信号和系统分析导论及系统判断

合集下载

《信号与系统》复习

《信号与系统》复习

物理意义:非周期信号可以分解为无数个频率为, 复振幅为[X(j)/2p]d 的虚指数信号ejw t的线性组合。
简述傅氏反变换公式的物理意义?
傅里叶变换性质
F 时移特性 x(t t 0 ) X( j) e jt
0
x(t)
X(j)
展缩特性
1 F x (at) X( j ) a a
(n = 1,2) (n = 1,2)
奇对称周期信号其傅里叶级数只含有正弦项。
周期信号的傅里叶级数 周期信号x(t) 如图 所示,其傅氏级数系数的特点是
偶对称周期信号其傅里叶级数只含有直流项与余弦项 周期信号f(t)如图所示,其直流分量等于_____
周期信号的频谱及特点
Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
《信号与系统》复习
考核方式
平时成绩20% 实验成绩20% 期末成绩60%
题型: 选择题(每题3分,共30分) 填空题(每空2分,共20分) 简答题(每题4分,共20分)
计算题(每题10分,共30分)
第一章:信号与系统分析导论
周期信号平均功率计算 若电路中电阻R=1Ω,流过的电流为周期电流i(t)= 4cos(2πt)+2cos(3πt) A,其平均功率为( ) 系统的数学模型 连续时间系统:系统的输入激励与输出响应都必须为 连续时间信号,其数学模型是微分方程式。 离散时间系统: 系统的输入激励与输出响应都必须 为离散时间信号,其数学模型是差分方程式。
L[ yzs (t )] Yzs ( s) H ( s) L[ x(t )] X ( s)
写出系统函数H (s) 的定义式
简述拉氏变换求解微分方程的过程

[课件]第1章信号与系统分析导论PPT

[课件]第1章信号与系统分析导论PPT
X
信号处理
对信号进行某种加工或变换。 目的: 消除信号中的多余内容; 滤除混杂的噪声和干扰; 将信号变换成容易分析与识别的形式,便于估计 和选择它的特征参量。 信号处理的应用已遍及许多科学技术领域。
系统(System)
系统(system):由若干相互作用和相互依赖的事物组 合而成的,具有特定功能的整体。如通信系统、控制 系统、经济系统、生态系统等。 系统三要素:IOP:输入、输出、处理加工 系统可以看作是信号的变换器、处理器。 电系统具有特殊的重要地位,某个电路的输入、 输出是完成某种功能,如微分、积分、放大,也可 以称系统。 在电子技术领域中,“系统”、“电路”、“网 络”三个名词在一般情况下可以通用。
第1章信号与系统分 析导论
课程性质
– 电子信息类专业重要的专业基础 课; – 教学对象:电子信息、自动控制、电子技术 、电气工程、计算机技术、生物医学工程等;
课程性质
先修课 后续课程 《高等数学》 《通信原理》 《线性代数》 《数字识领域引入信号 处理与传输领域的关键性课程,在教学环节中起着承 上启下的作用 。
信号与系统之间的关系 信号与系统是相互依存的整体。
1. 信号必定是由系统产生、发送、传输与 接收,离开系统没有孤立存在的信号; 2. 系统的重要功能就是对信号进行加工、 变换与处理,没有信号的系统就没有存在 的意义
输出信号 输入信号 系统 响应 激励
信号理论与系统理论
信号分析:研究信号的基本性能,如信号 的描述、性质等。 信号理论 信号传输 信号处理
系统分析:给定系统,研究系统对于输入 激励所产生的输出响应。 系统理论 系统综合:按照给定的需求设计(综合) 系统。 重点讨论信号的分析、系统的分析,分析是综合的基础。 分析的目的:认识世界;综合的目的:改造世界。

第一章 信号与系统分析导论 答案

第一章 信号与系统分析导论 答案

第一章信号与系统分析导论答案&评讲
注意:连续和离散的区别;连续是找一个实数T,而离散是找一个整数N;
注意:连续和离散的区别;连续是找一个实数T,而离散是找一个整数N;
注意:能量信号与功率信号的定义;
信号的时间取值范围;
连续和离散的区别;
注意:步骤详细一点;
●在判断可分解性时,应考察系统的完全响应y(t)是否可以表示为两部分之和,其中一部
分只与系统的初始状态有关,而另一部分只与系统的输入激励有关。

●在判断系统的零输入响应yx(t)是否具有线性时,应以系统的初始状态为自变量(如上
述例题中y(0)),而不能以其它的变量(如t等)作为自变量。

●在判断系统的零状态响应yf(t)是否具有线性时,应以系统的输入激励为自变量(如上述
例题中f(t)),而不能以其它的变量(如t等)作为自变量。

注意:步骤详细一点;
线性?时不变?都要判断
说法:线性――非线性;时不变-时变
注意:步骤详细一点;
因果系统:当且仅当输入信号激励系统时才产生系统输出响应的系统。

