三、材料塑性变形的影响因素1. 温度:温度对材料的塑性变形有着重要影响。

一般来说,高温下材料的塑性变形能力增强,而低温则相对减弱。

2. 应变速率:应变速率是指材料在受外力作用下形变的速率。

较高的应变速率会导致材料的变形更加集中,容易发生塑性变形。

3. 结晶度:结晶度高的材料具有较好的塑性变形能力,而非晶态材料则相对较差。

4. 化学成分和加工方式:不同化学成分的材料在受力时表现出不同的塑性特性。

此外,材料的加工方式(如冷轧、热轧等)也会对塑性变形产生影响。

四、材料塑性变形实例1. 金属材料的塑性变形:金属材料是最常见的可塑性材料,广泛应用于工程领域。

材料的塑性变形

材料的塑性变形

完整晶体原子排列位置
8
2.2 理想晶体的强度
假定在晶体特定的晶面及结晶向上施加切应力τ,引起晶体 上半部分相对于下半部分沿两层原子间MN面上移动,如图所示 ,在切应力作用下,势必引起MN面上原子同时移动,同时切 断MN面上所有的原子键,此过程为晶体的整体滑移,
上、下半晶体相对移动
9
2.2 理想晶体的强度
32
2.3.2 柏氏矢量与柏氏回路
(2)柏氏矢量的性质与表示方法
柏氏矢量具有守恒性,具体表现在如下: ➢柏氏矢量与柏氏回路的起点、形状、大小和位置无关, 只要回路不与其他位错线或原位错线相遇,则回路所包 含的晶格畸变总量不会改变; ➢一条位错线具有唯一的柏氏矢量,即位错线各部分的 柏氏矢量均相同; ➢若几条位错线汇交于一点时,则指向节点的各位错的 柏氏矢量之和等于离开结点的各位错柏氏矢量之和,
螺形位错 示意图
26
(2)位错的类型
b.螺位错—几何特征
①位错线与原子滑移方向 平行;
②位错线(ZHOU)围原子 的配置是螺旋状的,即形成螺 位错后,原来与位错线垂直的 晶面,变为以位错线为中心 轴的螺旋面,
27
2.3.1 位错的基本概念(dislocation)
(2)位错的类型
c.混合位错
如果在外力τ作用下,两部分之间发生相对滑移,在晶 体内部已滑移部分和未滑移部分的交线既不垂直也不平 行于滑移方向(伯氏矢量b),这样的位错称为混合位 错,如下图所示,位错线上任一点,经矢量分解后,可 分解为刃位错与螺位错分量。
滑移面一侧质点相对于另一侧质点的相对滑移或畸变, 由伯格斯于1939年首先提出,故称为伯格斯矢量,简称 为伯氏矢量,
30
2.3.2 柏氏矢量与柏氏回路

材料力学性能塑性变形

材料力学性能塑性变形

S S (1 2 R a)[ln( 1 a 2 R)]
《材料力学性能》 第三章 塑性变形
3.3.3 形变强化的实际意义
• 金属的加工硬化,对冷加工成型工艺是很重要 的。
• 对于工作中的零件,也要求材料有一定的加工 硬化能力,零件具有抵抗偶然超载的能力,是 安全使用的可靠保证。
• 形变强化是提高材料强度的重要手段,尤其对 不能进行热处理强化的材料。
§3.3 真应力-应变曲线及形变强化规律
真应力—真应变加线可用Hollomon方程来表示:
S K
n
K--强化系数;n--应变强化指数。 由上式可知,n值越大,材料对继续塑性变形得抗力愈高。 大多数金属材料的应变硬化系数为0.05~0.5之间。 应变强化速率与n意义的区别:
S K
n
Mb 条件抗扭强度 b W
真实抗扭强度
4 dM k 3 [3M k k ( )k ] d0 d
《材料力学性能》 第三章 塑性变形
扭转切应变

k d0
2l0
100%
对于塑性材料,因塑性变形很大,弹性变形可忽略, 上式求出的总应变看作残余切应变;对于脆性材料和 低塑性材料,弹性变形不能忽略,残余切应变还应减 去弹性切应变γy。
《材料力学性能》 第三章 塑性变形
3.2.3 应变时效 如果在屈服后一定塑性变 形处卸载,随即再拉伸加 载,则屈服现象不再出现, 若在卸载后在室温或较高 温度停留较长时间后再拉 伸,即物理屈服现象重现、 且新的屈服平台高于卸载 时应力—应变曲线。这种 现象称为应变时效。
《材料力学性能》 第三章 塑性变形
3.4.3 弯曲试验
1、弯曲试验分为三点弯曲和四点弯曲,试样主要有矩形 截面和圆形截面。

