广东省深圳市七年级上学期期末数学试卷
深圳市七年级上学期数学期末试卷及答案-百度文库
深圳市七年级上学期数学期末试卷及答案-百度文库一、选择题1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77 D .139 2.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -8.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+5 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.3的倒数是( ) A .3B .3-C .13D .13-11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .212.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________ 14.把53°24′用度表示为_____.15.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.16.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 21.4是_____的算术平方根.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.钟表显示10点30分时,时针与分针的夹角为________.24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、解答题25.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(∠MON=90︒).(1)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分∠BOC,问:ON 是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在∠BOC 的内部,如果∠BOC=60︒,则∠BOM 与∠NOC 之间存在怎样的数量关系?请说明理由.26.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元? 27.计算:(1)()()3684-++-+; (2)()()231239-⨯+-÷.28.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值. 29.计算: -22×(-9)+16÷(-2)3-│-4×5│30.已知数轴上两点A B 、对应的数分别是6,8-,M N P 、、为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.()1若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位? ()2若点M N P 、、同时都向右运动,求多长时间点P 到点,M N 的距离相等?四、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C.【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.5.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.7.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.8.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.9.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.10.C解析:C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.A解析:A 【解析】 【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案. 【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50, 解得:t=2;(2)当两车相遇后,两车又相距50千米时, 根据题意,得120t+80t=450+50, 解得t=2.5.综上,t 的值为2或2.5, 故选A. 【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.A解析:A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键16.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.19.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、解答题25.(1)ON平分∠AOC (2)∠BOM=∠NOC+30°【解析】试题分析:(1)由角平分线的定义可知∠BOM=∠MOC,由∠NOM=90°,可知∠BOM+∠AON=90°,∠MOC+∠NOC=90°,根据等角的余角相等可知∠AON=∠NOC;(2)根据题意可知∠NOC+∠NOB=60°,∠BOM+∠NOB=90°,由∠BOM=90°﹣∠NOB、∠BON=60°﹣∠NOC可得到∠BOM=∠NOC+30°.试题解析:解:(1)ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC.(2)∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.点睛:本题主要考查的是角的计算、角平分线的定义,根据等角的余角相等证得∠AON=∠NOC是解题的关键.26.(1)甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)6400x=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根. 27.(1)-1;(2)-1.【解析】【分析】(1)根据有理数的运算法则进行运算求解即可;(2)根据乘方的运算法则,将每一项进行化简,然后根据有理数的运算法则进行计算求解即可.【详解】(1)(-3)+6+(-8)+4;=-11+10=-1;(2)(-1)2×2+(-3)3÷9.=1×2+(-27)÷9=-1.【点睛】本题考查了有理数的运算法则,解决本题的关键正确理解题意,掌握有理数的运算法则.28.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x 元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.【详解】解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元);第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元), 差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键. 29.【解析】【分析】有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算.【详解】原式= -4×(-9) +16÷(-8) -│-20│=36-2-20 = 14【点睛】本题考查了有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算,计算时注意-22=-4,(-2)3=-8.30.(1)5秒;(2)72秒或13秒 【解析】【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t72t =或13t = ∴经过72秒或13秒点P 到点,M N 的距离相等 【点睛】 此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.四、压轴题31.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.32.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)13;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.。
广东省深圳市龙华区2023-2024学年七年级上学期期末数学试题
广东省深圳市龙华区2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.《清朝野史大观·清代述异》称:“中国讲求烹茶,以闽之汀、漳、泉三府,粵之潮州府功夫茶为最.”如图是喝功夫茶的一个茶杯,关于该茶杯的三视图,下列说法正确的是()A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .三视图都相同2.红树林、海草床和滨海盐沼组成三大滨海“蓝碳”生态系统.相关数据显示,按全球平均值估算,我国三大滨海“蓝碳”生态系统的年碳汇量最高可达约3080000吨二氧化碳.将3080000用科学记数法表示应为()A .43.0810⨯B .63.0810⨯C .430810⨯D .70.30810⨯3.据某次体检结果,某中学七年级(1)班的男生平均身高是160cm ,若以此身高为基准,将165cm 记为5cm +,则157cm 记为()A .3cm-B .7cm-C .3cm+D .157cm+4.多项式235x x -+-的二次项系数是()A .2x -B .1-C .3D .5-5.如图,是一个正方体的展开图,把展开图折叠成正方体后,与“奋”字所在面相对的面上的汉字是()A .不B .龙C .华D .奋6.下列抽样调查中,样本的选取方式合适的是()A .为了解深圳市全年的降水情况,随机调查该城市某月的降水量B .为了解深圳市居民的月平均收入,随机调查深圳某一小区居民的月平均收入C .为了解深圳某LED 灯厂生产的零件质量,在其生产线上每隔100个零件抽取1个检查D .为了解中国武术在深圳市学生中的受欢迎程度,随机调查某一中学学生对中国武术的喜爱程度7.小明和小红利用温差测量山峰的高度.小明在山顶测得温度是1C -︒,小红此时在山脚测得温度是11C ︒,已知该地区高度每增加100米,气温大约下降0.8C ︒,则这个山峰的高度大约是()A .800米B .1250米C .1200米D .1500米8.如图,COD ∠是一个平角,OE 平分BOD ∠.请根据量角器的读数,分析并计算COE ∠的大小是()A .155︒B .150︒C .135︒D .130︒9.我国古代著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之,”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,设快马x 天可以追上慢马,可列方程是()A .24015012240x x +=⨯B .24015012240x x -=⨯C .24015012150x x +=⨯D .24015012150x x -=⨯10.如图是某展馆的平面图,3个展区均为正方形,分别记为①、②、③.④是展区②和③的公共区域.已知展区①、②、③的边长分别为10米,20米和30米,入口区域和出口区域的面积分别记为1S 和2S ,则下列结论一定正确的是()二、填空题三、解答题16.计算:(1)125(3)|10|⎛⎫-⨯+-⨯-+-11月份的空气质量情况空气质量类别优良轻度污染中度污染重度污染天数161112a【整理与表示】(1)请你在图中补全4月份空气质量情况的条形统计图;(2)如果将4月份的空气质量情况制作成扇形统计图,则严重污染的天数所在扇形的圆心角度数为°;+=.(3)由上表填空:a b【分析与判断】(4)请你结合上述信息,比较分析4月份和11月份的空气质量状况,并说明理由.20.如图,已知点A和线段BC.(1)请用尺规作图:①作出直线AB,射线AC;(2)点A,B,C是一条直线上从左到右的三个点,。
2023-2024学年广东省深圳中学初中部七年级(上)期末数学试卷及答案解析
2023-2024学年广东省深圳中学初中部七年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)﹣4的相反数是()A.B.﹣C.4D.﹣42.(3分)下列立体图形中,可能被一个平面截出的截面是矩形的是()A.B.C.D.3.(3分)天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为()A.2.9×108B.2.9×109C.29×108D.0.29×1010 4.(3分)如图是一个正方体的表面展开图,则原正方体中与“大”字所在的面相对的面上标的字是()A.太B.高C.山D.海5.(3分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查全市中学生每天的就寝时间,采用普查方式C.要调查你所在班级同学的视力情况,采用抽样调查方式D.环保部门调查京杭大运河某段水域的水质情况,采用抽样调查方式6.(3分)代数式﹣2x,0,2(m﹣a),,,中,单项式的个数有()A.1个B.2个C.3个D.4个7.(3分)若代数式是六次二项式,则a的值为()A.2B.±2C.3D.±38.(3分)《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,盈三.问人数、羊价各几何厂题意是:若干人共同出资买羊,每人出5文钱,则差45文钱;每人出7文钱,则多3文钱,求人数和羊价各是多少?若设买羊人数为x人,则根据题意可列方程为()A.5x+45=7x+3B.5x+45=7x﹣3C.D.9.(3分)将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=22°,则∠B'CD'的度数为()A.48°B.46°C.44°D.42°10.(3分)电子跳蚤游戏盘(如图)为三角形ABC,AB=7,AC=8,BC=9,如果电子跳蚤开始时在BC边的P0点,BP0=3,第一步跳蚤从P0跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第n次落点为P n,则P5与P2024之间的距离为()A.0B.2C.4D.5二、填空题(本题共5小题,每小题3分,共15分)11.(3分)比较大小:﹣2﹣1(填“>或<或=”).12.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.13.(3分)若代数式3a5b m﹣1与﹣2a|n|b2是同类项,那么m+n=.14.(3分)有理数a、b在数轴上的位置如图所示,化简|b|﹣|b﹣a|+|a+1|的结果为.15.(3分)已知直线l上线段AB=6,线段CD=2(点A在点B的左侧,点C在点D的左侧),若线段CD的端点C从点B开始以1个单位/秒的速度向右运动,同时点M从点A 开始以2个单位/秒的速度向右运动,点N是线段BD的中点,则线段CD运动_______秒时,MN=2DN.三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)8+(﹣10)+(﹣2)﹣(﹣5);(2)﹣14﹣(﹣2)3×|﹣2﹣1|.17.(7分)先化简,后求值:已知|x﹣ab|+(y+1+c+d)2=0,其中ab互为倒数,cd互为相反数,求2(x2y+xy)﹣3(x2y﹣xy)﹣x2y的值.18.(12分)解方程:(1)4x﹣3=﹣4;(2)3(x﹣5)﹣(3﹣5x)=5﹣3x;(3)(4).;19.(7分)把边长为1个单位的9个相同小正方体摆成简单几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.20.(7分)2023年10月09日,深圳市教育局发布了《深圳市初中学业水平考试体育与健康科目考试实施意见(征求意见稿)》公开征求意见公告.公告中提到,体育考试将由现场统一考试和过程性评价两部分组成.某校积极响应,为了引导学生积极参与体育运动,随机抽取了部分七年级学生,对一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了表格和统计图:等级跳绳次数/个频数不合格100~1208合格120~140中等140~16028良好160~18016优秀180~200(1)这次活动一共调查了人;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校七年级有1000名学生,请估计该校七年级学生一分钟跳绳次数达到合格及以上的人数.21.(8分)某商场元旦节搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给优惠超过200元,而不足500元超过200元的部分按9折优惠超过500元,而不足1000元其中500元按9折优惠,超过部分按8折优惠超过1000元其中1000元按8.5折优惠,超过部分按7折优惠(1)此人第一次购买了价值450元的物品,请问应付多少钱?(2)此人第二次购物付了920元,则购买了价值多少钱的物品?(3)若此人一次性购买上述两份物品,是更节省还是亏损?节省或亏损多少元?22.(8分)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角、如图①所示,若,则∠COD是∠AOB的内半角.(1)如图①所示,已知∠AOB=70°,∠AOC=15°,∠COD是∠AOB的内半角,则∠BOD=;(2)如图②,已知∠AOB=63°,将∠AOB绕点O按顺时针方向旋转一个角度α(0<α<63°)至∠COD,当旋转的角度α为何值时,∠COB是∠AOD的内半角?(3)已知∠AOB=30°,把一块含有30°角的三角板如图③叠放,将三角板绕顶点O 以3°/秒的速度按顺时针方向旋转,如图④,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.2023-2024学年广东省深圳中学初中部七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【分析】根据相反数的定义作答即可.【解答】解:﹣4的相反数是4.故选:C.【点评】本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.【分析】根据几何体截面的概念求解即可.【解答】解:由题意可得,可能被一个平面截出的截面是矩形的是圆柱体,故选:D.【点评】本题考查的是几何体截面的形状,截面的形状既与被截几何体有关,还与截面的角度和方向有关.认真观察图中的截面是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:2900000000用科学记数法表示为2.9×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,“Z”字两端是对面,即可解答.【解答】解:原正方体中与“大”字所在的面相对的面上标的字是“高”.故选:B.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.5.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、要了解一批节能灯的使用寿命,适宜采用抽样调查,故本选项不符合题意;B、调查全市中学生每天的就寝时间,适宜采用抽样调查,故本选项不符合题意;C、要调查你所在班级同学的视力情况,适合普查,故本选项不符合题意;D、环保部门调查京杭大运河某段水域的水质情况,适宜采用抽样调查,故本选项符合题意.故选:D.【点评】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】根据单项式的概念求解.