第四章 线性系统的根轨迹法
合集下载
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
第四章 线性系统的根轨迹法
j 1 m
n
j
s
lim s
s i
nm
nm
sz
i 1
开环传递函数中,若令 s 当 m<n 时, G(s)H(s) =0
称 s ( m<n),是 G(s)H(s) 的无限零点 (n-m个)。
• 法则2. 根轨迹的分支数、对称性和连续性: 根轨迹的分支数与开环有限零点数 m、开环有 限极点数 n 中的大者相等,连续对称于实轴。
d 2.3
4)确定起始角。量测各向量相角,算得起始 角=-71. 6°
5)确定根轨迹与虚袖交点。闭环特征方程式 为:
s 5s 8s 6 s K 0
4 3 2
将s j代入,得实部方程为: 8 K 0
4 2
虚部方程为: 5 6 0
3
解得: 1.1 K 8.16 ,
2
试绘制闭环系统的概略根轨迹。 解 按下述步骤绘制概略根轨迹: 1)确定实轴上的根轨迹。实轴上[0,-3]区域必 为根轨迹。 2)确定根轨迹的渐近线。由于n-m=4,故有四条 根轨迹渐近线,其: a 1.25
a 45 ,135
3)确定分离点。
1 d 1 d 3 1 d 1 j 1 d 1 j 0
三、n-m条渐近线;
四、根轨迹的出射角、入射角; 五、根轨迹与虚轴的交点; 六、根轨迹的分离点、会合点; 结合根轨迹的连续性、对称性、根轨迹的 支数、起始点和终点,闭环极点与闭环极点之 和及之积等性质画出根轨迹。
例4—4 设系统开环传递函数为设系统开 环传递函数为: K
G( s) s( s 3)( s 2s 2)
d 3.414 ,d 0.586(舍去)
n
j
s
lim s
s i
nm
nm
sz
i 1
开环传递函数中,若令 s 当 m<n 时, G(s)H(s) =0
称 s ( m<n),是 G(s)H(s) 的无限零点 (n-m个)。
• 法则2. 根轨迹的分支数、对称性和连续性: 根轨迹的分支数与开环有限零点数 m、开环有 限极点数 n 中的大者相等,连续对称于实轴。
d 2.3
4)确定起始角。量测各向量相角,算得起始 角=-71. 6°
5)确定根轨迹与虚袖交点。闭环特征方程式 为:
s 5s 8s 6 s K 0
4 3 2
将s j代入,得实部方程为: 8 K 0
4 2
虚部方程为: 5 6 0
3
解得: 1.1 K 8.16 ,
2
试绘制闭环系统的概略根轨迹。 解 按下述步骤绘制概略根轨迹: 1)确定实轴上的根轨迹。实轴上[0,-3]区域必 为根轨迹。 2)确定根轨迹的渐近线。由于n-m=4,故有四条 根轨迹渐近线,其: a 1.25
a 45 ,135
3)确定分离点。
1 d 1 d 3 1 d 1 j 1 d 1 j 0
三、n-m条渐近线;
四、根轨迹的出射角、入射角; 五、根轨迹与虚轴的交点; 六、根轨迹的分离点、会合点; 结合根轨迹的连续性、对称性、根轨迹的 支数、起始点和终点,闭环极点与闭环极点之 和及之积等性质画出根轨迹。
例4—4 设系统开环传递函数为设系统开 环传递函数为: K
G( s) s( s 3)( s 2s 2)
d 3.414 ,d 0.586(舍去)
《自动控制原理》第4章 线性系统的根轨迹法
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
第4章 线性系统的根轨迹法(《自动控制原理》课件)
如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同
004 第4章 线性系统的根轨迹分析
12
(2)精确参数的获得: >> Kg=30.7;R= rlocus(G, Kg) % Kg时所对应的闭环极点 R= -1.3562 + 2.1562i -1.3562 - 2.1562i -0.1438 + 2.1705i -0.1438 - 2.1705i 2)使用[Kg, P]= rlocfind (G)进行参数的人工获取: >> clear;G=tf([1,1],[conv([1,-1],[1,4,16]),0]); %建立零极 点模型G(s) rlocus(G); %生成根轨迹图 [Kg, P]= rlocfind (G) %鼠标左键定轨迹上的闭极点参数
