近世代数课件--1.4循环群

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数课件群的概念

近世代数课件群的概念
ab ba e . 为了阐明这样的 b 是唯一的; 满足
ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an

近世代数课件循环群

近世代数课件循环群

§4 循环群
我们来阐明 H ar .事实上,一方面, 显然, ar H .另一方面,由于 G a 且 H G ,对于任意的 hH ,可设 h an ,其 中 nZ .我们取整数 q 和 s ,使得
n qr s , 0 s r . 若 s 0 ,则
§4 循环群
as anqr an (ar )q h(ar )q H , 这与 r 为 N 中的最小数矛盾.因此 s 0 ,从而,
((s, n), (t, n)) ( t , n) ((s, t), n) (s, n) (s, t)
((s, t), n)
§4 循环群
(s, n) ( t , n) (s, t)
( st , n) ([s, t] n) . (s, t)
§4 循环群
k Z ,使得 r k[s, t].所以 b ar a[s, t] . (2)假设| a | n . 由于 b H ,因此| b | | | as | ;由于 b K ,
因此| b | | | at | .也就是说, n|n,n|n,
(r, n) (s, n) (r, n) (t, n)
h an aqr (ar )q ar . 由 此 可 见 H ar . 所 以 H ar . 这 就 是 说, H 是循环群.□
§4 循环群
命 题 4.2 设 G a 是 一 个 有 限 循 环 群,| a | n , r 是任意一个整数.那么
| ar | n , (r, n)
令 s | ar | .根据命题 3.12, s | n .另一方 (r, n)
§4 循环群
面,由于 (ar )s e 且| a | n ,根据命题 3.12,
n | (rs) ,从而, n | (rs) .由于 ( n , r) 1,

近世代数引论-002

近世代数引论-002
7
与a的周期为m矛盾.
Zhang Aili
(5)设k | m.
近世代数引论
当0 r m / k时, (a k )r e :
若不然的话 , a kr e, kr k (m / k ) m
(a k )m / k a m e.
这与 | a | m矛盾. k | a | m / k.
设Q n / m , 其中n / m是有理数 .
Q n / m {r (n / m) | r Z}
但1 /(2m) Q,1 /(2m) {r (n / m) | r Z}
这是一个矛盾 .故Q不是一个循环群 .
2015-1-18
Zhang Aili
13
例3 设G是个阶大于 1的群. 若对于G中的任意元素 g及任意自然数 n, 方程x n g在G中
2015-1-18 Zhang Aili 3
定理2 加法群Z的每个子群 H都是循环群 .
近世代数引论
H 0 或H m , 其中m是H中的最小正整数 . 如果H 0 , 则H是无限群 . 证明 若H 0 , 则H显然是循环群 . 若H 0 , 则H包含一个最小的正整数 m. H是Z的一个子群且 m H m {km | k Z } H 反之, 如果h H , 则h qm r, q, r Z ,0 r m. r h qm H r 0(根据m是H中的最小的正整数 ) H m h qm, 故H m
证明 A, B a d , 这里的d是s, t的最大公因数 .
证明 a (a )
s
d s/d
a , a (a )
d t
d t/d

大学数学《近世代数》课件

大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元

大学课程近世代数循环群与置换群讲义课件

大学课程近世代数循环群与置换群讲义课件
即 f 是同构,故( G,◦) ≅ (Zn, +n) 。
(2)作映射 f : G → Z , f ( gk )=k ,
则 f 是同构,故 ( G,◦) ≅ (Z , + )。
大学课程近世代数循环群与置换群 讲义课件
二、置换群
定义7.3.3 设 S为集合,称映射τ : S →S 为 S上的
一个变换。变换即为集合S到S自身的一个映射。
而 1 2 1 2 4 3 4 3 5 5 1 2 1 2 3 3 4 4 5 5 1 1 2 2 4 3 4 3 5 5 (1)( 2 3) 4 (3)( 4 1)2
大学课程近世代数循环群与置换群 讲义课件
定理7.3.5 任意一个置换都等于若干个不含公共元 素的循环置换的复合。
例如, 1 32 63 44 18 52 65 77 8 (5)8 2 ()7 1 6 ()3 (1 4)3 2 ()4 5 6 ()8 7
大学课程近世代数循环群与置换群 讲义课件
例7.3.9 利用循环置换的方法,我们有 3次对称群 S3的元素可以表示为: (1), (12), (13), (23), (123), (132)。 4次对称群 S4的元素可以表示为: (1); (12), (13), (14), (23), (23), (34); (123), (132), (124), (142), (134), (143), (234), (243); (1234), (1243), (1324), (1342), (1423), (1432); (12)∘(34), (13)∘(24), (14)∘(23)。
通常还是用
1 2
2 3
3 1
来表示。
大学课程近世代数循环群与置换群 讲义课件