信号与系统分析

信号与系统分析

信号与系统分析在现代科学技术领域中,信号与系统分析是一门重要的学科。

它主要研究信号以及信号在系统中的传输和处理过程。

本文将从信号与系统的基本概念、数学模型、频域分析以及实际应用等方面对信号与系统进行分析。

一、信号与系统的基本概念1.1 信号的定义与分类信号是指随时间、空间或其他自变量的变化而变化的物理量。

根据信号的特征和性质,可以将信号分为连续时间信号和离散时间信号。

连续时间信号是在连续时间内取值的信号,例如模拟音频信号;离散时间信号是在离散时间点上取值的信号,例如数字音频信号。

1.2 系统的定义与分类系统是指对信号进行处理或者传输的设备或物理构造。

根据系统的输入和输出形式,可以将系统分为线性系统和非线性系统。

线性系统满足加法性和齐次性的特性,而非线性系统则不满足。

二、信号与系统的数学模型2.1 连续时间信号模型连续时间信号可以用连续函数来描述。

常见的连续时间信号模型有周期函数、指数函数和三角函数等。

在实际应用中,还可以利用微分方程来描述连续时间信号与系统之间的关系。

2.2 离散时间信号模型离散时间信号可以用序列来表示。

序列是由离散的采样点构成的数列。

常见的离散时间信号模型有单位样值序列、周期序列和随机序列等。

在实际应用中,离散时间信号与系统之间可以通过差分方程进行建模。

三、频域分析频域分析是对信号在频域上的特性进行分析的方法。

通过将信号从时域转换到频域,可以更加清晰地观察信号的频率成分及其变化规律。

常见的频域分析方法有傅里叶变换、拉普拉斯变换和Z变换等。

3.1 傅里叶变换傅里叶变换是将一个信号在频域上进行表示的方法。

它可以将信号分解成一系列的正弦函数或者复指数函数的组合。

傅里叶变换广泛应用于信号的频谱分析、滤波器设计以及通信系统等领域。

3.2 拉普拉斯变换拉普拉斯变换是对信号在复域上的频域表示。

它具有傅里叶变换的扩展性质,可以处理更加一般的信号和系统。

拉普拉斯变换在控制系统分析和设计、电路分析以及信号处理等方面有重要应用。

信号与系统分析导论课件

信号与系统分析导论课件

信号与系统分析导论
信号的描述及分类 系统的描述及分类 信号与系统分析概述
信号的描述与分类
信号的基本概念 信号的分类
确定信号 与 随机信号 连续信号 与 离散信号 周期信号 与 非周期信号 能量信号 与 功率信号
一、信号的基本概念
1.信号:消息的运载工具和表现形式
2.表示: 函数:f(t)=Amcos(t+) 波形:
抽样信号——
时间离散 幅值连续
数字信号——
时间离散 幅值离散
f (t )
f (n)
f (n)
抽样
t O
n
n
判断下列波形是连续时间还是离散时间信号,若是 离散时间信号是否为数字信号?
f (t) sint (t)
值域连续 t
0
f(t)
0
值域不连续 t
连续时间信号
连续时间信号(可包含不连续点)
t<0时,ff((tn))=0的信号称为有始信号
f(n)
(2)
(1)
(1)
0 12 345
n
0 12 34
n
离散时间信号(抽样信号)
数字信号
二、信号的分类
3. 周期信号 与 非周期信号
➢ 连续时间周期信号定义: t R,存在正数T,使得
f (t T ) f (t) 成立,则 f (t) 为周期信号。
➢ 离散时间周期信号定义: kI , 存在正整数N,使得
[例] 判断下列系统是否为线性系统。
(1) y(t) t 2 f (t) (2) y(t) 3 f (t) 4
(3) y(t) 4 df (t) dt
解: (2) y(t) 3 f (t) 4
f1(t) 3 f1(t) 4 Kf1(t) 3Kf1(t) 4 不满足均匀特性,该系统为非线性系统。