【解答】解:﹣2x,0,是单项式,共3个.故选:C.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.7.【分析】根据题意可得:a2﹣5+2=6且a+3≠0,然后进行计算即可解答.【解答】解:∵代数式是六次二项式,∴a2﹣5+2=6且a+3≠0,解得:a=±3且a≠﹣3,∴a=3,故选:C.【点评】本题考查了多项式,熟练掌握多项式的意义是解题的关键.8.【分析】利用羊价不变,可得出关于x的一元一次方程,此题得解.【解答】解:根据题意得:5x+45=7x﹣3.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.9.【分析】由折叠的性质可得,∠BCF=∠B′CF=∠BCB′,∠DCE=D′CE=∠DCD′;可设∠D′CF=α,∠B′CE=β,则∠D′CE=∠ECF+∠D′CF=22°+α,∠B′CF=∠ECF+∠B′CE=22°+β,∠BCB′=2∠B′CF=2(22°+β),∠DCD′=2∠D′CE=2(22°+α);∠BCD′=90°﹣∠DCD′=90°﹣2(22°+α),∠DCB′=90°﹣∠BCB′=90°﹣2(22°+β),∠B′CD′=∠D′CF+∠ECF+∠B′CE=α+22°+β;令∠B′CD′=α+22°+β=θ,根据∠B′CD′=90°﹣(∠BCD′+∠DCB′),可列式:α+22°+β=90°﹣[90°﹣2(22°+α)]﹣[90°﹣2(22°+β)],整理可得:α+22°+β=2(α+22°+β)﹣46°,即θ=2θ﹣46°,解得:θ=46°,进而可得∠B'CD'=46°.【解答】解:由折叠的性质可得,∠BCF=∠B′CF=∠BCB′,∠DCE=D′CE=∠DCD′,∵纸片ABCD是正方形,∴∠BCD=90°,设∠D′CF=α,∠B′CE=β,则:∠D′CE=∠ECF+∠D′CF=22°+α,∠B′CF=∠ECF+∠B′CE=22°+β,∠BCB′=2∠B′CF=2(22°+β),∠DCD′=2∠D′CE=2(22°+α);∠BCD′=90°﹣∠DCD′=90°﹣2(22°+α),∠DCB′=90°﹣∠BCB′=90°﹣2(22°+β),∠B′CD′=∠D′CF+∠ECF+∠B′CE=α+22°+β;令∠B′CD′=α+22°+β=θ,∵∠B′CD′=90°﹣(∠BCD′+∠DCB′),∴α+22°+β=90°﹣[90°﹣2(22°+α)]﹣[90°﹣2(22°+β)],整理可得:α+22°+β=2(α+22°+β)﹣46°,即θ=2θ﹣46°,解得:θ=46°,∴∠B′CD′=θ=46°.故选:B.【点评】本题考查了角的计算,熟练掌握角平分线的定义并巧妙列式计算求值是解本题的关键,综合性较强,难度适中.10.【分析】根据题意可以前几个点所在的位置以及到三角形顶点的距离,从而发现其中的规律,本题得以解决.【解答】解:由题意可得,BP0=3,AP1=8﹣(9﹣3)=2,BP2=7﹣2=5,BP3=5,AP4=8﹣(9﹣5)=4,BP5=7﹣4=3,BP6=3,AP7=8﹣(9﹣3)=2,BP8=7﹣2=5,……,∴点P5在AB上,且BP5=3,∵(2024+1)÷6=337…3,∴点P2024在AB上,且BP2024=7﹣2=5,∵5﹣3=2,∴P5与P2024之间的距离为2,故选:B.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中各点的变化规律,利用数形结合的思想解答.二、填空题(本题共5小题,每小题3分,共15分)11.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.13.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:n=±5,m﹣1=2,解得:m=3,n=±5,则m+n=5+3=8,或m+n=﹣5+3=﹣2,故答案为:﹣2或8.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.【分析】根据图形可判断,b<0,b﹣a<0,a+1>0,再根据绝对值的性质把绝对值符号去掉,最后合并同类项即可求解.【解答】解:由图象可知:b<0,b﹣a<0,a+1>0,则|b|﹣|b﹣a|+|a+1|=﹣b+b﹣a+a+1=1,故答案为:1.【点评】此题考查了数轴、绝对值和整式的加减,解题关键是根据图形判断绝对值里面的符号.15.【分析】设点A表示的数为0,则点B表示的数为6,当运动时间为t秒时,由MN=|7﹣t|,DN=1+t,结合MN=2DN,可列出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:设点A表示的数为0,则点B表示的数为6,当运动时间为t秒时,点C表示的数为6+t,点D表示的数为6+2+t,点M表示的数为2t,∵点N是线段BD的中点,∴点N表示的数为=7+t,∴MN=|7+t﹣2t|=|7﹣t|,DN=6+2+t﹣(7+t)=1+t.根据题意得:|7﹣t|=2(1+t),即7﹣t=2+t或t﹣7=2+t,解得:t=2或t=18,∴线段CD运动2或18秒时,MN=2DN.故答案为:2或18.【点评】本题考查了一元一次方程的应用以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共55分)16.【分析】(1)按照从左到右的顺序进行计算,即可解答;(2)先算乘方,再算乘法,后算加减,即可解答.【解答】解:(1)8+(﹣10)+(﹣2)﹣(﹣5)=8﹣10﹣2+5=﹣2﹣2+5=﹣4+5=1;(2)﹣14﹣(﹣2)3×|﹣2﹣1|=﹣1﹣(﹣8)×3=﹣1+24=23.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.【分析】根据非负数性质求出x、y的值,再代入所求所占计算即可.【解答】解:∵|x﹣ab|+(y+1+c+d)2=0,∴x﹣ab=0,y+1+c+d=0,又∵a、b互为倒数,c、d互为相反数,∴x﹣1=0,y+1+0=0,解得x=1,y=﹣1,∴2(x2y+xy)﹣3(x2y﹣xy)﹣x2y=2x2y+2xy﹣3x2y+3xy﹣x2y=﹣2x2y+5xy=﹣2×12×(﹣1)+5×1×(﹣1)=﹣2×1×(﹣1)﹣5=2﹣5=﹣3.【点评】本题考查了整式的混合运算以及非负数性质,掌握非负数性质求出a、b的值是解得本题的关键.18.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(3)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(4)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,得4x=﹣4+3,合并同类项,得4x=﹣1,两边都除以4,得x=﹣;(2)去括号,得3x﹣15﹣3+5x=5﹣3x,移项,得3x+5x+3x=5+3+15,合并同类项,得11x=23,两边都除以11得,x=;(3)两边都乘以12,得3(3y﹣6)=12﹣4(5y﹣7),去括号,得9y﹣18=12﹣20y+28,移项,得9y+20y=12+28+18,合并同类项,得29y=58,两边都除以29,得x=2;(4)原方程可变为8x﹣=10+2x,即8x﹣(5﹣x)=10+2x,去括号,得8x﹣5+x=10+2x,移项,得8x+x﹣2x=10+5,合并同类项,得7x=15,两边都除以7,得x=.【点评】此题主要考查了解一元一次方程的方法,要明确解一元一次方程的一般步骤,去括号要注意括号前面的符号,移项时要改变符号是关键.19.【分析】(1)利用三视图的画法画图即可;(2)利用几何体的形状计算其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【解答】解:(1)如图所示:(2)几何体的表面积为:(6+5+6)×2+2=36;(3)如图,最多可以再添加3个正方体.【点评】本题考查作图—三视图、几何体的表面积等知识,是常见考点,难度较易,掌握相关知识是解题关键.20.【分析】(1)用表格中“中等”等级的人数除以扇形统计图中“中等”的百分比可得这次活动调查的人数.(2)求出“合格”等级的人数,补全频数分布直方图即可.(3)用360°乘以“良好”等级的百分比可得答案.(4)根据用样本估计总体,用1000乘以样本中一分钟跳绳次数达到合格及以上的百分比,即可得出答案.【解答】解:(1)这次活动一共调查了28÷35%=80(人).故答案为:80.(2)“合格”等级的人数为80×25%=20(人).补全频数分布直方图如图所示.(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=72°.故答案为:72°.(4)1000×=900(人).∴估计该校七年级学生一分钟跳绳次数达到合格及以上的人数约为900人.【点评】本题考查频数(率)分布直方图、频数(率)分布表、扇形统计图、用样本估计总体,能够读懂统计图,掌握用样本估计总体是解答本题的关键.21.【分析】(1)根据题中的优惠方案求解;(2)根据题的优惠方案列方程求解;(3)先计算一次性够买需要付款的金额,再相减求解.【解答】解:(1)200+0.9×(450﹣200)=200+225=425(元),答:应付425元;(2)设第二次购买了价值x元的物品,当x=1000时,500×0.9+500×0.8=850<920,∴x>1000,∴1000×0.8+0.7(x﹣1000)=920,解得:x=1100,答:第二次购买了价值1100元的物品;(3)两次够买物品的价值为:1100+450=1550(元),若一次性购买应付:1000×0.8+1.7×(1550﹣1000)=1235(元),∵425+920﹣1235=110>0,∴若此人一次性购买上述两份物品,更节省,节省110元.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键.22.【分析】(1)根据内半角的定义,即可求解;(2)根据旋转的性质可得:∠AOC=∠BOD=α,∠AOB=∠COD=63°,再根据内半角的定义,即可求解;(3)分四种情况讨论,利用内半角的含义,建立一元一次方程,即可求解.【解答】解:(1)∵∠COD是∠AOB的内半角,∠AOB=70°,∴,∵∠AOC=15°,∴∠BOD=70°﹣35°﹣15°=20°,故答案为:20°;(2)旋转的角度α为21°时,∠COB是∠AOD的内半角;理由如下:∵∠AOC=∠BOD=α,∠AOB=63°,∴∠AOD=63°+α,∠BOC=63°﹣α,∵∠COB是∠AOD的内半角,∴2(63°+α)=63°﹣α,∴α=21°,∴旋转的角度α为21°时,∠COB是∠AOD的内半角;(3)在旋转一周的过程中,射线OA,OB,OC,OD能构成内半角,理由如下;设按顺时针方向旋转一个角度α,旋转的时间为t,如图1,∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α,∴∠AOD=30°+α,∴,解得:α=10°,∴;如图2,∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α,∴∠AOD=30°+α,∴,∴α=90°,∴;如图3,∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360﹣α,∴∠BOC=360°+30°﹣α,∴,∴α=270°,∴t=90(s),如图4,∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360﹣α,∴∠BOC=360°+30°﹣α,∴,解得:α=350°,∴,综上所述,当旋转的时间为或30s或90s或时,射线OA,OB,OC,OD能构成内半角.【点评】本题主要考查了角的和与差,图形旋转的性质,一元一次方程的应用,明确题意,理解新定义,并利用方程思想和分类讨论思想解答是解题的关键。
广东深圳宝安区七年级上册数学期末试卷及答案
A B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可.【详解】解:其俯视图如下:故选:D .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.下列各式计算正确的是( )A. 3m ﹣m=3B. ﹣2a+3aC. ﹣(2a ﹣3)=2a+3D. (﹣2)3=﹣8【答案】D【解析】【分析】根据整式的加减、有理数的乘方等知识点进行解答.【详解】解: A 、B 、C 都错误.A :3m ﹣m=2m ,错误;B :﹣2a+3a 没有等号,错误;C :﹣(2a ﹣3)=-2a+3,错误;故选D.【点睛】本题考查了去括号,整式的加减,乘方等知识,根据运算法则逐项分析即可.5.下列调查中,最适合采用普查方式的是().A. 调查某种灯泡的使用寿命B. 调查某学校七年级(1)班学生对篮球的爱好情况C. 调查全国中学生的节水情况D. 调查我国八年级学生的视力情况【答案】B【解析】【分析】根据被调查对象较小时,宜使用普查,可得答案.【详解】解:A 、调查某种灯泡的使用寿命,灯泡数量较大,不能使用普查,错误;B 、调查某学校七年级(1)班学生对篮球的爱好情况,人数较小,可以使用普查,正确;C 、调查全国中学生的节水情况,被调查的对象都较大,不能使用普查,错误;D 、调查我国八年级学生的视力情况,被调查的对象较大,不能使用普查,错误;故选:B .【点睛】本题考查了全面调查与抽样调查,被调查对象较小时宜使用普查.6.在算式23⎛⎫-⎪⎝⎭23⎛⎫- ⎪⎝⎭的中填上运算符号,使运算结果最大,这个运算符号是( )A. 加号B. 减号C. 乘号D. 除号【答案】D【解析】【分析】把+,-,×,÷运算符合填入计算得到结果,即可作出判断.【详解】解:23⎛⎫- ⎪⎝⎭+23⎛⎫- ⎪⎝⎭=43-;23⎛⎫- ⎪⎝⎭-23⎛⎫- ⎪⎝⎭=0;23⎛⎫- ⎪⎝⎭×23⎛⎫- ⎪⎝⎭=49;23⎛⎫- ⎪⎝⎭÷23⎛⎫- ⎪⎝⎭=1;43-<0<49<1,则使运算结果最大时,这个运算符合是÷,故选:D .【点睛】本题是一道有理数的混合运算试题考查了有理数混合运算法则的运用及有理数的大小的比较.7.若231a b -=-,则代数式146a b -+的值为( )A. ﹣1B. 1C. 2D. 3【答案】D【解析】【分析】将代数式146a b -+变形后,整体代入可得结论.【详解】解:146a b -+=1-2(2a-3b )=1-2×(-1)=3故选D.【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.8.下面是一个被墨水污染过的方程:32x x -=-,答案显示此方程的解是2x =,被墨水遮盖的是一个常数,则这个常数是( )A. 2B. ﹣2C. 12-D. 12【答案】B【解析】【分析】设被墨水遮盖的常数是a ,则把2x =代入方程得到一个关于a 的方程,即可求解.【详解】解:设被墨水遮盖的常数是a ,根据题意得:3×2-2=2-a ,解得:a=-2,故选B.【点睛】本题考查了方程的解的定义,理解定义是关键.9.利用一副三角尺不能画出的角的度数是( )A. 55°B. 75°C. 105°D. 135°【答案】A 【解析】先了解一副三角尺有30°,45°,60°,90°,然后根据这些角的和差可画出是15°的倍数的角,于是得到结论.【详解】解:30°+45°=75°,60°+45°=105°,90°+45°=135°∴75°、105°、135°只用一副三角尺可以画出,55°只用一副三角尺,不能画出,故选:A .【点睛】本题考查了三角板的知识.注意在大于0°而小于180°的范围内,只要是15°的倍数角都可以用一副三角尺画出.10.下列四个说法:①角的两边越长,角就越大;②两点之间的所有连线中,线段最短;③如果AB =BC ,则点B 是线段AC 的中点;④在平面内,经过两点有且只有一条直线.其中正确的是( )A. ①②B. ①③C. ②③D. ②④【答案】D【解析】【分析】利用角的度数、线段的性质、线段中点的定义、直线公理即可判断.【详解】解:角的大小与边的长短无关,故①错误;两点之间的所有连线中,线段最短,故②正确;等腰三角形ABC 中AB=BC ,但此时点B 不是线段AC 的中点,故③错误;在平面内,经过两点有且只有一条直线,故④正确,故选D.【点睛】本题考查了角的度数、线段的性质、线段中点的定义、直线公理等,基础知识要熟练掌握.11.“喜茶”店中的A 种奶茶比B 种奶茶每杯贵5元 ,小颖买了3杯A 种奶茶、5杯B 种奶茶,一共花了135元,问A 种奶茶、B 种奶茶每杯分别的多少元?若设A 种奶茶x 元,则下列方程中正确的是( )A. ()535135x x +-= B. ()553135x x -+=C. ()535135x x ++= D. ()553135x x ++=【解析】【分析】若设A种奶茶x元,则B种奶茶(x-5)元.根据3杯A种奶茶和5杯B种奶茶,一共花了135元,即可列出方程.【详解】解:设A种奶茶x元,根据题中条件可得:3x+5(x-5)=135.故选B.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.12.有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A. b+c>0B. a+c<0C. ba>1 D. abc≥0【答案】A【解析】【分析】根据两个数的正负以及加减乘除法法则,对每个选择作出判断,得正确结论.【详解】由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;ba可能小于0,故C不成立;abc可能小于0,故D不成立.故选A.【点睛】此题考查了数轴上点的表示的数的正负及实数的加减乘除法的符号法则.解决本题的关键是牢记实数的加减乘除法则.二、填空题13.某地中午的气温是+5℃,晚上气温比中午下降了8℃,则该地晚上的气温是_______℃.【答案】-3加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
广东省深圳市2023-2024学年七年级上学期期末数学模拟试题(解析版)