近世代数课件 第7节 循环群

近世代数课件  第7节 循环群
12/22
近世 代数
证明
(2) 只须证明:对任何正整数 r ( r≤n), ar是G的生成元 n与r互质,即(n, r)=1.
充分性: n与r互质,即(n, r)=1 ar是G的生成元. 思路1: a) 欲证:ar是G的生成元,因此只需证得:|ar| = n. b) 欲证: |ar| = n ,令|ar| = k,因此只需证得:k | n,且n | k.
(另证)必要性: ar是G的生成元 n与r互质,即(n, r)=1. 思路: a) 欲证(n, r)=1,令(n, r)=d,因此只需证得d = 1. b) 欲证d = 1,只需证得:n | (n/d). c) 欲证n | (n/d),已知|ar| = n,因此只需证得: (ar)n/d=e. 设ar是G的生成元,则 |ar| = n. 令r与n的最大公约数 为d,则存在正整数 t 使得 r = dt. 因此, |ar| 是n/d的因子,即 n整除n/d. 从而证明了d = 1.
借助于命题:整数r与n互质存在整数 u 和 v 使得ur+vn = 1.
设r与n互质,则存在整数 u 和 v 使得
ur + vn = 1
从而
a = aur+vn = (ar)u(an)v = (ar)u
这就推出ak∈G,ak = (ar)uk∈(ar),即G(ar).
另一方面,显然有(ar)G. 从而G = (ar).
(3) 设G=3Z={3z | z∈Z}, G上的运算是普通加法. 那 么G只有两个生成元:3和3.
15/22
近世 代数
循环群的子群
定理4 设G=(a)是循环群,则 (1) 循环群G的子群仍是循环群. (2) 若G=(a)是无限循环群,则G的子群除{e}以外都

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数抽象代数ppt课件

近世代数抽象代数ppt课件
第一章 群 论
LOGO
1
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2
§1 代数运算
设 A1, A2 , , An ( n 为正整数)都是集合.我们将 集合
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
s
ns
a ai , b as j .
i 1
j 1
n
所以 a b ai . i 1
24
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
25
10
§1 代数运算
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
· eabc e eabc aaecb bb c e a c cba e
11
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个代数 运算.
(1)若对于任意的 a, b, c A 总有 (ab)c a(bc) ,
17
§1 代数运算
但是,当“ ”适合结合律时,我们可以定义 A 中任意有限 n ( n 3 )个元素 a1, a2 , , an 的乘积 a1a2 an .这是因为,容易证明,对于 A 中任意 n 个元素 a1, a2 , , an ,只要不改变它们的次序,运 算结果与加括号的方式无关(见习题 2).这样一 来,我们便可定义 a1, a2 , , an 的乘积 a1a2 an 就 是按任意一种方式添加括号后的算出的结果.
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .

大学课程课件 近世代数教学课件

大学课程课件 近世代数教学课件

A1 , A2 ,, An

A1 A2 An 我们有
A1 A2 An
( x A1 A2 A) ( x至少属于某一Ai , i 1, 2,, n)
( x A1 A2 A) ( x属于每一Ai , i 1, 2,, n)
全体复数的集合,表示为C
设A,B是两个集合,如果A 的每一元素都是B 的
元素,那么就说A是B的子集,记作 作 ,或记
. 根据这个定义,A是B的的子集当且仅当
A B
.
BA 对于每一个元素 x,如果
,就有
x A
A是B的子集,记作:
xB
( A B) (x : x A x B)
f :x y
这时y 叫做 x 在f 之下的象,记作 . f (x )
例1 设
A B {1,2,3,4}
这是A到B的一个映射.
f : 1 2,2 3,3 4,4 1
例2 设A是一切非负数的集合,B是一切实数的集合. 对于每 一 与它对应. f 不是A到B的映射, x ,令 A f ( x) x 因为当 时, 不能由x唯一确定.
设 f :AB 如果对于每一 x A 与g是相等的. 记作
,B g:A ,都有
f ( x) g ( x)
都是A到B的映射, ,那么就说映射f
f g
例3