材料的塑性变形

材料的塑性变形
的原子间距最短,即位错b最小。 • 一种滑移面和该面上的一个滑移方向构成一个可以滑
移的方式称为“滑移系”。
典型晶格的滑移系
FCC
FCC: • 滑移面:{111},共有四个有效滑移面 • 滑移方向:110,每个滑移面上有三个滑移方向 • 滑移系数目:{111}4<110>3=12 • 4*3=12个
1、材料什么时候屈服?
有一滑移系达到临界分切应力
2、取向因子与什么有关系?
各滑移系(滑移面及滑移方向)与F的位置关系
45
5.滑移时晶面的转动
• 5.滑移时晶面的转动
滑移 → 轴线偏离 → 夹头限制 → 晶 面转动
拉伸时转动结果:
(1)滑移面逐渐趋向轴向
(2)滑移方向逐渐趋向最大切应力 方向。
(3)试样两端受到夹头限制,会出 现晶面弯曲。
塑性变形的方式
通常发生塑性变形的方式有:滑移、孪生、扭 折。 其中滑移是金属晶体材料塑性变形的基本方式。
一 滑移概念
滑移:滑移是在外力作用下,晶体的一部分沿着一定 的晶面(滑移面)的一定方向(滑移方向)相对于晶体的 另一部分发生的相对滑动
➢ 1. 滑移现象
➢ 将表面抛光过的试样进行拉伸,当应力超过材料的 屈服极限时,产生一定的塑性变形后即取下进行观 察,在光学显微镜下可以清晰地看到与拉伸轴成一 定角度的平行线条。
36
滑移系对性能的影响
➢ 滑移系愈多,晶体发生滑移的可能性愈大,材料的 塑性愈好,并且,其中一个滑移面上存在的滑移方 向数目比滑移面数目的作用更大。
➢ 在金属材料中,具有体心立方晶格的铁与具有面心 立方晶格的铜及铝,虽然它们都具有12个滑移系, 但铁的塑性不如铜及铝。
➢ 具有密排六方晶格的镁及锌等,因其滑移系仅有3个, 故其塑性远较具有立方晶格的金属差。

工程材料 5 塑性变形

工程材料 5 塑性变形

(c) 变形80%
2. 亚组织的细化 塑性变形使晶粒碎化,内部 形成更多位向略有差异的亚晶粒 (亚结构),在其边界上聚集着 大量位错。 3. 产生形变织构 由于塑性变形过程中 晶粒的转动,当变形量达 到一定程度(70%~90%) 以上时,会使绝大部分晶 粒的某一位向与外力方向 趋于一致,形成织构。
产生加工硬化
由于塑性变形的变形度增加, 使金属的强度、硬度提高,而塑 性下降的现象称为加工硬化。
二、冷塑性变形对金属组织的影响 1. 形成纤维组织 金属在外力作用下产生塑性变形时,随着外形变化,而且其 内部的晶粒形状也相应地被拉长或压偏。当变形量很大时,晶粒 将被拉长为纤维状。
(a) 未变形
(b) 变形40%
2. 再结晶退火
把冷变形金属加热到再结晶温度以上,使其产生再结晶的热处 理称为再结晶退火。 生产中金属的再结晶退火温度比其再结晶温度高100~200℃。
三、晶粒长大
再结晶完成后,若继续升高加热温度或延长保温时间,金 属晶粒将继续长大是通过晶界的迁移进行的,是大晶粒吞食小 晶粒的过程。这是一个自发的过程。 影响晶粒大小的因素除加热温度和保温时间外,还有晶粒 原始尺寸、杂质的分布、预先变形度等。加热温度和预先变形 度影响最大。
晶粒粗大会使金属的强度,特别是塑性和冲击韧性降低。
1. 加热温度和保温时间的影响 加热温度越高,保温时间越长, 金属晶粒越粗大。
黄铜再结晶后晶粒的长大
580º C保温8秒后的组织
580º C保温15分后的组织
700º C保温10分后的组织
2. 预变形度的影响
对一般金属,当变形度为2%~10%时,由于变形很不均匀, 会造成晶粒异常长大,应予避免。变形度过大(>90%),因织 构,晶粒也会粗大。通常变形度为30%~60%。