广东省深圳市2023-2024学年上学期七年级数学期末调研模拟试卷一、单选题(每小题3分,共30分)1. 有理数1−的相反数、绝对值、倒数分别为( )A. 1−、1−、1−B. 1、1、1C. 1、1−、1D. 1、1、1− 【答案】D【解析】【分析】本题考查的是相反数,绝对值,倒数的含义,根据分别求解1−的相反数、绝对值、倒数即可.【详解】解:有理数1−的相反数、绝对值、倒数分别为1,1,1−;故选D2. 从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )A. 3710×B. 5710×C. 6710×D. 7710× 【答案】D【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中≤<110a ,确定a 与n 7a =,7n =即可.【详解】解:770000000710=×,故选D3. 如图是等底等高的圆锥和圆柱,从不同方向看会看到不同的形状.从上面看到的形状是( )A. B.C. D.【答案】B【解析】【分析】从上面观察圆锥和圆柱即可.【详解】解:从上面看等底等高的圆锥和圆柱的形状是两个相等的圆形,不同的是从上面看圆锥时,可以看到圆锥的顶点,如B 选项所示,故选B .【点睛】本题考查从不同方向观察几何体,具备一定的空间想象能力是解题的关键.4. 小强在制作正方体模型时,准备在六个外表面上分别写上“读书成就梦想”的字样,他先裁剪出了如图所示的表面展开图后开始写字,当他写下“读书”两个字时,突然想到把“梦”字放在正方体的与“读”字相对的面上,则“梦”字应写的位置正确的是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】根据立方体展开图找相对面的方法“同行隔一行为相对面,同列隔一列为相对面”或“Z ”字首位为相对面的方法即可求解.【详解】解:“梦”“读”字相对的面上,∴根据“Z ”字首位的方法为相对面,如图所示,∴“梦”字应写的位置正确的是4,故选:D .【点睛】本题主要考查立体图形展开图的知识,掌握相对面的识别方法是解题的关键.5. 下列选项中,计算错误的是( ).A. ()33−−=B. ()11x x −−=−+C. ()23a a a −−=−D. 220xy y x −=【答案】C【解析】【分析】根据去括号、合并同类项法则计算即可求解【详解】解:A 、()33−−=,正确,本选项不符合题意; B 、()11x x −−=−+,正确,本选项不符合题意; C 、()23235a a a aa a −−=+=≠−,本选项符合题意; D 、220xy y x −=,正确,本选项不符合题意;故选:C【点睛】本题主要考查了整式的加减,熟记合并同类项法则是解答本题的关键.6. 为保障学生的睡眠时间,教育部规定,小学生上课时间不能早于8:00.如图,8点钟时,分针与时针所夹的度数是( )A. 800°B. 150°C. 130°D. 120°【答案】D【解析】 【分析】本题考查的是钟面角的大小,理解钟面被等分成12份,每一份对应的圆心角为30°是解本题的关键,再根据8:00时,分针指向12,时针指向8,从而可得答案.【详解】解:∵钟面被等分成12份,每一份对应的圆心角为360=3012°°, ∵8:00时,分针指向12,时针指向8, ∴此时所成的角为430120×°=°. 故选:D .7. 在“互联网+”时代,国家积极推动信息化技术与传统教学方式的深度融合,实现“线上+线下”融合式教学模式变革.为了了解某校七年级800名学生对融合式教学模式的喜爱程度,从中抽取了200名学生进行问卷调查.以下说法错误的是( )A. 样本容量是200B. 每个学生的喜爱程度是个体C. 200名学生的喜爱程度是总体D. 200名学生的喜爱程度是总体的一个样本【答案】C【解析】【分析】根据总体、个体、样本、样本容量的定义进行解答即可.【详解】A 、为了了解某校七年级800名学生对融合式教学模式的喜爱程度,从中抽取了200名学生进行问卷调查,其样本容量是200,故A 正确,不符合题意;B 、每个学生的喜爱程度是个体,故B 正确,不符合题意;CD 、200名学生的喜爱程度是总体的一个样本,故C 错误,符合题意,D 正确,不符合题意.故选:C .【点睛】本题主要考查了总体、个体、样本、样本容量的定义,熟练掌握总体:我们把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本中所包含的数量,是解题的关键.8. 下列说法正确的是( ) A. 14−与()4+互为相反数 B. 23x y −与27yx 是同类项C. 用一个平面去截正方体,截面的形状可能是七边形D. 若3x =是方程420ax −=的解,则a 的值为7【答案】B【解析】【分析】根据相反数的定义、同类项的定义、正方体的特征、一元一次方程的解的定义解答即可.【详解】解:A .14−与14互为相反数,原说法错误,故本选项不符合题意; B .23x y −与27yx 是同类项,原说法正确,故本选项符合题意;C .正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形,原说法错误,故本选项不符合题意;D .若3x =是方程420ax −=的解,即3420a −=,解得a 的值为8,原说法错误,故本选项不符合题意.故选:B .【点睛】本题考查了相反数的定义,截一个几何体,同类项以及一元一次方程的解,掌握相关定义是解答本题的关键.9. 如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:111112233420202021+++⋅⋅⋅+××××,它的值是( )A. 1B. 20202021C. 20192020D. 12021 【答案】B【解析】【分析】规律为分母为两个连续自然数的乘积,分子是1,其结果为连续的两个自然数的倒数的差,根据规律求解即可.【详解】解:∵111212−=×,即111122=−×, 1112323−=×,即1112323=−×, 1113434−=×,即1113434=−×, 1114545−=×,即1114545=−×, ……1112020202120202021=−×, ∴111112233420202021+++⋅⋅⋅+××××111111112233420202021=−+−+−++− 112021=− 20202021=, 故选:B【点睛】本题考查了规律探索问题,有理数的加减混合运算,找到规律是解题的关键.10. 如图,线段24cm AB =,动点P 从A 出发,以2cm/s 的速度沿AB 运动,M 为AP 的中点,N 为BP 的中点.以下说法正确的是( )①运动4s 后,2PB AM =;②PM MN +的值随着运动时间的改变而改变;③2BM BP −的值不变;④当6AN PM =时,运动时间为2.4s .A ①②B. ②③C. ①②③D. ②③④【答案】D【解析】【分析】本题考查两点间的距离,动点问题,线段的和差问题,根据题意,分别用代数式表示出,AP PB 的长,根据线段之间和差倍关系逐一判断即可.【详解】解:运动4s 后,248cm AP =×=,16cm PB AB AP =−=, M 为AP 的中点,14cm 2AM AP ∴, 4AM PB ∴=,故①错误;设运动t 秒,则2AP t =,()242012PB t t =−≤<,M 为AP 的中点,N 为BP 的中点,11,1222AM PM AP t PN BN PB t ∴======−, ∴12PM MN PM PM PN t +=++=+,∴PM MN +的值随着运动时间的改变而改变,故②正确;24BM AB AM t =−=−,()242012PB t t =−≤<,.∴()()222424224BM BP t t −=−−−=,∴2BM BP −的值不变,故③正确;()21212AN AP PN t t t =+=+−=+ ,PM t =,∴126t t +=, 解得:12 2.4s 5t ==,故④正确; 故选:D 二、填空题(每小题3分,共15分)11. 《九章算术》中记载“两算得失相反,要令正负以名之”,这实质上给出了正、负数的定义.在实际生活中,如果我们将成绩提高8分记为8+分,那么我们将成绩降低3分记作______.【答案】3−分【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:在实际生活中,如果我们将成绩提高8分记为8+分,那么我们成绩降低3分记作3−分. 故答案为:3−分.【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 若210(9)0x y ++−=,则2023()x y 的值为________. 【答案】1−【解析】【分析】本题主要考查了代数式求值、绝对值和偶次方的非负性,能利用非负性正确求出x 、y 值是解答的关键.根据绝对值和偶次方的非负性求得,x y 的值,然后代入求解即可. 【详解】解:∵210(9)0x y ++−=, 100,90,x y ∴+=−= ∴10,9x y =−=, 202320232023()(109)(1)1x y ∴+=−+=−=−.故答案为:1−.13. 定义一种新的运算“⊗”,它的运算法则为:当a 、b 为有理数时,1134a b a b ⊗=−,比如:116464134⊗=×−×=,则方程2=1x x ⊗⊗的解为x =___________________. 【答案】107##317 【解析】【分析】本题主要考查新运算法则,根据新运算法则化简后解一元一次方程即可.【详解】解:∵2=1x x ⊗⊗, ∴1111213434x x −×=×−, 解得107x =, 故答案为:107. 14. 为迎接元旦活动,美术兴趣小组要完成学校布置的剪纸作品任务,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个.这批剪纸作品任务共多少个?若设美术小组共有x 人,则这个方程可以列为___________.【答案】59415x x −+【解析】【分析】本题考查一元一次方程的应用.根据剪纸作品的数量为定值,列出方程即可.【详解】解:由每人做5个,则可比计划多9个,得到计划剪纸的数量为59x −;由每人做4个,则将比计划少做15个,得到计划剪纸的数量为415x +;∴可列方程为:59415x x −+;故答案为:59415x x −+.15. 如图,将一副三角板的直角顶点O 叠放在一起,∠BOC =18∠AOD ,则∠BOD =_____°.【答案】70【解析】【分析】根据已知求出∠AOD +∠BOC =180°,再根据∠BOC =18∠AOD 求出∠AOD ,即可求出答案. 【详解】解:∵∠AOB =∠COD =90°,∴∠AOD +∠BOC=∠AOB +∠DOB +∠BOC=∠AOB +∠COD=90°+90°=180°, ∵∠BOC =18∠AOD , ∴∠AOD +18∠AOD =180°, ∴∠AOD =160°,∴∠BOD =∠AOD ﹣∠AOB =160°﹣90°=70°,故答案为:70.【点睛】本题考查了余角和补角的应用,能求出∠AOD +∠BOC =180°是解此题的关键.三、解答题(共55分)16. 计算:(1)()3850.754 +−−−−(2)()()211123334 −×−−−−−【答案】(1)3 (2)13−【解析】【分析】此题考了有理数的混合运算,熟练掌握有理数的运算法则和顺序是解题的关键. (1)变形为省略加号和括号的加法计算即可;(2)利用乘法分配律展开,计算乘方后,再进行四则混合运算即可.【小问1详解】 解:()3850.754 +−−−− 3850.754=−−+ 338544=−+−3=;【小问2详解】()()211123334 −×−−−−− ()()1112129334=×−−×−−− 4393=−+−−13=−17. 先化简,再求值:()()22222322x xy yx yx y +−−+−,其中12x y =−=,. 【答案】22x y −+,3【解析】【分析】本题考查了整式的加减中的化简求值,先去括号,再合并同类项即可化简,再代入12x y =−=,进行计算即可,熟练掌握整式的加减的运算法则是解此题的关键. 【详解】解:()()22222322x xy y x yx y +−−+−222223224x xy y x yx y =+−−−+22x y =−+,当12x y =−=,时,原式(212143=−−+=−+=. 18. 解方程: (1)()43204x x −−=− (2)2151136x x +−−= 【答案】(1)8x =(2)3x =−【解析】【分析】此题考查了一元一次方程的解法,熟练掌握解一元一次方程的解题步骤是解答本题的关键. (1)将方程去括号,移项,合并同类项,把x 系数化为1,即可求得答案;(2)将方程去分母,去括号,移项,合并同类项,把x 的系数化为1,即可求得答案.【小问1详解】解:去括号,得 46034x x −+=−,的移项,得 43460x x +=−+,合并同类项,得 756x =,系数化为1,得 8x =;【小问2详解】解:去分母,得 ()()221516x x +−−=, 去括号,得 42516x x +−+=,移项,得 45621x x −=−−,合并同类项,得 3x −=,系数化为1,解得:3x =−.19. 某校对该校七年级(1)班全体学生的血型做了一次全面的调查,绘制了以下两幅统计图.根据以上信息回答下列问题:(1)本次共调查学生_________人;(2)补全条形统计图;(3)AB 血型所占圆心角度数为_________;(4)若七年级共有学生500名,请你估计七年级学生中AB 血型的人数有多少名?【答案】(1)50 (2)见解析(3)36°(4)50【解析】【分析】(1)利用A 型的人数除以其所占的百分比即可求解;(2)利用总人数减去其他血型的人数求得B 型的人数,再补全统计图即可;(3)利用AB 型的人数除以总人数求得其所占的百分比,再乘以360°,即可求解;(4)利用AB 型的人数除以样本的总人数求得其所占的百分比,再乘以全校人数即可求解.【小问1详解】解:1224%50÷=(人), 故答案为:50;【小问2详解】解:B 型的人数为:5012523=10−−−(人), 补全条形统计图如下:【小问3详解】 解:53603650×°=°, 故答案为:36°;【小问4详解】 解:5500=5050×(人), 答:估计七年级学生中AB 血型的人数有50名.【点睛】本题考查条形统计图和扇形统计图,用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.20. 已知甲、乙两超市相同商品的标价都一样,为促销,两超市在元旦节期间分别推出如下促销方式:在促销活动期间:(1)当购物总额是500元时,求甲、乙两家超市实付款分别是多少元?(2)某顾客在乙超市购物实际付款490元,若该顾客在甲超市购买同样的物品应付多少元?【答案】(1)甲超市440元,乙超市450元(2)484元【解析】【分析】(1)分别根据两个超市的优惠方案,分别打八八折和九折计算即可;(2)首先判断出购物总额多于500元,设购物总额为x 元,根据实际付款490元,列出方程,解之,再按甲超市的优惠方案计算即可.【小问1详解】解:当购物总额是500元时,甲超市:50088%440×=元; 乙超市:()500110%450×−=元; 【小问2详解】∵在乙超市购物总额是500元时,实付款为450元,∴当实际付款490元时,购物总额多于500元,设购物总额为x 元,由题意可得:()()500110%5000.8490x ×−+−×=, 解得:550x =,∴购物总额为550元,∴若该顾客在甲超市购买同样物品应付55088%484×=元. 【点睛】本题考查了有理数的乘法,一元一次方程的应用,解题的关键是根据实际付款推算出购物总额的情况.21. 如图,在一条数轴上从左至右取A ,B ,C 三点,使得A ,B 到原点O 的距离相等,且A 到B 的距离为4个单位长度, C 到B 8个单位长度.(1)在数轴上点A 表示的数是 ,点B 表示的数是 ,点C 表示的数是 . (2)在数轴上,甲从点A 出发以每秒3个单位长度的速度向右做匀速运动,同时乙从点B 出发也向右做匀速运动.①若甲恰好在点C 追上乙,求乙的运动速度.②若丙从点C 出发以每秒1个单位长度的速度向左做匀速运动,甲、乙、丙同时开始运动,甲与丙相遇后1秒,乙与丙的距离为1个单位长度,求乙的运动速度.【答案】(1)2−,2,10;(2)①2;②乙的运动速度为34或54个单位长度/秒. 【解析】【分析】(1)A ,B 到原点O 的距离相等,且A 到B 的距离为4个单位长度,则AB =4,OA =OB =2,可以得到A 表示的数为-2,B 表示的数为2,再由 C 到B 的距离为8个单位长度,得到C 表示的数为10; (2)①先求出AC 的距离,从而求出甲从A 运动到C 的时间,即可求出乙的速度;的②分乙与丙未相遇时和乙与丙相遇后两种情况讨论求解即可.【详解】解:(1)∵A ,B 到原点O 的距离相等,且A 到B 的距离为4个单位长度,∴AB =4,∴OA =OB =2,∴A 表示的数为-2,B 表示的数为2,∵ C 到B 的距离为8个单位长度,∴C 表示的数为10,故答案为:2−,2,10;(2)①∵A 表示的数为-2,C 表示的数为10,∴AC =12∴甲从A 运动到C 所用的时间为:1234÷=(秒), ∴乙的速度为:842÷=(个单位长度/秒). ②甲与丙相遇的时间为:()12313÷+=(秒), 因为甲与丙相遇后1秒,乙与丙距离为1个单位长度,所以此时乙与丙的运动时间为:314+=(秒). 设乙的运动速度为x 个单位长度/秒.当乙与丙未相遇时,由题意得4481x +=−, 解得34x =; 当乙与丙相遇后,由题意得4481x +=+, 解得54x =. 综上,乙的运动速度为34或54个单位长度/秒. 【点睛】本题主要考查了用数轴表示有理数,数轴上的动点问题,数轴上两点的距离,解题的关键在于能够熟练掌握相关知识进行求解.22. 阅读理解,回答问题:定义回顾:从一个角的顶点出发,将这个角分成两个相等的角的射线,叫做这个角的平分线.角的平分线也可以通过折纸完成,如图(1),将含有APB ∠的纸片经过顶点P 对折叠,折痕PM 所在的射线就是APB ∠的平分线.利用角的平分线的定义,可以进行角的度数的计算.的问题解决:(1)如图(2),点P ,Q 分别是长方形纸片ABCD 的对边AB ,CD 上的点,连结PQ ,将APQ ∠和BPQ ∠分别对折,使点A ,B 都分别落在PQ 上的A ′和B ′处,点C 落在C ′处,分别得折痕PN ,PM ,则NPM ∠的度数是______;(2)如图(3),将长方形ABCD PN ,PM 折叠,使点A ,B 分别落在点A ′,B ′处,PA ′和PB ′不在同一条直线上,且被折叠两部分没有重叠部分.①若20A PB ′′∠=°,30APN ∠=°,求NPM ∠的度数;②若()0180A PBαα′′∠=°≤<°,求NPM ∠的度数(用含α的式子表示);拓广探索: (3)将长方形ABCD 纸片分别沿直线PN ,PM 折叠,使点A ,B ,C 分别落在点A ′,B ′,C ′处,PA ′和PB ′不在同一条直线上,且被折叠的两部分有重叠部分,如图(4).若()060A PB αα′′∠=°≤≤°,请直接写出NPM ∠的度数(用含α的式子表示).【答案】(1)90°(2)①100°;②1902α°+(3)1902α°−【解析】【分析】(1)根据角的平分线的定义和平角定义求得90A PN B PM ′′∠+∠=°即可;的(2)①根据角的平分线的定义和平角定义求得80A PN B PM ′′∠+∠=°即可;②根据角的平分线的定义和平角定义求得1902A PNB PM α′′∠+∠=°−即可; (3)根据角的平分线的定义和平角定义求得1902A PN B PM α′′∠+∠=°+即可. 【小问1详解】解:由题意得:APN A PN ′∠=∠,BPM B PM ′∠=∠,∴22180A PN B PM ′′∠+∠=°,即90A PN B PM ′′∠+∠=°,∴90NPM A PN B PM ′′∠=∠+∠=°,故答案为:90°;【小问2详解】解:①由题意得:APN A PN ′∠=∠,BPM B PM ′∠=∠,∴22180A PN A PB B PM ′′′′∠+∠+∠=°,∵20A PB ′′∠=°, ∴()118020802A PNB PM ′′∠+∠=°−°=°, 即100NPM A P A N M PB B P ′′∠=∠+∠+=°′′∠;②同理,APN A PN ′∠=∠,BPM B PM ′∠=∠,∴22180A PN A PB B PM ′′′′∠+∠+∠=°,∵()0180A PB αα′′∠=°≤<°, 则()111809022A PNB PM αα′′∠+∠=°−=°−, 即11909022A PB NPM A PN B PM ααα′′∠=∠+∠+=°−+=°+′′∠; 【小问3详解】解:同理,由题意得:APN A PN ′∠=∠,BPM B PM ′∠=∠,则22180A PN A PB B PM ′′′′∠−∠+∠=°,∵()060A PB αα′′∠=°≤≤°, ∴()111809022A PNB PM αα′′∠+∠=°+=°+,即11909022A PBNPM A PN B PMααα′′∠=∠+∠−=°+−=°−′′∠.【点睛】本题考查角的平分线的定义、平角定义,熟练掌握角的平分线的定义,利用图形找到角之间的数量关系是解答的关键.。
2023-2024学年广东省深圳市七年级(上)数学期末试题含答案解析