f : R R, x | x |
2 g : R R , x x 那么 .
f g
定义4: 设 是A到B 的一个映射, g : B C f :AB 是B 到C 的一个映射. 那么对于每一个 , x A g ( f ( x)) 是C中的一个元素. 因此,对于每一 ,就有C 中唯一的确定 x A 的元素 与它对应,这样就得到A到C 的一个映射,这映 g ( f ( x和 )) 射是由 所决定的,称为 f 与g 的合成(乘积),记作 f : A . B 于是有 g:BC

大学课程近世代数-阿贝尔群和循环群、陪集与拉格朗日定理、同态同构学习讲义PPT18页

大学课程近世代数-阿贝尔群和循环群、陪集与拉格朗日定理、同态同构学习讲义PPT18页
大学课程近世代数-阿贝尔群和循环群、 陪集与拉格朗日定理、同态同构学习讲

5.5 阿贝尔群和循环群
一. 阿贝尔群 定义 如果群<G,*>中的运算*是可交换的,则称该群为
阿贝尔群,或称交换群。 例 设<S,*>是有限的可交换独异点,且对任意的a,b,c∈S,等式
a*b=a*c 蕴含着 b = c,证明<S,*>是阿贝尔群。 分析 只要证明S中的每个元素都存在逆元,那么<S,*>就是 阿贝尔群。
证明见书P210
例:见书P210 例题1
作业P211 (3)(6)
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
a* h1≠a* h2(a∈G) ,所以|aiH|=|H|=m,i=1,2,…,k。
因此 n=|G|=

k aiH
=
k
aiH
=mk
i1
i1
推论1 推论2
任何质数阶的群不可能有非平凡子群。
设<G,*>是n阶有限群,那末对于任意的a∈G,a的 阶必是n的因子且必有an=e,这里e是群<G,*>中的 幺元。如果n为质数,则<G,*>必是循环群。
设任意的b∈S ……存在正整数i,j,使得bi = bj ( i<j) 即: bi * e= bi * bj-i由题意知bj-i就是幺元,则b的逆元 为……
定理3 设<G,*>是一个由元素a∈G生成的有限循环群。如果G

近世代数群的概念课件

近世代数群的概念课件

反身性
任何元素与自己相乘的结果仍为该元素本身。
可交换性
对于任意$a, b$在群中,有$a cdot b = b cdot a$。
可结合性
对于任意$a, b, c$在群中,有$(a cdot b) cdot c = a cdot (b cdot c)$。
子群与商群
子群
一个子群是一个集合在某个二元运算 下构成一个群,且该子集是原群的非 空子集。
05
有限群的结构
有限群的分 类
阿贝尔群和非阿贝尔群
01
根据群中元素的乘法是否满足交换律,可以将有限群分为阿贝
尔群和非阿贝尔群。
循环群和非循环群
02
根据群中是否存在循环子群,可以将有限群分为循环群和非循
环群。
素数阶群和非素数阶群
03
根据群的阶是否为素数,可以将有限群分为素数阶群和非素数
阶群。
有限群的Sylow定理
近世代数群的概念
目 录
• 群的定义与性质 • 群的表示与同态 • 循环群与交换群 • 群的扩张与直积 • 有限群的结构 • 群的应用
contents
01
群的定义与性质
群的定 义
群的定义
一个群是由一个集合和一个 在其上的二元运算所组成, 满足结合律、存在单位元、 存在逆元的代数系统。
结合律
群中的二元运算满足结合律, 即对于任意$a, b, c$在群中, 有$(a cdot b) cdot c = a cdot (b cdot c)$。
单位元
群中存在一个元素$e$,使 得对于任意$a$在群中,有 $e cdot a = a cdot e = a$。