4
闭环系统稳定程度的判断:
当闭环特征根位于在s平面的右半平面时,闭环系 统不稳定;当闭环特征根位于在s平面的虚轴上时,闭 环系统临界稳定(等幅振荡);当闭环特征根位于在s 平面的左半平面时,闭环系统稳定。
闭环系统动态性能的判断:
在闭环系统稳定的情况下,当特征根位于s平面的 左半实轴上时,闭环系统的输出表现为惯性特性(单 调性);当特征根位于s左半平面的非实轴区域时,闭 环系统的输出表现为衰减振荡特性;当特征根位于s平 面的虚轴上时,闭环系统的输出表现为等幅振荡特性 ;在s右半平面时为单调或振荡发散特性。 5
2
4.1 根轨迹分析的基本思想
闭环系统的开环传递函数的根轨迹模型为:
其中,zj和pi为开环传递函数模型的零点和极点,Kg 为开环传递函数模型的根轨迹增益。系统的闭环 传递函数为:
3
闭环系统的稳定性与Gb(s)的极点,即闭环系统 的特征方程1+H(s)G(s)=0的根在s平面上的位置及其 分布有关。 闭环系统的特征根在s平面上的位置会随Kg值的 变化而变化。 根轨迹分析法就是通过改变开环传递函数Gk(s) 的根轨迹增益Kg值(0~∞)来观察闭环特征根的轨 迹变化情况,从而能够对闭环系统的稳定程度、动 态性能及结构简化(降阶)等问题进行判断、分析 与设计。
(2)精确参数的获得: >> Kg=30.7;R= rlocus(G, Kg) % Kg时所对应的闭环极点 R= -1.3562 + 2.1562i -1.3562 - 2.1562i -0.1438 + 2.1705i -0.1438 - 2.1705i 2)使用[Kg, P]= rlocfind (G)进行参数的人工获取: >> clear;G=tf([1,1],[conv([1,-1],[1,4,16]),0]); %建立零极 点模型G(s) rlocus(G); %生成根轨迹图 [Kg, P]= rlocfind (G) %鼠标左键定轨迹上的闭极点参数
4
闭环系统稳定程度的判断:
当闭环特征根位于在s平面的右半平面时,闭环系 统不稳定;当闭环特征根位于在s平面的虚轴上时,闭 环系统临界稳定(等幅振荡);当闭环特征根位于在s 平面的左半平面时,闭环系统稳定。
闭环系统动态性能的判断:
在闭环系统稳定的情况下,当特征根位于s平面的 左半实轴上时,闭环系统的输出表现为惯性特性(单 调性);当特征根位于s左半平面的非实轴区域时,闭 环系统的输出表现为衰减振荡特性;当特征根位于s平 面的虚轴上时,闭环系统的输出表现为等幅振荡特性 ;在s右半平面时为单调或振荡发散特性。 5
2
4.1 根轨迹分析的基本思想
闭环系统的开环传递函数的根轨迹模型为:
其中,zj和pi为开环传递函数模型的零点和极点,Kg 为开环传递函数模型的根轨迹增益。系统的闭环 传递函数为:
3
闭环系统的稳定性与Gb(s)的极点,即闭环系统 的特征方程1+H(s)G(s)=0的根在s平面上的位置及其 分布有关。 闭环系统的特征根在s平面上的位置会随Kg值的 变化而变化。 根轨迹分析法就是通过改变开环传递函数Gk(s) 的根轨迹增益Kg值(0~∞)来观察闭环特征根的轨 迹变化情况,从而能够对闭环系统的稳定程度、动 态性能及结构简化(降阶)等问题进行判断、分析 与设计。
线性系统的根轨迹法
法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
自动控制原理第四章根轨迹法(管理PPT)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
第四章线性系统的根轨迹法
2. 零度根轨迹: 1 实轴上根轨迹区间右侧开环零极点数目之和为偶数 2 实轴与渐近线正方向夹角2kπ/n-m 3 求出射角和入射角时2kπ