广东省深圳市2023-2024学年七年级(上)期末考试数学模拟卷02答案与解析一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.2B.﹣2C.D.【分析】利用相反数的定义判断即可.【解答】解:﹣2的相反数是2.故选:A.2.台湾岛是我国第一大岛,面积35800平方千米,在世界大岛中列第38位.将35800用科学记数法表示为()A.3.58×104B.3.58C.3.58×105D.0.358×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将35800用科学记数法表示是3.58×104.故选:A.3.我校要了解学生的课外作业负担情况,你认为下列抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查七年级全体学生D.随机调查七、八、九年级学生各50名【分析】利用抽样调查应具有全面性以及随机性,进而得出答案.【解答】解:∵我校要了解学生的课外作业负担情况,∴抽样方法中比较合理的是随机调查七、八、九年级学生各50名.故选:D.4.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.5.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.3a2b﹣3ba2=0【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.6.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=b D.若x=y,则=【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若a=b,则ac=bc,正确,不合题意;C、若=,则a=b,正确,不合题意;D、若x=y,则=,a≠0,故此选项错误,符合题意.故选:D.7.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>0【分析】先根据数轴判断出﹣4<b<﹣3<﹣1<a<0<1<c<2,再结合有理数的加法法则逐一判断即可.【解答】解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.8.若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0【分析】将已知条件变形可得a2+3a=4,然后将2a2+6a﹣3变形为2(a2+3a)﹣3后代入数值计算即可.【解答】解:∵a2+3a﹣4=0,∴a2+3a=4,∴2a2+6a﹣3=2(a2+3a)﹣3=2×4﹣3=5,故选:A.9.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.+2=D.﹣2=【分析】根据“每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:+2=.故选:C.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算:|﹣5|=5.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.若﹣2a2m b与a4b n﹣1是同类项,则2m﹣n=2.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据有理数的减法,可得答案案.【解答】解:∵﹣2a2m b与a4b n﹣1是同类项,∴2m=4,n﹣1=1,m=2,n=2.2m﹣n=2×2﹣2=2,故答案为:2.13.已知x=﹣1是方程﹣2(x﹣a)=4的解,则a的值为1.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2(﹣1﹣a)=4,去括号得:2+2a=4,解得a=1,故答案为:1.14.A、B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是1cm或9cm.【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【解答】解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故答案为:1cm或9cm.15.如图图形都是由同样大小的小钢珠按一定规律排列的,按照此规律排列下去,第40个图形有小钢珠820颗.【分析】根据图形变化规律可知,第n个图形有个小球,据此规律计算即可.【解答】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……,照此规律,第n个图形有个小球,当n=40时,小球个数为,故答案为:820.三.解答题(共7小题,满分55分)16.(5分)由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【解答】解:这个组合体的三视图如下:17.(7分)解方程:(1)2x﹣(x+10)=6x;(2)1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)去分母得:6﹣9x+15=2+10x,移项合并得:19x=19,解得:x=1.18.(8分)计算:(1)计算:﹣14﹣;(2)先化简,后求值:5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)],其中x=﹣,y=﹣3.【分析】(1)先算乘方,再算乘除,后算加减,有括号先算括号里边的;(2)先去小括号,再去中括号,最后合并同类项,进行计算即可解答.【解答】解:(1)﹣14﹣=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0;(2)5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)]=5x2﹣5xy﹣(5x2﹣6y+3xy+6y)=5x2﹣5xy﹣5x2+6y﹣3xy﹣6y=﹣8xy,当x=﹣,y=﹣3,原式=﹣8×(﹣)×(﹣3)=﹣12.19.(8分)在疫情期间,某县城为了保障学校学生的正常学习,需每天抽取不低于总学生人数的30%进行核酸抽检.为了更好地统计每天抽测的学生人数,医务人员以每天抽测2000人为标准,超过的人数记作正,不足的人数记作负.下表是该县城学校一周核酸抽检情况的记录(单位:人):星期一二三四五与标准的差/人+21+16﹣10﹣11﹣26(1)该县城哪天抽检的学生人数最多?哪天抽检的最少?分别是多少人?(2)聪明的你,帮医务人员计算下这周该县城总共核酸抽检了学生多少人?【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可.【解答】解:(1)2000+21=2021(人),2000﹣26=1974(人),即该县城星期一抽检的学生人数最多,最多为2021人;星期五抽检的学生人数最少,最少为1974人;(2)2000×5+(21+16﹣10﹣11﹣26)=10000﹣10=9990(人),即这周该县城总共核酸抽检了学生9990人.20.(8分)某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是(每人只能选一项);调查数据进行了整理,绘制成部分统计图如图:请根据图中信息,解答下列问题:(1)该调查的总人数为200,a=12%,b=36%,“常常”对应扇形的圆心角的度数为108° ;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;用360°乘以“常常”的人数所占比例.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】解:(1)∵44÷22%=200(名),∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)常常的人数为:200×30%=60(名),补全图形如下:.(3)∵2000×36%=720(名),∴“总是”对错题进行整理、分析、改正的学生约有720名.21.(9分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【分析】(1)设调入x名工人,根据“调整后车间的总人数是调入工人人数的3倍多4人“得:16+x =3x+4,可解得答案;(2)设y名工人生产螺栓,由“1个螺栓需要2个螺母”,可得240y×2=400(22﹣y),即可解得答案.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.22.(10分)(1)如图1,已知点C、D为线段AB上两点,且AB=4AD=5BC,点M和点N分别是线段AC和BD的中点.若线段AB=20cm,则线段AD=5cm,BC=4cm,MN= 4.5cm.(2)已知OC、OD为从∠AOB顶点出发的两条射线,∠AOB=5∠BOC且∠AOB=120°,射线OM和射线ON分别平分∠AOC、∠BOD.①如图2,若OC、OD均为∠AOB内的两条射线,且∠AOB=4∠AOD,求∠MON的度数.②如图3,若OC为∠AOB外的一条射线,且∠MON=20°,则∠AOD=64或16°.【分析】(1)根据题意可得AD=5cm,BC=4cm,计算出BD=AB﹣AD=15cm,AC=AB﹣BC=16cm,再根据中点的定义得出,,最后根据MN=AB﹣BN﹣AM即可得出答案;(2)①先计算∠BOC=24°,根据角平分线的定义得出∠AOM=∠COM=48°,,进而得出答案;②分两种情况:当OD在∠AOB内部时,当OD在∠AOB外部时,分别计算即可.【解答】解:(1)∵AB=20cm,AB=4AD=5BC,∴AD=5cm,BC=4cm,∴BD=AB﹣AD=20﹣5=15cm,AC=AB﹣BC=20﹣4=16cm,∵点M和点N分别是线段AC和BD的中点,∴,,∴,故答案为:5;4;4.5;(2)①∵∠AOB=5∠BOC=120°,∴∠BOC=24°,∴∠AOC=120°﹣24°=96°,∵OM平分∠AOC,∴∠AOM=∠COM=48°,∵∠AOB=4∠AOD=120°,∴∠AOD=30°,∴∠BOD=90°,∠DOM=18°,∵ON平分∠BOD,∴,∴∠MON=45°﹣18°=27°;②当OD在∠AOB内部时,∵∠AOC=120°+24°=144°,OM平分∠AOC,∴∠AOM=∠COM=72°,∴∠BOM=72°﹣24°=48°.∵∠MON=20°,∴∠BON=28°.∵ON平分∠BOD,∴∠DON=∠BON=28°,∴∠DOM=8°,∴∠AOD=72°﹣8°=64°;当OD在∠AOB外部时,∠DON=∠BON=20°+48°=68°,∵∠AOM=∠COM=72°,∴∠AON=72°﹣20°=52°,∴∠AOD=68°﹣52°=16°.。
广东省深圳市七年级(上)期末数学试卷
⼴东省深圳市七年级(上)期末数学试卷七年级(上)期末数学试卷⼀、选择题(本⼤题共12⼩题,共36.0分)1.-2的绝对值是()A. 2B. ?2C. 12D. ±22.我市⼈⼝基数⼤,增长快,据统计,2018年我市仅常住⼈⼝数就接近12600000,将这个数⽤科学记数法表⽰为()A. 1.26×107B. 12.6×106C. 126×105D. 0.126×1043.在下列调查⽅式中,较为合适的调查⽅式是()A. 为了解深圳市中⼩学⽣的视⼒情况,采⽤普查的⽅式B. 为了解深圳市中⼩学⽣的课外阅读习惯情况,采⽤普査的⽅式C. 为了解某校七年级(2)班学⽣期末考试数学成绩情况,采⽤抽样调査的⽅式D. 为了解深圳市中⼩学⽣参加“课外兴趣班”报名情况,采⽤抽样调查的⽅式4.去年,深圳市顺利获评第五届“全国⽂明城市”,为此⼩刚同学特别制作了⼀个正⽅体玩具,其展开图如图所⽰,则原正⽅体中与“城”字相对的字是()A. 全B. ⽂C. 市D. 明5.门窗⽣产⼚不锈钢材制造⼀个长⽅形的窗户ABCD(中间的EF为共⽤边)、相关数据(单位⽶)如图所⽰,那么制造这个窗户所需不锈钢材的总长是()A. (3a+4b)⽶B. (4a+3b)⽶C. 2ab⽶D. (2a+3b)⽶6.在|-1|,(-1)2,(-1)3,-(-1)这四个数中,与-1互为相反数的数的个数有()A. 1个B. 2个C. 3个D. 4个7.⽊匠师傅锯⽊料时,⼀般先在⽊板上画出两个点,然后过这两点弹出⼀条墨线,这是因为()A. 两点之间,线段最短B. 两点确定⼀条直线C. 过⼀点,有⽆数条直线D. 连接两点之间的线段叫做两点间的距离8.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()A. 9cmB. 10cmC. 12cmD. 14cm9.下列说法正确的是()A. 单项式?5x2y的次数是2B. 棱柱侧⾯的形状不可能是⼀个三⾓形C. 长⽅体的截⾯形状⼀定是长⽅形D. 为了刻画空⽓⾥四类污染物每⼀类所占的⽐例,最适合使⽤的统计图是折线统计图10.定义新运算:f(a)=10a+1(a是有理数),例如:f(3)=3×10+1=31,则当f(x)=21时,x=()A. ?2B. 3C. 2D. 711.某商品原价为p元,由于供不应求,先提价10%进⾏销售,后因供应逐步充⾜,价格⼜⼀次性降价10%,则最后的实际售价为()A. p元B. 0.99p元C. 1.01p元D. 1.2p元12.如图,点A、B在数轴上所表⽰的数分别是2和5,若点C与A、B在同⼀条数轴上且AC-AB=m(m>0),则点C所表⽰的数为()A. m+5B. 1?mC. m+5或2?mD. m+5或?m?1⼆、填空题(本⼤题共4⼩题,共12.0分)13.单项式-3x2y的系数是______.14.在时钟的钟⾯上,三点半时的分针与时针夹⾓是______度.15.某品牌冰箱启动后开始降温,如果冰箱启动时的温度是10℃,每⼩时冰箱内部的温度降低5℃(降⾄设定温度后即停⽌降温),那么3⼩时后冰箱内部温度是______.16.如图,将⼀张长⽅形的纸对折(使宽边重合,然后再对折),第⼀次对折,得到⼀条折痕连同长⽅形的两条宽边共3条等宽线(如图(1),第⼆次对折(每次的折痕与上次的折痕保持平⾏),得到5条等宽线(如图(2)所⽰),连续对折三次后,可以得到9条等宽线(如图(3所⽰),对折四次可以得到17条等宽线,如果对折6次,那么可以得到的等宽线条数是______条.三、计算题(本⼤题共3⼩题,共20.0分)17.计算:(1)-45+30(2)0-23÷(-42)-1818.解⽅程:(1)4x-2=3-x(2)2x+13-x?13=419.(1)化简:(2x2y-6xy)+(-xy-x2y)(2)求代数式3a2+(2a-a2)-2(a2+12a-1)的值,其中|a|=23.四、解答题(本⼤题共4⼩题,共32.0分)20.为了了解市民私家车出⾏的情况,某市交通管理部门对拥有私家车的市民进⾏随机抽样调查、其中⼀个问题是“你平均每天开车出⾏的时间是多少”共有4个选项:A、1⼩时以上(不含1⼩时);B:0.5-1⼩时(不含0.5⼩时);C:0-0.5⼩时(不含0⼩时);D,不开车.图1、2是根据调査结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次⼀共调查了______名市民;(2)在图1中将选项B的部分补充完整,并求图2中,A类所对应扇形圆⼼⾓α的度数;(3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出⾏的时间在1⼩时以上?21.⼀个⼏何体由⼤⼩相同的⼩⽴⽅块搭成,从上⾯看到的⼏何体的形状如图所⽰,其中⼩正⽅形中的数字表⽰在该位置的⼩⽴⽅块的个数,请画出从正⾯和从左⾯看到的这个⼏何体的形状图.22.如图1,点A、O、B在同⼀直线上,∠AOC=60°,在直线AB另⼀侧,直⾓三⾓形DOE绕直⾓顶点O逆时针旋转(当OD与OC重合时停⽌),设∠BOE=α:(1)如图1,当DO的延长线OF平分∠BOC,∠α=______度;(2)如图2,若(1)中直⾓三⾓形DOE继续逆时针旋转,当OD位于∠AOC的内部,且∠AOD=13∠AOC,∠α=______度;(3)在上述直⾓三⾓形DOE的旋转过程中,(∠COD+∠α)的度数是否改变?若不改变,请求出其度数;若改变,请说明理由.23.某航空公司开展⽹络购机票优惠活动:凡购机票每张不超过2000元的⼀律⼋折优惠;超过2000元的,其中2000元按⼋折算,超过2000的部分按七折算.(1)甲旅客购买了⼀张机票的原价为1500元,需付款______元;(2)⼄旅客购买了⼀张机票的原价为x(x>2000)元,需付款______元(⽤含x 的代数式表⽰);(3)丙旅客因出差购买了两张机票,第⼀张机票实际付款1440元,第⼆张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第⼆张机票的原价和实际付款各多少元?答案和解析【解析】解:|-2|=2,故选:A.根据负数的绝对值是它的相反数,即可解答.本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数.2.【答案】A【解析】解:12600000=1.26×107,故选:A.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、为了解深圳市中⼩学⽣的视⼒情况,采⽤抽样调查的⽅式⽐较合适,故此选项错误;B、为了解深圳市中⼩学⽣的课外阅读习惯情况,采⽤抽样调查的⽅式⽐较合适,故此选项错误;C、为了解某校七年级(2)班学⽣期末考试数学成绩情况,采⽤普查的调査的⽅式⽐较合适,故此选项错误;D、为了解深圳市中⼩学⽣参加“课外兴趣班”报名情况,采⽤抽样调查的⽅式,故此选项正确;故选:D.由普查得到的调查结果⽐较准确,但所费⼈⼒、物⼒和时间较多,⽽抽样调查得到的调查结果⽐较近似.本题考查了抽样调查和全⾯调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选⽤,⼀般来说,对于具有破坏性的调查、⽆法进⾏普查、普查的意义或价值不⼤,应选择抽样调查,对于精确度要求⾼的调查,事关重⼤的调查往往选⽤普查.4.【答案】B【解析】解:正⽅体的表⾯展开图,相对的⾯之间⼀定相隔⼀个正⽅形,∴“全”与“市”相对,“⽂”与“城”相对,“明”与“国”相对,故选:B.正⽅体的表⾯展开图,相对的⾯之间⼀定相隔⼀个正⽅形,根据这⼀特点作答.本题主要考查了正⽅体相对两个⾯上的⽂字,注意正⽅体的空间图形,从相对⾯⼊⼿,分析及解答问题.5.【答案】B【解析】解:由题意可得,制造这个窗户所需不锈钢材的总长是:3b+2×2a=4a+3b.直接利⽤已知图形求出其周长即可得出答案.此题主要考查了列代数式,正确利⽤图形分析是解题关键.6.【答案】C【解析】解:∵|-1|=1,(-1)2=1,(-1)3=-1,-(-1)=1,∴与-1互为相反数的是|-1|,(-1)2,-(-1)这3个数,故选:C.先根据绝对值性质、有理数乘⽅定义和相反数的概念化简各数,再根据相反数的概念可得答案.本题主要考查有理数的乘⽅,解题的关键是掌握绝对值性质、有理数乘⽅定义和相反数的概念.7.【答案】B【解析】解:在⽊板上画出两个点,然后过这两点弹出⼀条墨线,此操作的依据是两点确定⼀条直线.故选:B.依据两点确定⼀条直线来解答即可.本题主要考查的是直线的性质,掌握直线的性质是解题的关键.8.【答案】B【解析】解:∵BD=7cm,BC=4cm,∴CD=BD-BC=3cm,∵D是AC的中点,∴AC=2CD=6cm,∴AB=AC+BC=10cm,故选:B.⾸先求出线段CD,根据AC=2CD,求出AC即可解决问题.本题考查线段的和差定义,线段的中点等知识,解题的关键是理解题意,属于中考常考题型.9.【答案】B【解析】解:A.单项式-5x2y的次数是3,故本选项错误;B.棱柱侧⾯的形状不可能是⼀个三⾓形,故本选项正确;C.长⽅体的截⾯形状不⼀定是长⽅形,故本选项错误;D.为了刻画空⽓⾥四类污染物每⼀类所占的⽐例,最适合使⽤的统计图是扇形统计图,故本选项错误;故选:B.依据单项式的概念,截⼀个⼏何体以及统计图的选⽤,即可得到正确结论.本题主要考查了单项式的概念,截⼀个⼏何体以及统计图的选⽤,扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.10.【答案】C【解析】解:∵f(a)=10a+1,f(x)=21,∴10x+1=21,解得x=2.故选:C.根据新定义运算得到⽅程10x+1=21,解⽅程即可求出x的值.此题考查了解⼀元⼀次⽅程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:∵商品原价为p元,先提价10%进⾏销售,∴价格是:p(1+10%),∵再⼀次性降价10%,∴售价为b元为:p(1+10%)×(1-10%)=0.99p.