材料的塑性变形1

材料的塑性变形1
滑移:指晶体的一部分沿一定的晶面(滑移面)和晶向 (滑移方向)相对于另一部分发生滑动的现象。
8
2、滑移系 金属材料在切应力作用下,沿滑移面和滑移方向进行的切变
过程。 滑移面:面间距最大原子最密排晶面。 滑移方向:原子最密排的方向。 一个滑移面与其上的一个滑移方向组成一个滑移系。
滑移系越多,金属的塑性越好,但并不是唯一因素。 金属的塑性还受温度、成分和预先变形程度等的影响。
24
滑移:是靠位错沿滑移面的运动而实现的。 当位错移动到晶体表面时,便产生大小为 b 的滑移台阶,若
有大量位错沿滑移面上运动到表面,宏观上,晶体的一部分 相对另一部份沿滑移面发生了相对位移,这便是滑移。 滑移矢量与柏氏矢量 b 平行。
刃位错的滑移过程 a)原始态晶体,b,c)位错滑移中间阶段;d)位错移出晶体表面,形成一个台阶
上有2个滑移方向,共有6×2=12 滑移系。
11
bcc金属的滑移系:除{110}晶面族外,也可为{112}和 {123}晶面族,此三种滑移面及其共同的滑移方向<111> 的组合,总共有48个可能的滑移系。
bcc金属滑移系虽较多(为fcc 4 倍多),但其滑移面原子密 排程度不如 fcc ,滑移方向数目也较少,故其塑性不如fcc金 属好。
即为滑移的临界分切应力定律。
c-临界切应力,为材料常数,
与晶体取向无关。
22
转动原因:晶体滑移后使正应力和切应力分量组成了力偶。 转动结果:使滑移面法线与外力轴夹角φ增大,使外力与滑
移方向夹角λ变小。
23
6、滑移机理: 若将滑移设想为刚性整体滑动,所
需理论临界切应力值比实测临界切 应力值大3~4个数量级。 实际上,滑移是通过滑移面上位错 的运动来实现的。

第七章 材料的塑性变形

第七章 材料的塑性变形
12
第二节 单晶体的塑性变形
第 七 章 二 孪生 塑 (3)孪生变形的特点 性 变 形 第 二 节 单 晶 体 塑 变
相同点
晶体位向
第二节 单晶体的塑性变形
滑移
孪生
1 切变;2 沿一定的晶面、晶向进行;3 不改变结构。
不改变(对抛光面观察无 重现性)。
滑移方向上原子间距的整 数倍,较大。 很大,总变形量大。 有一定的临界分切压力 一般先发生滑移
第二节 单晶体的塑性变形
3 滑移的晶体学 (3)滑移的临界分切应力(c)
c:在滑移面上沿滑移方面开始滑移的最小分切应力。
(外力在滑移方向上的分解)
c=scoscos
6
第 七 章 塑 3 滑移的晶体学 性 (3)滑移的临界分切应力(c) 变 形 c取决于金属的本性,不受,的影响; 第 或=90时,s ; 二 ,=45时,s最小,晶体易滑移; 节 c=scoscos s的取值 软取向:值大; 单 晶 取向因子:coscos 硬取向:值小。 体 塑 变
7
第二节 单晶体的塑性变形
第 七 章 4 滑移时晶体的转动 塑 (1)位向和晶面的变化 性 拉伸时,滑移面和滑移方向趋于 平行于力轴方向; 变 压缩时,晶面逐渐趋于垂直于压力轴线。 形 第 (2)取向因子的变化 二 节 单 晶 体 塑 变
第二节 单晶体的塑性变形
几何硬化:,远离45,滑移变得困难; 几何软化;,接近45,滑移变得容易。
第四节 合金的塑性变形
二 多相合金的塑性变形 1 结构:基体+第二相。 2 性能 (1)两相性能接近:按强度分数相加计算。 (2)软基体+硬第二相 第二相网状分布于晶界(二次渗碳体); a结构 两相呈层片状分布(珠光体); 第二相呈颗粒状分布(三次渗碳体)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性变形是材料在外力作用下产生的一种不可恢复的变形,具有残余形变的特点。这种变形通常发生在外力超过材料的屈服应力后,导致材料长期保持其变形后的形状或尺寸。生活中,我们可以观察到许多塑性变形的实例,如金属材料的弯曲、拉伸或压缩等。塑性变形的程度可以通过延伸率和断面收缩率等指标来度量,这些指标反映了材料在受力过程中的变形能力和韧性。影响塑性变形的因素包括温度、加载方式和加载速度等。此外,理想晶体的塑性变形是由晶体沿着晶面的整体滑移引起的,而实际晶体中存在的缺陷如位错也会对塑性变形产生重要影响。位错是一种线状缺陷,由于杂质、温度变化或机械应力等作用,使晶体内部原子排列发生变形,导致原子行列间相互滑移,形成位错。了解这些塑性变形的原理和特征,有助于我们更好地理解和应用各种材料在生活中的实际表现。
相关文档
最新文档