信号与系统分析PPT全套课件

信号与系统分析PPT全套课件

f (t) sin t Sa(t) t R t
(1)
f
( 0)
lim t
sin t
t
1
(2)lim f (t) 0 t
(3) f (t) f (t)
2020/9/8
1.3 信号时域变换
折叠
f (t)
时移
f (t 1)
f (t)
2020/9/8
f (t)
f (t 1)
1.3 信号时域变换
t
() (1/ )
(3) f (t) ' (t) f (0) '(t) f ' (0) (t)
(4) f (t) '(t)dt f '(0)
(1) '(t) '(t)
(2) '(t)dt 0
2020/9/8
1.2 基本信号及其时域特性
符号信号
sgn(t)
1
0
t
1
例:画出函数
f
(t)
0
t 0 t 0
(t)dt lim f (t)dt
t0
lim f (t)dt 1 t0
0 t0
t
t0
0
t
2020/9/8
单位冲激信号的主要性质
(1)
f (t)
f (0) 0
(t)
(2)抽样性
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
f
(t)
sgn(cos
2
t
)
的波形
2020/9/8
1.2 基本信号及其时域特性
单位斜坡信号 r(t) tU (t)

第一章信号与系统分析导论--课件

第一章信号与系统分析导论--课件

结论 x(t) e j0n 2 以 为周期
2 k 低频
2k 高频
在满足周期性要求的情况下,总能找到互为质数的两个正整数 M, N 使得:
N 2 M (M与N无公因子) 0
此时 N 即2为该M信号的周期, 也称为基波周期,因此该信号的基波频率为
0
2 0
NM
信号 e j0t 和e j0n 的比较
u (t)
1
t
0
u(t)
定义:
u(t)
1, t0 0 , t0
1
t
0
单位阶跃
➢开关的数学模型 ➢单位阶跃函数的常用形式
单位阶跃的作用
➢起始任意一个函数
sint
信号在t0时刻接入:
0
t
➢描述矩形脉冲
f(t) 1
0
t0
t
sint u(t-t0)
t0
0
t
1 t0
0
t
描述矩形脉冲
f(t)
0 t0
t
E t2 x(t) 2 dt t1
[t , t ] 连续时间信号在
区间的平均功率定义为: 12
P 1 t2 x(t) 2 dt t2 t1 t1
离散时间信号在
区间[n的1能, n量2定]义为
E n2 x[n] 2
离散时间信号在
nn1
区间[n的1平, n均2功] 率为
P 1
n2 x[n] 2
做法一:
x(t) x(t 1) x(3t 1)
2
2
x(t)
1
0
1
t t 1 2 t
x(t 1) 2
1
t
0 1/2 3/2
x(3t 1)

电子信息工程专业公开课信号与系统分析

电子信息工程专业公开课信号与系统分析

电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。

本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。

一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。

系统是指处理信号的一种装置或方法。

信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。

在信号的分类中,常见的包括连续时间信号和离散时间信号。

连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。

在信号的特性中,常见的包括能量信号和功率信号。

能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。

系统的分类主要包括线性系统和非线性系统。

线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。

在系统的特性中,常见的包括时不变系统和时变系统。

时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。

二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。

连续时间信号可以用函数表示,离散时间信号可以用数列表示。

连续时间信号的数学表示主要包括信号的幅度、相位和频率等。

离散时间信号的数学表示主要包括信号的取样、量化和编码等。

在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。

系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。

三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。

在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。

在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出

的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:

可化简为

,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航

信号与系统总结

信号与系统总结

第一章 信号与系统分析导论一.信号的描述及分类信号是消息的表现形式与传送载体,消息则是信号的具体内容。

1. 信号的分类:(1)从信号的确定性划分:确定信号 与 随机信号(2)从信号在时间轴上取值是否连续划分:连续信号 与 离散信号 (3)从信号的周期性划分:周期信号 与 非周期信号 (4)从信号的可积性划分:能量信号 与 功率信号 重点讨论:确定信号 特别注意:离散信号 的自变量 要求取整数 2. 能量信号定义: 0 < W < ∞,P = 0。

功率信号定义: W → ∞,0 < P < ∞。

直流信号与周期信号都是功率信号。

二.系统的描述及其分类 1. 描述:(1)数学模型输入输出描述:N 阶微分方程或N 阶差分方程状态空间描述:N 个一阶微分方程组或N 个一阶差分方程组 (2)方框图表示 2. 分类:(一)连续时间系统 与 离散时间系统 (二)线性系统 与 非线性系统 无初始状态:线性:均匀特性 与 叠加特性 见教案例1-3 若: 有:其中 α 、β 为任意常数-------线性系统线性系统的数学模型是线性微分方程式或线性差分方程式 含有初始状态:见教案例1-4完全响应、零输入响应、零状态响应定义从三方面判别:1、具有可分解性: 2、零输入线性3、零状态线性(三)时不变系统 与 时变系统 见教案例1-5 时不变特性:[]k f k )()(),()(2211t y t f t y t f −→−−→−)()()()(2121t y t y t f t f ⋅+⋅−→−⋅+⋅βαβα)()()(t y t y t y f x +=)()(t y t f f −→−)()(00t t y t t f f -−→−-线性时不变系统数学模型:定常系数的线性微分方程式或差分方程式 线性时不变性的判别见教案总结 (四)因果系统 与 非因果系统 -----为因果系统----------非因果系统 (五)稳定系统 与 不稳定系统 本课程重点讨论线性时不变系统 三:信号与系统分析概述1. 信号分析:核心是信号分解2. 系统分析:主要任务是建立系统的数学模型,求线性时不变系统的输出响应学习要求:1. 掌握信号的定义及分类;2. 掌握系统的描述、分类及特性;3. 重点掌握确定信号及线性时不变系统的特性。