4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。
4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。
自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解
系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s
j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)
第4章 线性系统的根轨迹分析
3.暂态性能 (1) 当0<K< 0.25时, 闭环特征根为实根,系统是过 阻尼状态,阶跃响应为非周期 过程。
∞ K K=0 × -1 K
jω
K=0.25 K=0 ×
σ
(2) 当K=0.25时,两 特征根重合,均为-0.5,系 统处于临界阻尼状态。
∞
(3) 当K>0.25时,两特征根变为共轭 复根,系统处于欠阻尼状态,阶跃响应为衰 减振荡过程。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1)( j 2) K 1 0 j ( 2 j 3 2) K 1 0 j 3 3 2 j 2 K 1 0
jω
j 2
K1=6
实部 虚部
K 13 2 0 2 3 0
i 1
n
q 0,1,2,
…
(**)
三.根据相角条件确定根轨迹上的点
设某一系统的开环零极点如图, 在S平面中的任意一点 s 0 ,用 相角条件可以判断 s 0 是不是根 轨迹的点。 1.从 s 0 到各零极点连直线 2.用量角器量(s0 p1 ) ,…等 各个角. 3.将量好的值代入(**) 式,若等式成立,则 s 0 就是根 轨迹上的点.
§4-1根轨迹的基本概念
G H
绘制根轨迹是求解特征方程的根,特征方程可改 写为 G ( S ) H ( S ) 1
G( S ) H ( S ) 是复变量S的函数,根据上式两边的
幅值和相角分别相等的条件,可以得到
§4-1根轨迹的基本概念
G( S ) H ( S ) 1
G( S ) H ( S ) 180(2q 1),
z1
自动控制原理-胡寿松-第四章
过阻尼系统;
当K=0. 5时:
临界阻尼系统;
当K>0. 5时:
欠阻尼系统。
(s)
s2
2K 2s
2K
11
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
上述分析表明:根轨迹与系统性能之间有 着比较密切的联系。
对于高阶系统而言,用解析的方法绘制系 统的根轨迹图,显然是不适用的。希望能有简 便的图解方法,可根据已知的开环传递函数迅 速绘出闭环系统的根轨迹。为此,需要研究闭 环零、极点与开环零、极点之间的关系。
(2)稳态性能:由开环系统 在坐标原点处的极点数可判断 出系统的型别,而此时的K值 就是相应的静态误差系数。如 果给定系统的稳态误差要求, 则由根轨迹图可以确定闭环极 点位置的容许范围。
G(s) K s(0.5s 1)
10
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
(3)动态性能:
当0<K<0. 5时:
12
3. 闭环零、极点与 开环零、极点之间的关系
一般情况下,前向通路传递函数G(s)可表示为:
f
G(s)
KG
(1s
1)(
2 2
s2
2
1
2
s
1)L
sv (T1s 1)(T22s2 2 2T2s 1)L
KG*
(s zi )
i 1 q
(s pi )
i 1
KG
为前向通路增益;K
* G
为前向通路根轨迹增益。
m
(s zj)
等价为:
K * j1 n
1
(s pi )
2
第四章 线性系统的根轨迹法
4-1 根轨迹法的基本概念
根轨迹法PPT课件
定闭环极点位置。另一方面分析设计系统时经常要研究一个 或者多个参量在一定范围内变化时对闭环极点位置及系统性 能的影响.