故选:B.⾸先表⽰出提价10%的价格,进⽽表⽰出降价10%的价格即可得出答案.此题主要考查了⼀元⼀次⽅程的应⽤,根据已知得出升降价后实际价格是解题关键.12.【答案】D【解析】解:设点C所表⽰的数为x.∵点A、B在数轴上所表⽰的数分别是2和5,∴AB=5-2=3.∵AC-AB=m(m>0),∴|x-2|-3=m,∴|x-2|=m+3,∴x-2=m+3,或x-2=-m-3,∴x=m+5,或x=-m-1.故选:D.设点C所表⽰的数为x,根据AC-AB=m(m>0),列出⽅程|x-2|-3=m,解⽅程即可.本题考查了数轴,两点间的距离,根据AC-AB=m列出⽅程是解题的关键.13.【答案】-3【解析】解:单项式-3x2y的系数是-3,故答案为:-3.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数.考查了单项式,确定单项式的系数和次数时,把⼀个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.【答案】75【解析】解:时针与分针相距的份数是2.5份,30°×2.5=75°,故答案是:75.根据钟⾯平均分成12份,可得每份是30°,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考查了钟⾯⾓,时针与分针相距的份数乘以每份的度数是解题关键.15.【答案】-5℃【解析】解:根据题意得:10-3×5=10-15=-5,则3⼩时后冰箱内部温度是-5℃,故答案为:-5℃根据题意列出算式,计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】65【解析】解:我们不难发现:第⼀次对折:3=2+1;第⼆次对折:5=22+1;第三次对折:9=23+1;第四次对折:17=24+1;….依此类推,第n次对折,可以得到(2n+1)条.∴对折6次,可以得到(26+1)=65条故答案为:65.先求出第⼀次对折的折痕,再求第⼆次,…,从⽽找出规律求出第n次即可.此题考查了翻折和图形的变化类问题,主要培养学⽣的观察能⼒和空间想象能⼒.17.【答案】解:(1)-45+30=-15;(2)0-23÷(-42)-18=0-8÷(-16)-18=12-18=38.【解析】(1)根据有理数加法运算的计算法则计算即可求解;(2)先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.进⾏有理数的混合运算时,注意各个运算律的运⽤,使运算过程得到简化.18.【答案】解:(1)移项合并得:5x=5,解得:x=1;(2)去分母得:2x+1-x+1=12,移项合并得:x=10.【解析】(1)⽅程移项合并,把x系数化为1,即可求出解;(2)⽅程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解⼀元⼀次⽅程,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)原式=2x2y-6xy-xy-x2y=x2y-7xy;(2)由题意可知:a=±23,原式=3a2+2a-a2-2a2-a+2=a+2,当a=23时,原式=83,当a=?23时,原式=43,【解析】(1)根据整式的运算法则即可求出答案.(2)先求出a的值,然后化简原式后将a的值代⼊即可求出答案.本题考查整式的运算,解题的关键是熟练运⽤整式的运算法则,本题属于基础题型.20.【答案】200【解析】解:(1)本次调查的市民总⼈数为60÷30%=200(⼈),故答案为:200;(2)∵B选项对应的百分⽐为1-(30%+5%+15%)=50%,∴B选项的⼈数为200×50%=100(⼈),补全图形如下:A类所对应扇形圆⼼⾓α的度数为360°×30%=108°;(3)估计全市平均每天开车出⾏的时间在1⼩时以上私家车数量约为200×30%=60(万).(1)由A选项的⼈数及其所占百分⽐可得总⼈数;(2)先根据百分⽐之和等于1求得B的百分⽐,再乘以总⼈数即可得B选项⼈数,从⽽补全条形图;(3)⽤总数量乘以A选项的百分⽐即可得.此题考查了条形统计图,扇形统计图,以及⽤样本估计总体,弄清题中的数据是解本题的关键.21.【答案】解:如图所⽰:【解析】由已知条件可知,从正⾯看有3列,每列⼩正⽅数形数⽬分别为4,2,3;从左⾯看有3列,每列⼩正⽅形数⽬分别为2,4,3.据此可画出图形.考查⼏何体的三视图画法.由⼏何体的俯视图及⼩正⽅形内的数字,可知主视图的列数与俯视图的列数相同,且每列⼩正⽅形数⽬为俯视图中该列⼩正⽅形数字中的最⼤数字.左视图的列数与俯视图的⾏数相同,且每列⼩正⽅形数⽬为俯视图中相应⾏中正⽅形数字中的最⼤数字.22.【答案】30 110【解析】解:(1)∵DO的延长线OF平分∠BOC,∠AOC=60°,∴(180°-60°)=60°,⼜∵∠DOE=90°,∴∠α=90°-∠BOF=90°-60°=30°.故答案为:30(2)当OD位于∠AOC的内部,且∠AOD=∠AOC时,,⼜∵∠DOE=90°,∴∠AOE=90°-∠AOD=90°-20°=70°,∴∠α=180°-∠AOE=180°-70°=110°.故答案为:110(3)(∠COD+∠α)的度数不变.理由如下:∵(∠COD+∠α)+∠DOE+∠BOC=360°,∠DOE与∠BOC的⼤⼩不变,∴(∠COD+∠α)的度数不变.(1)先根据⾓平分线的定义求出∠BOF的度数,再根据余⾓的定义即可求出∠α的度数;(2)根据题意易得∠AOD=20°,根据余⾓的定义可求出∠AOE=70°,再根据补⾓的定义即可求出∠α的度数;(3)根据⼀周⾓等于360°,∠DOE与∠BOC的⼤⼩不变,可知(∠COD+∠α)的度数不变.本题主要考查了余⾓和补⾓的定义,互为余⾓的两个⾓的和为90°,互为补⾓的两个⾓的和为180°.23.【答案】1200 0.7x+200【解析】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).(3)第⼀张机票的原价为1440÷0.8=1800(元).设丙旅客第⼆张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第⼆张机票的原价为2500元,实际付款1950元.(1)利⽤需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第⼀张机票的原价,设丙旅客第⼆张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的⼀元⼀次⽅程,解之即可得出结论.本题考查了⼀元⼀次⽅程的应⽤以及列代数式,找准等量关系,正确列出⼀元⼀次⽅程是解题的关键.。
深圳市七年级上册数学期末试卷及答案-百度文库
深圳市七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3 4.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+65.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣26.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.方程3x +2=8的解是( ) A .3B .103C .2D .128.下列各数中,绝对值最大的是( ) A .2 B .﹣1 C .0 D .﹣3 9.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=010.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 12.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米13.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个 C .3个 D .4个 14.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题16.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 17.9的算术平方根是________18.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 19.如图,若12l l //,1x ∠=︒,则2∠=______.20.因式分解:32x xy -= ▲ .21.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.22.如果一个数的平方根等于这个数本身,那么这个数是_____.23.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.五边形从某一个顶点出发可以引_____条对角线.26.已知二元一次方程2x-3y=5的一组解为x ay b =⎧⎨=⎩,则2a-3b+3=______.27.-2的相反数是__.28.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.29.若4a +9与3a +5互为相反数,则a 的值为_____. 30.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题31.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.33.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.34.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 35.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.36.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.如图,数轴上有A、B、C三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.D解析:D 【解析】 【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解. 【详解】解:∵任意三个相邻格子中所填整数之和都相等, ∴4+a+b=a+b+c , 解得c=4, a+b+c=b+c+(-2), 解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b , 第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2. 故选D. 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.6.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.7.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .9.A解析:A 【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.12.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.13.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.14.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6或6.故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.17.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.18.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.19.(180﹣x )°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.20.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).21.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 22.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 24.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.25.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.26.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.27.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.28.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 29.-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 30.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒ 故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题31.探究三:16,6;结论:n²,;应用:625,300. 【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个; 应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个. 结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个. 应用:边长为1的正三角形有=625(个), 边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n²,;应用:625,300. 【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.32.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+=1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.33.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t 4﹣1123﹣30﹣15+2t 4=1123,t 4=91621(秒) 此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767 这时甲和乙所对应的有理数为﹣767. 四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒) 当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767. 位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.34.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.。
深圳中学七年级上册数学期末试卷(含答案)
深圳中学七年级上册数学期末试卷(含答案)一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列 的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )3. 某车间有26名工人,每人每天能生产螺栓12个或螺母18个•若要使每天生产的螺栓和 螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所 列方程正确的是()A. 12x = 18(26 一 x)B ・ = 12(26-x) C. 2xl8x = 12(26-x) D ・ 2X 12.Y = 18(26-X )4. 某地冬季某天的天气预报显示气温为至8C,则该日的最高与最低气温的温差为( )A. -9°CB. 7°CC. -7°CD. 9°C5. 某厂准备加工500个零件,在加工了 100个零件后,引进了新机器,使得每天的工作 效率是原来的两倍,结果共用了 6天完成了任务,若设该厂原来每天加工X 个零件,则由 题意可列出方程()100 500 A A. ——+——=6 2x x100 500 厶B. ——+——=6 x 2x 6. 探索规律:右边是用棋子摆成的字,第一个图形用了 7个棋子,第二个图形用了B. 2D. 型+型"x 2x2 ・ =()C. 3 D ・412个棋子,按这样的规律摆下去,摆成第20个“H”字需要棋子( )7.如图,OA±OC , OB±OD r ①Z AOB=Z COD ;②Z BOC+Z AOD=180° ;③Z AOB+Z COD=90° ; ④图中小于平角的角有6个:其中正确的结论有几个(9. 按一泄规律排列的单项式:-x9, •…第n 个单项式是() A. (-l )n-vn-l B ・(一1)吹 2n 1C. (-l )n a x 2n •1D. 10. 不等式x-2> 0在数轴上表示正确的是( )A. 97B. 102C. 107D. 112D ・4个若X= - — , y=4,则代数式3x+y - 3xy 的值为(A ・・7B ・・1C ・9D ・7 11・下列等式的变形中,正确的有( )①由5円,得“| ②由Q 二b,得■。
2022-2023学年广东省深圳中学七年级(上)期末数学试卷-学生版