信号系统复习资料

信号系统复习资料

变为f (t -t)时,相应的输出响应y (t )是否变为y (t -t )。

‘ ᩴ -第一章信号与系统分析导论1.信号分类:确定信号与随机信号、连续时间信号与离散时间信号、周期信号和非周期信号、能量信号与功率信号。

2.系统分类:连续时间系统与离散时间系统、线性系统和非线性系统、非时变系统与时变系统、因果系统与非因果系统3.掌握信号周期的判断、线性系统的判断、时不变系统的判断(1)判断周期性 Ω0 /2π = m/N ,N 、m 是不可约的整数,则信号的周期为 N 。

例 f 1[k ] = sin(kpi /6)W0 /2pi = 1/12, 由于 1/12 是不可约的有理数, 故离散序列的周期 N=12。

习题 1-4(2)判断一个系统是否为线性系统,应从三个方面来判断:1)、具有可分解性y (t ) = y zi (t ) + y zs (t )2)、零输入线性,系统的零输入响应必须对所有的初始状态呈现线性特性。

3)、零状态线性,系统的零状态响应必须对所有的输入信号呈现线性特性。

例: y (t ) = 2 y (0) + 6 f2(t ) ,可分解但是 y zs (t ) 是非线性的,故不是线性系统习题 1-7(3)判断系统是否为时不变系统,只需判断当输入激励 f (t )0 0注意:时不变特性只考虑系统的零状态响应,因此在判断系统的时不变特性时,不涉及系统的初始状态。

例 y (t)=cos t ·f (t )y (t ) = cos(t ) f (t - t 0 ) 而 y (t - t 0 ) = cos(t - t 0 ) f (t - t 0 ) 故不相等,是时变系统。

习题 1-8第二章信号的时域分析1.掌握普通信号的定义(1) 指数信号——实指数信号 f (t ) = Ae αt(2) 虚指数信号 f (t ) = e jω0tEuler 公式:cos(ωt ) = 1 2(e j ωt + e - j ωt)sin(ωt ) =1 2 j(e j ωt - e - j ωt )(3) 指数信号——复指数信号 f (t ) = Ae sts = σ + j ω01f (t ) = Ae σt e j ω0t = Ae σtcos ω0t + jAe σtsin ω0t〰〰〰〰(4) 抽样函数 Sa(t ) = sin t / t抽样函数具有以下性质:- π π2π 〰ᩴSa(0) = 1Sa(k π ) = 0, k = ±1,±2∞⎰ -∞Sa(t )dt = πu (t ) = ⎨u (t - t 0 ) = ⎨⎰ ⎰δ (τ )d τ = ⎨⎧1 t >r (t ) = ⎨= ⎰ u (τ ) ⋅ d τ ⎰δ (t )dt = 0 ⎰δ (τ )d τ =δ (t ) f (t )δ (t ) = f (0)δ (t ) - f (0)δ (t )⎰f (t )δ (t )dt = - f ⎰sin(t ) ⋅δ (t - )dt = sin( ) = 2 / 2(2)⎰ e -5t ⋅δ (t -1)dt = e -5⨯1 = 1/ e 5(3)⎰ e -2t ⋅δ (t + 8)dt = 0 2.掌握奇异信号的定义 (1) 单位阶跃信号⎧1 ⎩0 t > 0 t < 0 t⎧1⎩0t > t 0 t < t 0t(2) 冲激信号δ(t )=0 , t ≠0+∞ -∞δ (t ) dt = 1δ (t - t 0 ) = 0t ≠ t 0∞ ⎰ -∞δ (t - t 0)dt = t 0 +∆ ⎰ t 0 -∆δ (t - t 0)dt = 1冲激信号的性质a)筛选特性 f (t )δ (t - t 0 ) = f (t 0 )δ (t - t 0 )b)取样特性 ∞⎰-∞f (t )δ (t - t 0 )dt = f (t 0 )c)展缩特性 δ (at ) = 1aδ (t ) , δ (t ) = δ (-t )推论:冲激信号是偶函数。

信号与系统教程习题解析(前七章)