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
时,闭环系统特征方程的根在 s 平面上变化的轨迹。
解: n 3,m 0
① p1 0,p2 1,p3 2 为根轨迹的起点;
开环无零点,故三个分支终点均趋向无穷远。
②
a
(2q 1)
nm
(2q 1)
3
60、180、300
(q 0,1,2)
n
m
a
i 1
pi z j
j 1
nm
3 0 1 3
③ 实轴上根轨迹:
( ,2],[1,0]
j
p3 2
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
对于实轴上0至1线段的实数根而言,其对应的K*值在
b 点为极大值。
可以证明,当l 条根轨迹分支进入并立即离开分离点时,
分离角为 (2k 1) l .
k 0,1, ,l -1
例4-3:求上例中 b 点的坐标。
[规则3] 根轨迹的渐进线
当开环有限极点数 n大于有限零点数时,有 (n m)
条根轨迹分支沿着与实轴交角为 a 、交点为 a的一组
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
时,闭环系统特征方程的根在 s 平面上变化的轨迹。
解: n 3,m 0
① p1 0,p2 1,p3 2 为根轨迹的起点;
开环无零点,故三个分支终点均趋向无穷远。
②
a
(2q 1)
nm
(2q 1)
3
60、180、300
(q 0,1,2)
n
m
a
i 1
pi z j
j 1
nm
3 0 1 3
③ 实轴上根轨迹:
( ,2],[1,0]
j
p3 2
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
对于实轴上0至1线段的实数根而言,其对应的K*值在
b 点为极大值。
可以证明,当l 条根轨迹分支进入并立即离开分离点时,
分离角为 (2k 1) l .
k 0,1, ,l -1
例4-3:求上例中 b 点的坐标。
[规则3] 根轨迹的渐进线
当开环有限极点数 n大于有限零点数时,有 (n m)
条根轨迹分支沿着与实轴交角为 a 、交点为 a的一组
自动控制原理_第4章_线性系统的根轨迹法
4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b
* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1
jω
j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*
自动控制原理 第4章 线性系统的根轨迹法:根轨迹法的基本概念 绘制的基本法则
-1.5
相角条件:92.49o- 66.27o- 78.8o- 127.53o= –180o 模值条件 K*= 2.26×2.11×2.61 = 6 2.072
k* 6 k 4 1.5 1.5
k * (s 1) G (s )H (s ) (s 0.5)( s 1.5)( s 2)
根轨迹的模值条件与相角条件 没有零点的相角条件和模值条件你会推吗? 相角条件: (P140) n m
∑ ∠ (s-z ) - ∑ ∠ (s-p ) = (2k+1) π j i j=1 i=1
m 绘制根轨迹的充要条件
k=0, ±1, ±2, …
模值条件:
1+K Kn =
i=1
) ∏︱ ( s - zn ︱ j p s ︱ ︱ ∏ j=1 i * *
规则6:根轨迹的起始角(出射角)和终止角 (入射角)
起始角(出射角):根轨迹离开复平面上开环极点处的
切线与实轴的夹角
pi
。
m n o pi 1 8 0 zj p p p i j i 1 j 1 j j i
终止角(入射角):根轨迹进入复平面上开环零点处的
j
-2
-1
0
综上所述: (1)k*从0 ~ ∞ 时,系统的根轨迹是连续变化。可见:
系统的参量变化对系统闭环极点分布的影响。
(2)由根轨迹图,可得系统动、静态性能的信息: 1)稳定性 无论k*值如何变化( k*>0),闭环极点不出现
在s的右半平面,所以系统是稳定的。
2)稳态误差
I型系统,K为静态速度误差系数。
2019/2/17
特征方程:
S2+2s+2k=0
131017第4章线性系统根轨迹法
一、绘制根轨迹的基本条件 负反馈系统特征方程为 1+G(s)H(S)=0 即 G(S)H(S)=-1 ------根轨迹方程
根据复数等式两边的幅值和相角应分别相等的原则,可得 幅值条件 相角条件
G (s)H (s) 1
G(s) H (s) (2k 1) (k 0, 1, 2 )
第四章 线性系统的根轨迹法
1948年,伊万斯(W.R.Evans)根据反馈系统开、闭环传递 函数之间的内在联系,提出了直接由开环传递函数寻求闭环特 征根移动轨迹的方法,即根轨迹法。
当闭环系统没有零点与极点相消时,闭环特征方程式的根 就是闭环传递函数的极点。
根轨迹定义
当系统中某一参数由零变到正无穷大时,闭环系统 特征方程的根在s平面上形成的轨迹称系统的根轨迹。 绘制系统根轨迹时,选择的可变参量可以是系统的 任意参量。
规则1:根轨迹的分支数和连续性与对称性
根轨迹的分支数等于特征方程的阶数n(闭环极 点的数目);
根轨迹是连续的且对称于实轴。
证明:(1)
| k || s z1 | | s z2 | | s zm | 1 | s p1 | | s p2 | | s pn |
画根轨迹之前,需根据闭环特征方程将开环传递函数变换成 如下标准形式:
K ( s z1 )( s z2 ) ( s zm ) G( s) H ( s) ( s p1 )(s p2 ) (s pn )
其中,K是绘制根轨迹的可变参数,称开环根轨迹增益
开环增益?