逆元
对于任意$a$在群中,存在 一个元素$b$,使得$a cdot b = b cdot a = e$,其中 $e$是单位元。

《循环群与置换群》课件

《循环群与置换群》课件

05
循环群与置换群的习题 与解答
习题部分
习题1
什么是循环群?请给出循环群 的定义。
习题2
置换群的定义是什么?请举例 说明。
习题3
请描述循环群和置换群之间的 关系。
习题4
给出几个具体的循环群和置换 群的例子。
解答部分
第一季度
第二季度
第三季度
第四季度
解答1
循环群是由一个元素生 成的群,其定义是 G={a^n | n属于整数} ,其中a是G的元素, 且a^n表示a自乘n次 。
群,其中包含元素 (1,2,3)和(1,3,2),因为 它们分别表示元素之间
的替换。
谢谢观看
交替群
由两个置换交换位置形成 的群。
完全置换群
由所有可能的置换组成的 群。
置换群的子群与共轭类
子群
置换群的子集,满足封闭性和结合性。
共轭类
两个置换在共轭关系下形成的类。
03
循环群与置换群的关系
循环群是置换群的特例
循环群是置换群的一 种特殊形式,其中元 素都是循环置换。
置换群中的元素可以 表示为 $(1)(2)(3),(1)(3)(2),( 2)(1)(3),(2)(3)(1),do ts,(12)(34),dots$。
循环群中的元素可以 表示为 $(1),(12),(13),(14),d ots,(123),(124),dots ,(1234),dots$。
置换群在几何中的应用
置换群在几何中有着广泛的应用,特 别是在晶体结构和分子结构的研究中 。
通过研究置换群的性质和分类,可以 深入了解晶体或分子的结构和性质。
和逆元等。
晶体结构中的置换群
总结词
晶体结构中的置换群是物理学中的一个 重要实例,它展示了置换群的基本性质 和特点。

近世代数课件 第7节 循环群

近世代数课件  第7节 循环群

2/22
近世 代数
循环群的定义
定义1 设G是群,如果G是由其中的某个元素a生成 的,则称G是循环群,记作G=(a),称 a 为G 的生成 元.
定义1’ 设G是群,若存在a∈G使得 G={ak| k∈Z}
则称G是循环群,记作G=(a),称 a 为G 的生成元.
如果循环群G是由a生成的,则b∈G,存在一个 整数 m 使得 b = am.
近世 代数
问题
近世代数(或抽象代数)的主要研究内容就 是研究所谓的代数系统,即带有运算的集合。
研究一种代数系统就是要解决这一系统的存 在问题、数量问题和构造问题。
如果对于一个代数系统,这三个问题能得到 圆满的解答,研究的目的就算达到了。
1/22
近世 代数
第7节 循环群
主要内容:
循环群的定义 循环群的结构 循环群的数量 循环群的生成元 循环群的子群
abcdef
a abcdef b bcde fa c cde fab d def abc e efa bcd f fab cde
子群:(a)={a}, (c)={c, e, a}, (d)={d, a}, G .
8/22
近世 代数
循环群的生成元
定理3 设G=(a)是循环群. (1) 若G是无限循环群,则G只有两个生成元,即a和
命题:设群G的元素a的阶为n,(r, n)=d,证明:ar的阶为n/d.
必要性: ar是G的生成元 n与r互质,即(n, r)=1.
充分性: n与r互质,即(n, r)=1 ar是G的生成元.
11/22
近世 代数
证明
(2) 只须证明:对任何正整数 r ( r≤n), ar是G的生成元 n与r互质,即(n, r)=1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/9/27
数学与计算科学学院
§4 循环群
命 题 4.2 设 G a 是 一 个 有 限 循 环 群,| a | n , r 是任意一个整数.那么
| ar | n , (r, n)
其中 (r, n) 表示 r 与 n 的最大公约数.
2020/9/27
数学与计算科学学院
§4 循环群
证明 当 r 0 时,结论显然成立.不妨假
2020/9/27
数学与计算科学学院
§4 循环群
于 ak ([s, t], n) a([s, t], n) ,因此 b ar a([s, t],n) .
综上所述,无论是| a | 还是 | a | , 总有 b ar a[s, t] .由于 b 的任意性,我们有
H K a[s, t] .
(r, n)