信号与系统教程习题解析(前七章)

题 4-1(a) 图

对于 于周期锯齿波 波信号,在 在周期( 0,T )内可表示 示为 At A f t t T A T T a 1 T f t dt d 1 T At T A dt A T t 2T t A 2 0
∵ω T 2 T 2A 2 T b 2 T
2π, 2 ∴
sinnω tdt t 2 2A T
《信 信号与系 系统教程 程》习题 题解析
第1 章 导论 导
1-1 题 1-1 图示信号中, 图 哪些是连续 续信号?哪 哪些是离散信 信号?哪些 些是周期信号 号? 哪些 些是非周期 期信号?哪些 些是有始信 信号?
题 1-1 图

图(a a)、(c)、( (d)为连续信 信号;(b)为 为离散信号 号;(d)为周 周期信号;其 其余
(a)和(b)的波形如图 p2-1 所示。
2
图 p2-1
2-2 试用 用阶跃函数的组合表示 示题 2-2 图所 所示信号。 解 (a) f t (b) f t ε t ε t 2ε t ε t 1 T ε t ε t 2 2T T
题 2-2 图
2-3 如题 题 2-3 图所示 示f t ,试画 画出如下信 信号的波形。 。 (a) f (b) f t (c) f t (d) f 2t (e) f t/2 (f) f 2t 2
cosn nω tdt A 2A T
a
f t cosnω ω tdt tsinnω ω t nω f t sinnω ω tdt
tcosn nω tdt
cosnω ω tdt
sinnω t dt nω 2 2A T
0 2A A T
tsinn nω tdt
sinnω tdt

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统导论1.1 信号的概念与分类讲解信号的定义和特性介绍常见信号的分类,如连续信号、离散信号、模拟信号和数字信号等1.2 系统的概念与分类讲解系统的定义和特性介绍常见系统的分类,如线性系统、非线性系统、时不变系统等1.3 信号与系统的研究方法讲解信号与系统的研究方法,如数学分析、仿真实验等第二章:连续信号与系统2.1 连续信号的基本性质讲解连续信号的定义和特性,如连续性、周期性、对称性等2.2 连续信号的运算介绍连续信号的基本运算,如加法、乘法、积分等2.3 连续系统的基本性质讲解连续系统的基本性质,如线性、时不变性等第三章:离散信号与系统3.1 离散信号的基本性质讲解离散信号的定义和特性,如离散性、周期性、对称性等3.2 离散信号的运算介绍离散信号的基本运算,如加法、乘法、求和等3.3 离散系统的基本性质讲解离散系统的基本性质,如线性、时不变性等第四章:模拟信号处理4.1 模拟信号处理的基本方法讲解模拟信号处理的基本方法,如滤波、采样、量化等4.2 模拟滤波器的设计与分析介绍模拟滤波器的设计方法,如巴特沃斯滤波器、切比雪夫滤波器等讲解滤波器的频率响应、阶数等特性分析4.3 模拟信号处理的应用讲解模拟信号处理在实际应用中的案例,如音频处理、通信系统等第五章:数字信号处理5.1 数字信号处理的基本方法讲解数字信号处理的基本方法,如离散余弦变换、快速傅里叶变换等5.2 数字滤波器的设计与分析介绍数字滤波器的设计方法,如IIR滤波器、FIR滤波器等讲解滤波器的频率响应、阶数等特性分析5.3 数字信号处理的应用讲解数字信号处理在实际应用中的案例,如图像处理、语音识别等第六章:信号与系统的时域分析6.1 线性时不变系统的时域特性讲解线性时不变系统的时域特性,如叠加原理和时移特性6.2 常用时域分析方法介绍常用时域分析方法,如单位脉冲响应、零输入响应和零状态响应6.3 时域分析在实际应用中的案例讲解时域分析在实际应用中的案例,如信号的滤波、去噪等第七章:信号与系统的频域分析7.1 傅里叶级数与傅里叶变换讲解傅里叶级数的概念和性质介绍傅里叶变换的定义和性质,包括连续傅里叶变换和离散傅里叶变换7.2 频域分析方法介绍频域分析方法,如频谱分析、滤波器设计等7.3 频域分析在实际应用中的案例讲解频域分析在实际应用中的案例,如通信系统、音频处理等第八章:信号与系统的复频域分析8.1 拉普拉斯变换和Z变换讲解拉普拉斯变换的概念和性质介绍Z变换的定义和性质8.2 复频域分析方法介绍复频域分析方法,如系统函数分析、滤波器设计等8.3 复频域分析在实际应用中的案例讲解复频域分析在实际应用中的案例,如数字通信系统、信号的调制与解调等第九章:信号与系统的状态空间分析9.1 状态空间模型的概念和性质讲解状态空间模型的定义和性质,如状态向量、状态方程和输出方程等9.2 状态空间分析方法介绍状态空间分析方法,如状态预测、状态估计等9.3 状态空间分析在实际应用中的案例讲解状态空间分析在实际应用中的案例,如控制系统的设计和分析等第十章:信号与系统的应用案例分析10.1 通信系统中的应用讲解信号与系统在通信系统中的应用,如信号的调制与解调、信道编码与解码等10.2 音频处理中的应用讲解信号与系统在音频处理中的应用,如音频信号的滤波、均衡等10.3 图像处理中的应用讲解信号与系统在图像处理中的应用,如图像的滤波、边缘检测等重点解析信号与系统的基本概念及其分类信号与系统的研究方法连续信号与系统的性质和运算离散信号与系统的性质和运算模拟信号处理的基本方法和应用数字信号处理的基本方法和应用信号与系统的时域分析方法及其应用信号与系统的频域分析方法及其应用信号与系统的复频域分析方法及其应用信号与系统的状态空间分析方法及其应用信号与系统在不同领域中的应用案例分析难点解析信号与系统理论的数学基础和抽象概念的理解不同信号与系统分析方法的相互转换和应用信号与系统在实际工程应用中的复杂性和挑战高频信号处理和数字信号处理的算法优化和实现状态空间分析方法的数学推导和系统设计的实践应用。