2022-2023学年广东省深圳中学七年级(上)期末数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.(3分)四个数:6,﹣2,0,﹣3,其中最小的数是()A.6B.﹣2C.0D.﹣32.(3分)截止2022年12月11日,《学习强国》——习近平主席“论把各方面优秀人才集聚到党和人民事业中来”一文的阅读量约为16600000次,数字16600000用科学记数法表示为()A.166×105B.1.66×105C.16.6×106D.1.66×107 3.(3分)下列调查中,最适合抽样调查的是()A.对“天和”核心舱的重要零部件进行检查B.调查某种电池的使用寿命C.调查我校某班学生的视力情况D.调查我校足球队队员的身高4.(3分)设单项式的系数为a,次数为b,则ab=()A.﹣4B.C.4D.125.(3分)关于x、y的多项式ax3+2bx2y+2x3﹣7x2y+x中不含三次项,则代数式3a+4b值是()A.20B.8C.D.﹣86.(3分)有理数a,b在数轴上如图所示,则化简|2a|﹣|b|+|2a﹣5|的结果是()A.4a+b﹣5B.4a﹣b﹣5C.b+5D.﹣b﹣57.(3分)某手机进价为2000元,按原价的八折出售可获利8%,则未打折时的手机利润率为()A.35%B.C.10%D.7%8.(3分)如图,我校初一某班在讨论一个数学题目,该题目“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.35×3x﹣519=76xB.35×30x﹣519=x+76C.35×30+x﹣519=100x+76D.35×(30+x)﹣519=100x+769.(3分)若a<b<c,x<y<z,则下面四个代数式的值最大的是()A.ax+by+cz B.ax+cy+bz C.bx+ay+cz D.bx+cy+az 10.(3分)如图,在同一平面内,∠AOB=∠COD=90°,∠COE=∠BOE,点F为OE 反向延长线上一点(图中所有角均指小于180°的角).下列结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④若OA绕点O顺时针旋转一周,其它条件都不变,若∠FOD:∠EOC=1:6,则∠FOD=18°或15°,其中结论一定正确的有()个A.4个B.3个C.2个D.1个二、填空题(本大题共5小题,每题3分,共15分).11.(3分)﹣0.5的倒数是.12.(3分)边长为整数的正多边形的周长17,则过该正多边形的一个顶点可以画条对角线.13.(3分)已知图1是边长为12cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方形体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.14.(3分)如图,点C、D在线段AB上,点C为AB中点,若AB=10cm,AD+BC=3DB,则CD的长度是cm.15.(3分)如图是深中初中部美丽校园的一景,黄馨同学上学时走过两段楼梯,其中第一段有5个阶梯,第二段有10个阶梯.如果每步只允许走一个或两个阶梯,那么黄馨同学有种方法走完第一段楼梯,有种方法走完第二段楼梯.三、简答题(本大题共8小题,共55分)16.(6分)计算:(1)(﹣5)+(﹣6)﹣(+13)﹣(﹣4);(2)﹣23+8÷(|﹣2|﹣3).17.(6分)先化简,再求值:,其中x=﹣1,y=3.18.(12分)解方程:(1)2x+4=7x﹣8;(2);(3);(4).19.(3分)请你在方格中画出如图所示几何体的三视图:20.(5分)请你在图中按照要求完成作图并回答问题.(1)画直线AB;(2)连接线段AC、BD,相交于点O;(3)画射线AD、BC,相交于点E;(4)比较大小:S△ABC S△ACE(填“>”、“=”或“<”);(5)点A在点C的方向(角度取整数).21.(8分)我校学生食堂给学生们提供了丰富的菜样品种.某数学兴趣小组随机抽取了初一年级一部分同学就“我最喜欢的菜样品种”进行了问卷调查(单选),并根据调查结果绘制了如图两个不完整的统计图,根据所提供的信息,解答下列问题:(1)该数学兴趣小组随机抽取的学生人数为人;(2)把条形统计图补充完整;(3)在扇形统计图中,计算“3号菜样品种”所对应的扇形圆心角的大小;(4)我校初一年级共有学生800人,试估计“喜欢1号菜样品种”的学生人数.22.(6分)列方程应用题.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,绳木各长几何?”原文的意思是:用一根绳子去量一根长木,绳子还余4.5尺,将绳子对折再量长木,长木还剩余1尺.(1)绳子、长木各长多少尺?(2)皓元同学对(1)中所用的长木和绳子进行了一定条件下燃烧速度的实验.他分别截取了等长的木头和绳子各两根.先取出木头和绳子各一根,将其浸没在油中,一段时间后取出.从一端点燃后,他发现燃烧完一根木头需要40分钟,燃烧完一根绳子需要10分钟.随后,他同时点燃了剩下的等长的木头和绳子,一段时间后,同时都被风吹灭,这时他发现木头的长是绳子的长的4倍,问第二次木头燃烧的时间为多少分钟?23.(9分)如图,MN是数轴上一条动线段,满足MN=8,“点A在数轴上对应的数为24”表示为x A=24.(1)若线段MN在线段OA上,且满足OM:AN=7:1.①x N=;②点E是线段MN上一点,满足5EN=2MA,x E=;(2)如图,设x M=t(t>0且t≠16),P是数轴上一点,若OP=2NP,猜想NA与MP 的关系,并说明理由;(3)若点C是OM的中点,点D是ON的中点,以OM、ON、CD分别为直径的圆的周长为a、b、c,请直接写出的a、b、c关系.。
2023-2024学年广东省深圳市宝安区七年级(上)期末数学试卷及答案解析
2023-2024学年广东省深圳市宝安区七年级(上)期末数学试卷一、选择题(每小题3分,共30分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应位置上)1.(3分)若向东走5m,记为+5m,则﹣3m表示为()A.向东走3m B.向南走3m C.向西走3m D.向北走3m 2.(3分)2023年9月23日,杭州第19届亚运会开幕式向世界贡献了一场精彩绝伦的视觉盛宴,数实融合成为最大亮点.超1亿数字火炬手跑出大莲花点燃主火炬,实现全球首个数字点火仪式.万名观众在现场线上放飞许愿灯召唤吉祥物,实现全球首次大型演出AR互动创举.数据“1亿”可以用科学记数法表示为()A.1×108B.1×109C.0.1×108D.0.1×109 3.(3分)某款台灯灯罩如图所示,该款灯罩可以看成由如下图形()沿虚线旋转一周得到的.A.B.C.D.4.(3分)下列计算正确的是()A.2x+3y=5xy B.5x2﹣3x2=2C.x2+x=x3D.﹣8y+3y=﹣5y5.(3分)如果5x3m y n+1与﹣2x6y4是同类项,那么m n的值为()A.5B.6C.8D.166.(3分)如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度大的组是()A.一组B.二组C.一组、二组进步幅度一样大D.无法判断7.(3分)周末,小亮和同学相约上午去宝安图书馆学习,下午去乘坐湾区之光摩天轮,晚上观看庆典广场灯光水秀表演.点A,B,C分别表示地图中宝安图书馆、庆典广场、湾区之光摩天轮三个地点(如图).小亮观察地图发现,∠ABC=140°,宝安图书馆在庆典广场北偏西13°方向,则湾区之光摩天轮在庆典广场的()A.北偏西53°方向B.南偏东37°方向C.南偏东53°方向D.南偏西37°方向8.(3分)有理数a、b在数轴上的位置如图所示,则|a﹣b|+|b﹣a|化简后为()A.2a﹣2b B.2b﹣2a C.0D.﹣2b9.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.710.(3分)如图,三角形纸片ABC中,点D、E、F分别在边BC,AB,AC上,连接DE,DF,将△BDE、△CDF分别沿DE、DF对折,使点B、C落在点B'、C'处,若B'D恰好平分∠EDC',且∠EDF=99.5°,则∠EDC'的度数为()A.37°B.38°C.39°D.40°二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11.(3分)中国幅员辽阔,南北气温差异极大,如表为11月份某天同一时刻深圳和佳木斯的天气信息,那么该时刻两地的温差为℃.当前天气信息深圳佳木斯天气晴25℃晴﹣12℃风向北风西南风风力3级2级12.(3分)已知x=1是关于x的方程3x﹣2m=7的解,则m的值为.13.(3分)将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则可以剪去的小正方形的编号是.(只填一个编号即可)14.(3分)如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC 和AB的中点,则线段DE的长为cm.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三、解答题(本题共7小题,其中第16题10分,第17题6分,第18题6分,第19题8分,第20题8分,第21题8分,第22题9分,共55分)16.(10分)计算:(1)32.34+(﹣3.4)+(﹣11.34)+6.4;(2).17.(6分)先化简,再求值:,其中a=1,b =﹣2.18.(6分)解方程:.19.(8分)为丰富校园生活,增强学生体质,某校举办趣味运动会,组织同学们参加“一分钟跳绳”挑战赛.为了解同学们成绩的分布情况,从参赛选手中随机抽取了部分同学的成绩进行统计,将成绩分成A、B、C、D四组后,绘制成如图所示的不完整的表格和频数分布直方图.组别成绩x(次)频数频率A90≤x<120150.1B120≤x<150a bC150≤x<180600.4D180≤x<21030c (1)b=,c=;(2)补全频数分布直方图;(3)若该校有2000名学生,估计跳绳在150次(含150)以上的约有人.20.(8分)如图,点A 、B 、C 在同一条直线上,线段AB =4,点C 为线段AB 的中点,在直线AB 上用尺规作出点D ,使得BD =2AB ,并求CD 的长度.小乐给出了以下解答:解:如图为所作图形,BD =2AB =8,∵AB =4,点C 为线段AB 的中点,∴CB =AB =,∴CD =CB +BD =.小欢说:我觉得小乐的解答不完整,可能还有别的情况…(1)请将小乐的解答过程补充完整;(2)请在备用图中用尺规作出其它满足条件的点D ,并求出CD 的长度.21.(8分)为迎接2024年的到来,滨海学校七(2)班积极筹办元旦联欢活动.班主任李老师在“飞送外卖”APP 上发现了一款由心悦蛋糕店制作的手工泡芙蛋糕.为增添节日氛围,李老师准备订购40个蛋糕送给同学们.根据以下材料,解决问题.阅读材料素材1订购方式打包费配送费“飞送外卖”APP每个蛋糕收1元3元/单注:订单总价(不含打包费和配送费)满50元起送.素材2蛋糕店专属“心悦红包”:面值10元,订单总价(不含打包费和配送费)满99元可使用.注:该专属红包仅有1个.素材3红包购买金额×4个10元“飞送外卖”福利:10元购买一组(4个)“神券红包”,面值随机确定.注:每个“神券红包”面值相等且可以和“心悦红包”同时使用,但每一个订单只允许使用一个“神券红包”.问题解决问题1若李老师一次性下单购买40个蛋糕,并使用“心悦红包”,且由外卖配送,总花费多少元?问题2(列方程解决问题)为了降低费用,李老师购买了一组“神券红包”,先后4次下单共订购40个蛋糕,并将两种红包全部使用,且由外卖配送,所有费用刚好为504元,请计算出每个“神券红包”的面值.22.(9分)将两个直角三角形如图1摆放,已知∠CDE =∠ACB =90°,∠E =45°,∠B =30°,射线CM 平分∠BCE .(1)如图1,当D 、A 、C 三点共线时,∠ACM 的度数为°.(2)如图2,将△DCE 绕点C 从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s ,作射线CN 平分∠ACD .①若0<t <,∠MCN 的度数是否改变?若改变,请用含t 的代数式表示;若不变,请说明理由并求出值.②若<t <30,当t 为何值时,∠BCN =2∠DCM ?请直接写出t 的值.2023-2024学年广东省深圳市宝安区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应位置上)1.【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:向东走5m,记为+5m,则﹣3m表示为向西走3米,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1亿=100000000=1×108,故选:A.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【分析】根据面动成体对各选项分析判断利用排除法求解.【解答】解:某款台灯灯罩如图所示,该款灯罩可以看成由如下图形选项A中的直角梯形沿虚线旋转一周得到的.故选:A.【点评】本题考查了点、线、面、体,准确识图观察出得到的几何体的曲面的形状是解题的关键.4.【分析】根据合并同类项法则即可求解.【解答】解:A.2x+3y不是同类项,不能合并,选项A不符合题意;B.5x2﹣3x2=2x2,选项B不符合题意;C.x2+x不是同类项,不能合并,选项C不符合题意;D.﹣8y+3y=﹣5y,选项D符合题意;故选:D.【点评】本题主要考查了合并同类项,掌握合并同类项法则是解题的关键.5.【分析】根据同类项的定义求得m,n的值后代入m n中计算即可.【解答】解:∵5x3m y n+1与﹣2x6y4是同类项,∴3m=6,n+1=4,解得:m=2,n=3,则m n=23=8,故选:C.【点评】本题考查同类项,结合已知条件求得m,n的值是解题的关键.6.【分析】根据统计结果,一组从开始的70分进步到了90,二组从开始的70分进步到了85,两者比较即可得出答案.【解答】解:由统计图可知,一组从开始的70分进步到了90,进步了20分,二组从开始的70分进步到了85,进步了15分,所以一组的进步幅度大,故选:A.【点评】本题主要考查统计图的读图能力,能根据图分析出数据的变化情况是做本题的关键,7.【分析】根据方向角的定义、平角的定义求出∠SBC即可.【解答】解:如图,由题意可知,∠ABC=140°,∠ABN=13°,∴∠CBN=∠ABC﹣∠ABN=127°,∴∠SBC=180°﹣127°=53°,即点C在点B的南偏东53°,故选:C.【点评】本题考查方向角,掌握方向角的定义是正确解答的关键.8.【分析】由数轴得到﹣1<a<0,b>2,进一步得出a﹣b<0,b﹣a>0,再根据绝对值的性质化简即可.【解答】解:由数轴得,﹣1<a<0,b>2,∴a﹣b<0,b﹣a>0,∴|a﹣b|+|b﹣a|=b﹣a+b﹣a=2b﹣2a,故选:B.【点评】本题考查了数轴,绝对值,熟练掌握数轴的性质以及绝对值的化简是解题的关键.9.【分析】根据“每行、每列、每条对角线上的三个数之和相等”列方程求解.【解答】解:由题意得:a+0=4﹣3,且a﹣3=4+b,解得a=1,b=﹣6,∴a﹣b=1﹣(﹣6)=7,故选:D.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键.10.【分析】设∠BDE=x,∠CDF=y,则∠B′DE=∠BDE=2x,∠FDC′=∠CDF=y,根据B'D恰好平分∠EDC'可知∠B′DE=∠B′DC′=x,根据∠EDF=99.5°及平角的定义得出关于x,y的方程组,求出x的值,进而可得出结论.【解答】解:设∠BDE=x,∠CDF=y,∵△B′DE由△BDE翻折而成,△C′DF由△CDF翻折而成,∴∠B′DE=∠BDE=2x,∠FDC′=∠CDF=y,∵B'D恰好平分∠EDC',∴∠B′DE=∠B′DC′=x,∵∠EDF=99.5°,∠BDE+∠B′DE+∠B′DC′+∠C′DF+∠CDF=180°,∴,解得x=19°,∴∠EDC'=2x=38°.故选:B.【点评】本题考查的是三角形内角和定理,图形翻折变换的性质,角平分线的定义,熟知三角形内角和是180°是解题的关键.二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11.【分析】根据温差=高温﹣低温,列出算式,进行计算即可.【解答】解:由题意得:25﹣(﹣12)=25+12=37(℃),故答案为:37.【点评】本题主要考查了有理数的减法,解题关键是理解温差=高温﹣低温,列出算式.12.【分析】根据一元一次方程的解的定义解决此题.【解答】解:∵x=1是关于x的方程3x﹣2m=7的解,∴3﹣2m=7,解得:m=﹣2.故答案为:﹣2.【点评】本题考查一元一次方程的解,掌握一元一次方程的解的定义是关键.13.【分析】根据正方体展开图的特征进行解答即可.【解答】解:剪去6或7小正方形,余下的部分恰好能折成一个正方体,故答案为:6或7.【点评】本题考查了正方体的折叠与展开,熟练掌握正方体展开图的特征是解答本题的关键.14.【分析】先根据已知条件,求出AC,再根据线段中点的定义求出AD和AE,最后根据DE=AE﹣AD求出答案即可.【解答】解:∵AB=8cm,BC=2cm,∴AC=AB﹣BC=8﹣2=6cm,∵点D,E分别为AC和AB的中点,∴,∴DE=AE﹣AD=4﹣3=1cm,故答案为:1.【点评】本题主要考查了两点间的距离,解题关键是正确识别图形,找出相关线段与线段之间的和差倍分关系.15.【分析】设x=0.,则100x=12.,将它们作差后解方程即可.【解答】解:设x=0.,则100x=12.,那么100x﹣x=12.﹣0.,解得:x=,故答案为:.【点评】本题考查解一元一次方程,结合已知条件列得正确的方程是解题的关键.三、解答题(本题共7小题,其中第16题10分,第17题6分,第18题6分,第19题8分,第20题8分,第21题8分,第22题9分,共55分)16.【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)32.34+(﹣3.4)+(﹣11.34)+6.4=[32.34+(﹣11.34)]+[(﹣3.4)+6.4]=21+3=24;(2)=(﹣)×÷+(﹣1)=(﹣)××+(﹣1)=﹣﹣1=﹣.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.【分析】将原式去括号,合并同类项后代入数值计算即可.【解答】解:原式=﹣2a2b+ab2﹣b2+2a2b﹣ab2=﹣b2;当b=﹣2时,原式=﹣(﹣2)2=﹣4.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.18.【分析】本题主要考查解一元一次方程,方程去分母,去括号,移项合并,把x系数化为1,即可求出解;解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:,去分母得,3(x﹣1)+2(2x+1)=6,去括号得,3x﹣3+4x+2=6,移项,合并同类项得,7x=7,系数化为1得,x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.19.【分析】(1)用A组的频数除以频率可得抽取的总人数,用抽取的总人数分别减去A,C,D组的频数可求出a的值,再根据频率=频数÷总人数可求出b的值;用“1”分别减去A,B,C组的频率,可得c的值.(2)根据a的值直接补全频数分布直方图即可.(3)根据用样本估计总体,用2000乘以C,D两组的频率之和即可.【解答】解:(1)抽取的学生人数为15÷0.1=150(人),∴a=150﹣15﹣60﹣30=45,∴b=45÷150=0.3.c=30÷150=0.2.故答案为:0.3;0.2.(2)补全频数分布直方图如图所示.(3)估计跳绳在150次(含150)以上的约有2000×(0.4+0.2)=1200(人).故答案为:1200.【点评】本题考查频数(率)分布直方图、频数(率)分布表、用样本估计总体,能够读懂统计图,掌握用样本估计总体是解答本题的关键.20.【分析】(1)根据中点的定义以及线段的和差运算填空即可.(2)以点A为圆心,线段AB的长为半径画弧,交射线BA于点D,则点D即为所求.由题意可得AD=4,由中点的定义可得AC=AB=2,再根据CD=AD+AC可得答案.【解答】解:(1)如图为所作图形,BD=2AB=8,∵AB=4,点C为线段AB的中点,∴CB=AB=2,∴CD=CB+BD=10.故答案为:;2;10.(2)如图,点D即为所求.∵BD=2AB=8,∴AD=4,∵AB=4,点C为线段AB的中点,∴AC=AB=2,∴CD=AD+AC=6.【点评】本题考查作图—复杂作图、两点间的距离、中点的定义,解题的关键是理解题意,灵活运用所学知识解决问题.21.【分析】问题1:总花费=数量×(单价+包装费)+配送费﹣心悦红包;问题2:设每个“神券红包”的面值为x元,根据总花费=数量×(单价+包装费)+配送费×4+购买“神券红包”费用﹣4个“神券红包”面值﹣心悦红包,列出一元一次方程,解方程即可.【解答】解:问题1:根据题意得:40×12﹣10+40×1+3=480﹣10+40+3=513(元),答:总花费513元;问题2:设每个“神券红包”的面值为x元,根据题意得:40×(12+1)+4×3+10﹣4x﹣10=504,整理得:532﹣4x=504,解得:x=7,答:每个“神券红包”的面值为7元.【点评】此题考查了有理数的混合运算,一元一次方程的应用,弄清题意是解本题的关键.22.【分析】(1)利用角平分线的定义和角的和差的意义解答即可;(2)①利用含t的代数式表示出∠ACD,∠ECB的度数,利用角平分线的定义求得∠NCD=∠ACD=3t°,∠ECM=∠ECB=22.5°﹣3t°,计算∠MCN即可;②画出符合题意的图形,利用含t的代数式表示出∠BCN,∠DCM的度数,依据∠BCN=2∠DCM列出关于t的方程,解方程即可得出结论.【解答】解:(1)∵∠CDE=∠ACB=90°,∠E=45°,∴∠BCE=90°﹣∠DCE=45°.∵射线CM平分∠BCE,∴∠ECM=∠BCE=22.5°.∴∠ACM=∠DCE+∠ECM=45°+22.5°=67.5°.故答案为:67.5°;(2)①若0<t<,∠MCN的度数不改变,∠MCN的度数为67.5°.理由:若0<t<,由题意得:∠ACD=6t°,∵∠ACB=90°,∠DCE=45°,∴∠ECB=45°﹣6t°,∵射线CN平分∠ACD,射线CM平分∠BCE,∴∠NCD=∠ACD=3t°,∠ECM=∠ECB=22.5°﹣3t°,∴∠MCN=∠NCD+∠DCE+∠ECM=3t°+45°+22.5°﹣3t°=67.5°.②当t为15t时,∠BCN=2∠DCM.理由:若<t<30,如图,由题意得:∠ACD=6t°,∵射线CN平分∠ACD,∴∠NCA=∠ACD=3t°.∴∠BCN=90°﹣∠NCA=(90﹣3t)°.∴∠BCD=90°﹣∠ACD=(90﹣6t)°,∴∠BCE=∠DCE﹣∠BCD=45°﹣(90°﹣6t°)=(6t﹣45)°.∵射线CM平分∠BCE,∴∠ECM=∠BCE=(3t﹣22.5)°,∴∠DCM=∠DCE﹣∠ECM=(67.5﹣3t)°.∵∠BCN=2∠DCM,∴90﹣3t=2(67.5﹣3t),∴t=15.【点评】本题主要考查了直角三角形和等腰直角三角形的性质,图形的旋转的性质,一元一次方程的解法,列代数式,角平分线的定义,利用t的代数式表示出相应角的度数是解题的关键。