作业 p16,第 3,4,6 题.
2020/9/27
数学与计算科学学院
§4 循环群
习题参考答案 5. 设 G a 是 循 环 群 , H as 和 K at 是 G 的两个子群,证明:
H K a[s, t] . 证明 显然 a[s, t] H K ,从而,
a[s, t] H K .
2020/9/27
数学与计算科学学院
§4 循环群
注 我们有 [(s, n), (t, n)] (s, n) (t, n)
((s, n), (t, n)) ( t , n) ((s, t), n) (s, n) (s, t)
((s, t), n)
2020/9/27
数学与计算科学学院
§4 循环群
2020/9/27
数学与计算科学学院
§4 循环群
为了证明 H K a[s, t] ,现在只需证明 H K a[s, t] .
考察为 H K 中任意一个元素 b ar : (1)假设| a | . 由于 b H ,因此存在 i Z ,使得 r is ; 由于 b K ,因此存在 j Z ,使得 r jt .这就 是说, r 是 s 与 t 的一个公倍数.因此存在
设 r 0 .由于 (r, n) (r, n) 且 | ar | | ar | ,因
此我们可以进一步假设 r 0 .一方面,由于
| a | n ,我们有
n
r
r
(ar )(r, n) (an )(r, n) e(r, n) e .
令 s | ar | .根据命题 3.12, s | n .另一方 (r, n)
若 H {e} , 则 H 是 循 环 群 . 现 在 假 设 H {e}.考察集合 N {n N | an H} ,易见 N .将 N 中最小的那个正整数记作 r .
2020/9/27
数学与计算科学学院
§4 循环群
我们来阐明 H ar .事实上,一方面, 显然, ar H .另一方面,由于 G a 且 H G ,对于任意的 hH ,可设 h an ,其 中 nZ .我们取整数 q 和 s ,使得
第一章 群 论
2020/9/27
数学与计算科学学院
LOGO
2020/9/27
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
数学与计算科学学院
§4 循环群
命题 4.1 循环群的子群仍是循环群.
证明 设 G a 是一个循环群, H 是 G 的任意一个子群.
(r, n) (s, n) (r, n) (t, n)
2020/9/27
数学与计算科学学院
§4 循环群
从 而 , (s, n) | (r, n) 且 (t, n) | (r, n) . 因 此 [(s, n), (t, n)]| (r, n) .众所周知,
([s, t], n) [(s, n), (t, n)].注 所以 ( [s, t], n) | (r, n) ,从而,存在 k Z ,使得 k([s, t], n) (r, n) ,所以 ak([s, t], n) a(r, n) . 这样,根据第 3 题,我们有 a(r, n) a r .因 此, ar ak ([s, t], n) ,从而, ar ak ([s, t], n) .由
2020/9/27
数学与计算科学学院
§4 循环群
k Z ,使得 r k[s, t].所以 b ar a[s, t] . (2)假设| a | n . 由于 b H ,因此| b | | | as | ;由于 b K ,
因此| b | | | at | .也就是说, n|n,n|n,
n qr s , 0 s r . 若 s 0 ,则
2020/9/27
数学与计算科学学院
§4 循环群
as anqr an (ar )q h(ar )q H , 这与 r 为 N 中的最小数矛盾.因此 s 0 ,从而,
h an aqr (ar )q ar . 由 此 可 见 H ar . 所 以 H ar . 这 就 是 说, H 是循环群.□
(s, n) ( t , n) (s, t)
( st , n) ([s, t] n) . (s, t)
2020/9/27
数学与计计算科学学院
§4 循环群
面,由于 (ar )s e 且| a | n ,根据命题 3.12,
n | (rs) ,从而, n | (rs) .由于 ( n , r) 1,
(r, n)
(r, n)
因此 n | s .所以 s n ,即| ar | n .
(r, n)
(r, n)
相关文档
最新文档