电子工程优质课信号与系统分析

电子工程优质课信号与系统分析

电子工程优质课信号与系统分析信号与系统是电子工程专业中非常重要的一门课程,它涉及到信号的产生、传输、处理和分析等方面内容,是电子工程师必须掌握的基础知识之一。

本文将对电子工程中的信号与系统分析进行详细介绍和阐述。

一、信号与系统的概念及基本特性信号是一种事物的特征或变化规律在一定时间内的表现,比如声音、图像等。

系统是指将输入信号转换为输出信号的过程,它可以是物理系统、电子系统或者其他形式的系统。

信号与系统分析就是研究信号在系统中传递、处理和改变的过程。

信号与系统分析的基本特性有时域特性和频域特性两个方面。

时域特性是指信号与系统在时间上的表现,包括信号的幅度、相位、波形等;频域特性是指信号与系统在频率上的表现,包括频谱分析、频率响应等。

二、信号与系统的数学表示信号与系统可以用数学模型进行描述和表示。

常见的信号有连续时间信号和离散时间信号两种形式。

连续时间信号是在连续时间域上变化的信号,可以用函数表示;离散时间信号是在离散时间点上变化的信号,可以用数列表示。

系统也可以用数学模型进行描述,常见的有线性时不变系统(LTI系统)。

LTI系统具有线性性质和时不变性质,可以用差分方程或者传递函数表示。

通过对信号与系统的数学表示,可以进行信号与系统的分析和理论推导。

三、信号的频谱分析频谱分析是信号与系统分析中非常重要的一个环节。

信号的频谱分析可以得到信号在频率上的分布情况,从而了解信号中包含的不同频率成分。

常见的频谱分析方法有傅里叶变换、快速傅里叶变换、功率谱密度分析等。

傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。

功率谱密度分析可以得到信号的能量在不同频率上的分布情况,用于描述信号的频率特性。

四、系统的频率响应系统的频率响应描述了系统对不同频率信号的传递特性。

常见的系统频率响应有幅频响应和相频响应两种形式。

幅频响应是指系统对输入信号幅度的变化情况,描述了系统对不同频率信号的衰减或放大程度。

相频响应是指系统对输入信号相位的变化情况,描述了系统对不同频率信号的相位差异。

第一章 信号与系统分析导论

第一章 信号与系统分析导论

《信号与系统》学习包(作业答案全部要求手写,直接打印平时成绩无效)第一部分前言1、先修与后修2、学习内容信号与系统课程研究信号通过系统的一系列分析与计算方法,它的教学内容可以概括为:两种系统,两类方法,三大变换。

两种系统:连续时间系统和离散时间系统;两类方法:时域分析方法和变换域分析方法两类;三大变换:变换域分析方法使用的三种变换:傅里叶变换,拉普拉斯变换和Z变换。

3、学习目标通过本门课程的学习,学生应该掌握信号分析的基本理论和方法,掌握线性非时变系统的各种描述方法,时域和频域分析方法,掌握有关系统的稳定性、频响、因果性等工程应用中的一些重要结论。