深圳市七年级上学期数学期末试卷及答案-百度文库
深圳市七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.2.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.33.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.410+415x-=1 B.410+415x+=1 C.410x++415=1 D.410x++15x=14.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1125.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A .4n+1B .4n+2C .4n+3D .4n+5 6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣17.﹣3的相反数是( ) A .13- B .13C .3-D .38.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+9.下列各数中,比73-小的数是( ) A .3- B .2-C .0D .1-10.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15011.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-112.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知23,9n mn aa -==,则m a =___________.14.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___15.因式分解:32x xy -= ▲ .16.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.18.若a 、b 是互为倒数,则2ab ﹣5=_____.19.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 20.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.用“>”或“<”填空:13_____35;223-_____﹣3.23.8点30分时刻,钟表上时针与分针所组成的角为_____度.24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点1Q处;第2步,从点1Q继续运动2t单位长度至点2Q处;第3步,从点2Q继续运动3t个单位长度至点3Q处…例如:当3t=时,点1Q、2Q、3Q的位置如图2所示.解决如下问题:(1)如果4t=,那么线段13Q Q=______;(2)如果4t<,且点3Q表示的数为3,那么t=______;(3)如果2t≤,且线段242Q Q=,那么请你求出t的值.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.27.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数28.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)29.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值30.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.31.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.4.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个; 第三个“H”字需要2×7+3=17个棋子; 第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个. 故B. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .5.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.6.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12mn=⎧⎨=⎩,121m n∴-=-=-故选:D.【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.7.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.8.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.9.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.10.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:1214【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据2137SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为1214.本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.15.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).16.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:45923∴<<,=,a2∴=,b3=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.17.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.19.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.20.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.23.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.24.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 27.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834 【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键. 28.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.29.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.30.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,。
广东省深圳市七年级上学期数学期末考试试卷
广东省深圳市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·镇巴期末) 若a和b互为相反数,且,则下列各组中,不是互为相反数的一组是()A . 和B . 和C . 和D . 和2. (2分) (2020七上·花都期末) 下列计算正确的是()A .B .C .D .3. (2分)(2017·南山模拟) 过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A . 312×104B . 0.312×107C . 3.12×106D . 3.12×1074. (2分)若a是负数,则下列各式不正确的是()A . a2=(-a)2B . a2=|a2|C . a3=(-a)3D . a3=-(-a3)5. (2分) (2020八下·镇海期末) 矩形ABCD内放入两张边长分别为a和b(a>b)的正方形纸片,按照图①放置,矩形纸片没有被两个正方形覆盖的部分(黑色阴影部分)的面积为S1;按照图②放置,矩形纸片没有被两个正方形覆盖的部分面积为S2;按图③放置,矩形纸片没有披两个正方形覆盖的部分的面积为S3 ,已知S1﹣S3=3,S2﹣S3=12,设AD﹣AB=m,则下列值是常数的是()A . maB . mbC . mD . a+b6. (2分)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为元,根据题意,下面所列的方程正确的是()A . x•50%×80%=240B . x•(1+50%)×80%=240C . 240×50%×80%=xD . x•(1+50%)=240×80%7. (2分)(2014·衢州) 某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是()A . 23,25B . 24,23C . 23,23D . 23,248. (2分) (2020七下·唐县期末) 已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为()A . 相交、相交B . 平行、平行C . 垂直相交、平行D . 平行、垂直相交9. (2分)(2016·永州) 如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A .B .C .D .10. (2分) (2020七上·大冶期末) 下列选项中,移项正确的是()A . 方程变形为B . 方程变形为C . 方程变形为D . 方程变形为二、填空题 (共10题;共12分)11. (1分)数轴上表示-2的点距离3个长度单位的点所表示的数是________.12. (1分) (2020七上·玉田期末) 若是一元一次方程,则的值为________13. (1分) (2019八下·宛城期末) 在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为________.14. (1分) (2019八上·江汉期中) 如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B 处在C处的南偏西80°方向,则∠ABC的度数为 ________15. (1分) (2016七上·黄陂期中) 观察表格中按规律排列的两行数据,若用x,y表示表格中间一列的两个数,则x,y满足的数量关系是________.序号12345………第1行6﹣618﹣3066…x…第2行2﹣48﹣1632…y…16. (1分) (2018七下·端州期末) 已知a-b=1,则代数式2a-2b-3的值是________.17. (1分)(2016·铜仁) 为全面推进“新两基”(基本普及15年教育及县城内义务教育基本均衡)工作,某县对辖区内的80所中小学上半年工作情况进行了专项督导考核,成绩分别记为A,B,C,D四等,绘制了扇形统计图(如图),则该县被考核的学校中得A等成绩的有________所.18. (3分)操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点与﹣1表示的点重合,则﹣3表示的点与________ 表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________ 表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是________ .19. (1分) (2018七上·宜兴月考) 如果x<0,且|x|=4,则x-1=________.20. (1分)列等式表示:“x的2倍与8的和等于10”上述等式可列为:________三、解答题 (共8题;共81分)21. (10分) (2016七上·萧山竞赛) 解下列方程(1)(2)22. (1分) (2020七下·黄石期中) 如图,在等腰三角形ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠ACB的平分线,且交于点O,则图中等腰三角形有________23. (14分)(2018·贵港) 为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是________;在扇形统计图中,m=________,n=________,“答对8题”所对应扇形的圆心角为________度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.24. (5分) (2016七上·黄岛期末) A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A 城市有多远?25. (15分) (2017七上·丰城期中) 某校一间阶梯教室中,第1排的座位数为a,从第2排开始,每一排都比前一排增加两个座位.(1)请你在下表的空格里填写一个适当的式子:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…a a+2a+4a+6 …(2)写出第n排座位数的表达式;(3)求当a=20时,第10排的座位数是多少?若这间阶梯教室共有15排,那么最多可容纳多少学员?26. (20分)解下列方程(1) 2(3﹣x)=﹣4(x+5);(2)﹣ =﹣1(3) 2x﹣ [x﹣(x﹣1)]= (x﹣1)(4) 7+ = .27. (10分) (2019八上·保定期中) 先观察下列等式,再回答下列问题:① ;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).28. (6分) (2020七上·浦东期末) 在长方形纸片中,, .(1)当时,如图(a)所示,将长方形纸片折叠,使点落在边上,记作点,折痕为,如图(b)所示.此时,图(b)中线段长是________厘米.(2)若厘米,先将长方形纸片按问题(1)的方法折叠,再将沿向右翻折,使点落在射线上,记作点 .若翻折后的图形中,线段,请根据题意画出图形(草图),并求出的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:考点:解析:二、填空题 (共10题;共12分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共8题;共81分)答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、考点:解析:。
深圳中学七年级上学期数学期末试卷及答案-百度文库
深圳中学七年级上学期数学期末试卷及答案-百度文库一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1393.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或734.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④5.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .76.若21(2)0x y -++=,则2015()x y +等于( ) A .-1 B .1 C .20143 D .20143- 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣38.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×29.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-11.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 12.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==13.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b14.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个15.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 17.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.18.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.19.把53°24′用度表示为_____.20.若3750'A ∠=︒,则A ∠的补角的度数为__________. 21.﹣213的倒数为_____,﹣213的相反数是_____. 22.当a=_____时,分式13a a --的值为0. 23.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 24.15030'的补角是______.25.五边形从某一个顶点出发可以引_____条对角线.26.当12点20分时,钟表上时针和分针所成的角度是___________.27.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 28.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题31.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 32.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.33.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.34.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?35.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).38.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.B解析:B 【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .3.A解析:A 【解析】 【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可. 【详解】解:(x+3)2=4, x ﹣3=±2, 解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5), 解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ), 解得:m =﹣1, 故选:A . 【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.解析:A 【解析】 【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案. 【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为2554045n n ++=,③正确,②错误; 所以正确的是①③. 故选A . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.5.D解析:D 【解析】 【分析】将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣13,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.6.A解析:A 【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A7.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值.解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.A解析:A 【解析】 【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.9.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.10.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.11.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误; 故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.12.C解析:C 【解析】 【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得. 【详解】解:根据题意得:a+1=2,b=3, 则a=1. 故选:C . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.13.B解析:B 【解析】 【分析】从图形可知空白部分的面积为S 2是中间边长为(a ﹣b )的正方形面积与上下两个直角边为(a +b )和b 的直角三角形的面积,再与左右两个直角边为a 和b 的直角三角形面积的总和,阴影部分的面积为S 1是大正方形面积与空白部分面积之差,再由S 2=2S 1,便可得解. 【详解】由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2,S 1=(a+b )2-S 2=2ab-b 2,∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2),∴a 2﹣4ab +4b 2=0,即(a ﹣2b )2=0,∴a =2b ,故选B .【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.14.A解析:A【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.故本题正确答案为①.15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3.故答案为3考点:数轴.17.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.18.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.19.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.20.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.21.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.22.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.23.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-.本题考查分式的计算,掌握分式的通分和约分是关键.24.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.25.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.26.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.27.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 28.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 29.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键. 30.46°【解析】【分析】根据∠2=180°-∠COE -∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE -∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、压轴题31.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.32.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.33.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.34.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:。
深圳市七年级上册数学期末试卷及答案-百度文库
深圳市七年级上册数学期末试卷及答案-百度文库一、选择题1.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查2.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 3.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .74.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =135.计算:2.5°=( )A .15′B .25′C .150′D .250′6.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >07.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4C .﹣2D .﹣4 9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 10.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+111.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-112.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.把53°30′用度表示为_____.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.已知23,9n m n a a -==,则m a =___________.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.如果一个数的平方根等于这个数本身,那么这个数是_____.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?27.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.30.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)()1若4AM cm=,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)()2当点C、D运动了2s,求AC MD+的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B .【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.2.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.3.D解析:D【解析】【分析】将x 与y 的值代入原式即可求出答案.【详解】当x=﹣13,y=4, ∴原式=﹣1+4+4=7故选D .【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.4.D解析:D【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程3x ﹣1=0,移项得:3x =1,解得:x =13, 故选:D .【点睛】 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C .【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.6.C解析:C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |,∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .7.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误;选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】 本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 8.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.21.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC =30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ =15°,∠AOQ =15°,∴OQ 平分∠AOC ;(2)∵OC 平分∠POQ ,∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得:t =5,当30+6t ﹣3t =225,也符合条件,解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB ,∵OC 平分∠POB ,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.26.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.27.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒ 则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒ 72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45, 综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.28.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.29.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.30.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MN AB =1212=1. 综上所述:MN AB =13或1. 【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】 试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM 平分∠AOC,ON 平分∠BOC,∴∠NOC=12 ∠BOC,∠COM=12∠COA. ∵∠CON+∠COM=∠MON, ∴∠MON=12(∠BOC+∠AOC)=12α; ②当OC 在∠AOB 外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省深圳市七年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2019·云梦模拟) 的倒数是()
A .
B . 5
C .
D . 25
2. (2分)今年“十一”长假期间,我市花果山景区在10月3日接待游客约2.83万人,“2.83万”可以用科学记数法表示为()
A . 0.283×105
B . 2.83×104
C . 28.3×103
D . 28.3×102
3. (2分) (2018七下·潮安期末) 下列调查中,适宜采用全面调查(普查)方式的是(()
A . 对一批圆珠笔使用寿命的调查
B . 对韩江水质现状的调查
C . 对某品牌烟花爆竹燃放安全的调查
D . 对一枚用于发射于卫星的运载火箭各零部件的检查
4. (2分)如图是圆锥的三视图(单位:cm),则这个圆锥的侧面积等于()
A . 12πcm2
B . 15πcm2
C . 24πcm2
D . 30πcm2
5. (2分) (2016七上·宁海期中) 下列运算正确的是()
A . 3a﹣5a=2a
B .
C . a3﹣a2=a
D . 2ab﹣3ab=﹣ab
6. (2分)木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()
A . 两点确定一条直线
B . 两点确定一条线段
C . 过一点有一条直线
D . 过一点有无数条直线
7. (2分)(2018·安阳模拟) 下列计算正确的是()
A . 4m+2n=6mn
B . =±5
C . x3y2÷2xy= x2y
D . (﹣2xy2)3=﹣6x3y6
8. (2分)线段AB=5cm,BC=4cm,那么A、C两点的距离是()
A . 1cm
B . 9cm
C . 1cm或9cm
D . 以上答案都不对
9. (2分)﹣2的相反数是()
A . 2
B . -2
C .
D . -
10. (2分)一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()
A . 120元;
B . 125元;
C . 135元;
D . 140元.
11. (2分) (2017七上·忻城期中) 用代数式表示:x与y两数的平方差的2倍是()
A . 2(x2-y2)
B . (x2-y2)2
C . 2(x-y)2
D . 2(x2-y2)2
12. (2分) (2020七下·贵阳开学考) 有理数在数轴上对应的点的位置如图所示,则下列式子正确的是()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2019七上·柯桥期中) 下列各式:① ,② 0,③ ,④ ,⑤ ,
⑥ 中属于单项式的是________(填序号)
14. (1分) (2016七下·仁寿期中) 对于x、y定义新运算x*y=ax+by﹣3(其中a、b是常数),已知1*2=9,﹣3*3=6,则3*(﹣4)=________.
15. (1分)如图,AB∥CD,OE平分∠BOC,OF⊥OE, OP⊥CD,∠ABO=40°,则下列结论:①∠BO E=70°;
②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有________(填序号)
16. (1分)(2018·山西模拟) 将一些形状相同的“ ”按下图所示的规律摆放,则第n个图形中有________个“ ”.
三、解答题 (共7题;共71分)
17. (10分) (2016七上·兴化期中) 解答下列问题:
(1)计算:6÷(﹣ + ).
方方同学的计算过程如下:原式=6÷(﹣)+6÷ =﹣12+18=6.
请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.
(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程):
①999×(﹣15);②999× +333×(﹣)﹣999×18 .
18. (10分) (2016七上·赣州期中) 计算:
(1) 2(3a﹣2b)﹣3(a﹣3b)
(2) 2xy2+2(3xy2﹣x2y)﹣2(xy2﹣x2y)
19. (10分) (2017七上·武清期末) 解下列方程:
(1) 4(x﹣2)=3(1+3x)﹣12
(2) =1.
20. (11分) (2018九下·夏津模拟) 市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:
(1)一等奖所占的百分比是________.
(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.
(3)各奖项获奖学生分别有多少人?
21. (5分) (2018七上·延边期末) 小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?
22. (15分) (2020七下·北京月考) 已知如图,直线,相交于点,.
(1)若,求的度数;
(2)若,求的度数;
(3)在()的条件下,过点作,请直接写出的度数.
23. (10分) (2018七上·江岸期末) 为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.
(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;
(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:
方式一:一套服装一天收取20元,另收总计80元的服装清洗费
方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)
设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共71分)
17-1、
17-2、18-1、18-2、
19-1、
19-2、20-1、
20-2、20-3、
21-1、22-1、
22-2、22-3、
23-1、23-2、。