同时,通过这门课程的学习,学生的分析问题和利用所学的知识解决问题的能力也应该在原来的基础上有所提高。

另外,通过本课程的学习,可以为学生今后进一步学习信号处理、网络理论、通信理论、控制理论等课程打下良好的基础。

4、体系结构在课程的体系结构上,该教材有三个特点。

其一,先时域再变换域。

其二,先信号分析再系统分析。

其三,先连续后离散。

以通信系统和生物医学为应用背景,以系统对信号的响应为主线,展开对信号与系统课程的教学。

本书的知识体系:5、学习方法1.重视练习基于信号与系统课程本身的特点,课后练习及适当的习题课教学是必不可少的。

通过课下作业练习,有利于加深对信号与系统课程的基本概念的认识,有利于加深对信号和系统的各种分析方法的理解和掌握。

2.加强与相关课程的横向联系,培养综合性思维任何一门课程的教学和学习都不是独立的,它与本专业的其他课程甚至其他专业的一些课程有着密切的内在联系。

因此,在学习过程中,要运用横向思维,从而培养自己的综合性思维,加深对问题的全面理解和掌握。

第二部分详细内容第一章信号与系统分析导论1、主要内容:信号、系统的定义、分类及特性,信号与系统的相互关系,以及信号与系统分析方法概述。

2、学习目标:掌握信号的定义及分类,系统的描述、分类及特性。

3、学习重点:掌握确定信号及线性时不变系统的特性。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。

分类:连续信号、离散信号、模拟信号、数字信号等。

1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。

图形方法:波形图、频谱图、相位图等。

第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

2.2 连续系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。

齐次运算:连续信号的常数倍仍然是连续信号。

第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

3.2 离散系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。

齐次运算:离散信号的常数倍仍然是离散信号。

第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。

特点:连续性、模拟性、无限可再生性。

4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。

模拟调制:将信息信号与载波信号进行合成。

第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。

特点:离散性、数字化、抗干扰性强。

5.2 数字系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

信号与系统课程第1-4章要点

信号与系统课程第1-4章要点
N
m 0
第4章 信号的频域分析
四类信号频谱特点及时频对应关系
x(t)
CFT
t
X(j)
0 ~ x (t )
0

CFS
t
X(n0)
0
x[k]
0

X(ej)
DTFT
0
~ x [k ]
...
2π π
0
...
~ X [m]
k
π


DFS
k
...
N 0 N
...
m
0
第4章 信号的频域分析
抽样信号
冲激偶信号
◎离散序列 • 脉冲序列 • 阶跃序列 • 指数序列 • 正弦序列 • 矩形序列
第2章 信号的时域分析
主要涉及三个方面的内容: ●基本信号 ●基本运算
信号扩展与压缩 信号翻转 信号时移
●基本分解
序列内插与抽取
序列翻转 序列位移 序列相加 序列相乘 序列差分 序列求和

冲激平衡法
h (t )

i 0
n
ai y[k i] b j x[k j ]
j 0
m

等效初始条件法
h[k ]
第3章 系统的时域分析
线性非时变(LTI)系统响应时域求解
经典法:求解微分(差分)方程
卷积法: 系统完全响应 = 零输入响应 + 零状态响应
y(t ) yzi (t ) yzs (t ) yzi (t ) x(t ) * h(t )
信号与系统第1-4章要点
第 1章 第 2章 第 3章 第 4章 信号与系统分析导论 信号的时域分析 系统的时域分析 信号的频域分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) cos2t 和sinπt的周期分别为T1= πs, T2= 2 s,由于T1/T2为无理数,故 f2(t)为非周期信号。
信号与系统分析导论和系统判断
研究热点: 混沌信号: “无序中蕴含有序”
信号与系统分析导论和系统判断
二、信号的分类
4. 能量信号 与 功率信号
归一化能量E 与 归一化功率P
例:判断下列信号是否为能量信号、功率信号。
(1)f1(t)Acos(0t)
(2)f2(t)et
(3f)[k ] ( 4 )k 5
功率信号 能量信号 非功率、非能量信号
解 (2)
Elim
et
2
dt
T T
lim T e 2 td t lim 1 (e 2 T 1 ) 1
T 0
T 2
2
k
离散信号 数字信号
k
二、信号的分类
3. 周期信号 与 非周期信号
➢ 连续时间周期信号定义:
,存在正数T,使得 tR
x(tT)x(t)
成立,则 x(t) 为周期信号。
➢ 离散时间周期信号定义: kI , 存在正整数N,使得
x[kN]x[k]
成立,则 x[k] 为周期信号。
满足上述条件的最小的正T、正N称为信号的基本周期。
不是时间的确定函数。
确定信号 t
随机信号的一个样本 t
两者有时具有相信对号与性系统分析导论和系统判断
二、信号的分类
2. 连续时间信号 与 离散时间信号
➢ 连续信号: 在观测过程的连续时间范围内信号有确 定的值。允许在其时间定义域上存在有 限个间断点。通常以x(t)表示。
(Continous signal)
✓ 数字信号:取值为离散的离散信号。 O
n
离散信号包括抽样信号和数字信号
Sample signal 信号与系统D分析i导g论ta和l系统si判g断nal
离散信号的表示:
抽样信号
x[k])={-2.2 1.9 4 4.2 -4.0 3.1 -2.0}
K=0
x[k]={-1 -1 1 1 -1 1 -1}
数字信号
量化标准: 大于2量化为1,小于等于2量化为-1。
信号与系统分析导论和系统判断
f t
判断下列波形是连续时
间信号还是离散时间信 O
号,若是离散时间信号
是否为数字信号?
f [k]
连续信号 模拟信号
t
离散信号 抽样信号
O 12345678
f [k]
3 2 1
只有1,2,3值
信号与系O统分析1 导2论和3 系4统判5 断6 7 8
El连im 续T信/2 号x(t)2dt T T2/
E离li散m信N号x[k]2 NkN ➢ 能量信号: 0 < E < ,P = 0。 ➢ 功率信号: E ,0 < P < 。
Plim1 T/2 x(t)2dt T T T/2
Plim 1
N
x[k]2
N2N1kN
信号与系统分析导论和系统判断
不满足周期信号定义的信号称为非周期信号。
(Periodic signal) (Aperiodic signal)
信号与系统分析导论和系统判断
例 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt 解:两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数, 则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
2. 信号的表示
函数表示 f(t)K si n t ( )
图形表示
f t T
K

O

信号与系统分析导论和系统判断
T2
t
语音信号:
空气压力随时间变化的函数。
语音信号 “信号” 的波形
信号与系统分析导论和系统判断
静止的单色图象:
亮度随空间位置变化的信号f (x,y) 。
信号与系统分析导论和系统判断
信号与系统分析导 论和系统判断
信号与系统分析导论和系统判断
信号的描述及分类 系统的描述及分类 信号与系统分析概述
信号与系统分析导论和系统判断
学习目标
1、掌握信号的分类与典型确定性信号的描述方法 2、掌握系统的分类与描述方法 3、了解信号与系统分析的内容与方法,及应用领域
重点与难点
1、周期与非周期信号、能量与功率信号判断 2、线性系统、时不变系统及因果系统的判断。
信号与系统分析导论和系统判断
信号的描述与分类
信号的基本概念 信号的分类
确定信号 与 随机信号 连续信号 与 离散信号 周期信号 与 非周期信号 能量信号 与 功率信号
信号与系统分析导论和系统判断
一、信号的基本概念
消息: 待传送的一种以收、发双方事先约定的方式组 成的符号,包括语言、文字、图像等。消息不 能直接传送,必须借助于一定形式的信号才能 传输和进行处理。
信号:是消息的一种表现形式,是运载消息的载体, 而消息只是信号的具体的内容,其常见的表现 形式是随时间变化的物理量。 *(声信号、电信号、光信号)
信号与系统分析导论和系统判断
1. 信号的定义
广义: 信号是随时间变化的某种物理量。 严格: 信号是消息的表现形式与传送载体。
电信号通常是随时间变化的电压或电流。
静止的彩色图象:
三基色红(R)、绿(G)、蓝(B)随空间位置变化的信号。
IR (x, y)
I
(
x,
y)
I
G
(
x,
y)
I B (x, y)
信号与系统分析导论和系统判断
二、信号的分类
1. 确定信号 与 随机信号
➢ 确定信号(Determinate signal) 能够以确定的时间函数
表示的信号。
➢ 随机信号(Random signal) 也称为不确定信号,
➢ 离散信号:信号仅在规定的离散时刻有定义。 通常以x[k]表示。
(Discrete signal)
信号与系统分析导论和系统判断
•模拟信号:时间和幅值均为连续
的信号。
f t
抽 样
•抽样信号:时间离散的,幅值
O
t
量 连续的信号。
f [n]ຫໍສະໝຸດ 化•数字信号:时间和幅值均为离散 O
n
的信号。
f [n]
✓ 模拟信号:取值是连续的连续信号。
(1)sin2t是周期信号,其角频率和周期分别为ω1= 2 rad/s , T1= 2π/ ω1= πs cos3t是周期信号,其角频率和周期分别为ω2= 3 rad/s , T2= 2π/ ω2= (2π/3) s
由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其周期为T1和T2的最小公倍数2π。
直流信号与周期信号都是功率信号。 一个信号可以既不是能量信号也不是功率信号。 一个信号不可能既信是号与能系统量分信析导号论和又系是统判功断 率信号。
相关文档
最新文档