开环传递函数的标准形式必须具有下列特征: 1)参变量K必须是G(S)H(S)分子连乘因子中的一个 2)G(S)H(S)的分子和分母通过其极点与零点来表示 3)构成G(S)H(S)分子分母的每个因子中s项的系数必须是+1
根据复数等式两边的幅值和相角应分别相等的原则,可得 幅值条件 相角条件
G (s)H (s) 1
G(s) H (s) (2k 1) (k 0, 1, 2 )
第四章 线性系统的根轨迹法
1948年,伊万斯(W.R.Evans)根据反馈系统开、闭环传递 函数之间的内在联系,提出了直接由开环传递函数寻求闭环特 征根移动轨迹的方法,即根轨迹法。
当闭环系统没有零点与极点相消时,闭环特征方程式的根 就是闭环传递函数的极点。
根轨迹定义
当系统中某一参数由零变到正无穷大时,闭环系统 特征方程的根在s平面上形成的轨迹称系统的根轨迹。 绘制系统根轨迹时,选择的可变参量可以是系统的 任意参量。
规则1:根轨迹的分支数和连续性与对称性
根轨迹的分支数等于特征方程的阶数n(闭环极 点的数目);
根轨迹是连续的且对称于实轴。
证明:(1)
| k || s z1 | | s z2 | | s zm | 1 | s p1 | | s p2 | | s pn |
画根轨迹之前,需根据闭环特征方程将开环传递函数变换成 如下标准形式:
K ( s z1 )( s z2 ) ( s zm ) G( s) H ( s) ( s p1 )(s p2 ) (s pn )
其中,K是绘制根轨迹的可变参数,称开环根轨迹增益
开环增益?
开环传递函数的标准形式必须具有下列特征: 1)参变量K必须是G(S)H(S)分子连乘因子中的一个 2)G(S)H(S)的分子和分母通过其极点与零点来表示 3)构成G(S)H(S)分子分母的每个因子中s项的系数必须是+1
第4章 线性系统的根轨迹法
1.绘制根轨迹的基本法则 法则1 根轨迹的起点和终点。根轨迹起始于开环 极点,终止于开环零点。 对于实际的物理系统,开环零点数m一般小于 或等于开环极点数n。 法则2 根轨迹的分支数、对称性和连续性。根轨 迹的分支数与开环有限零点数和有限极点数中的 大者相等,它们是连续的并且对称于实轴。
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
2.附加开环零点的作用 在控制系统设计中,常用附加位置适当 的开环零点来改善系统性能。 研究附加开环零点的作用的方法,就是 将开环零点取不同的值绘制K变化时的根轨 迹。由此可分析和设计附加零点对改善系统 性能的影响。
第4章 线性系统的根轨迹法
3.零度根轨迹 非最小相位系统——指在s右半平面具有 开环零极点的控制系统。此其根轨迹相角遵 循00+2kπ,称之为零度根轨迹。 零度根轨迹的绘制方法,与常规根轨迹 的绘制方法不同。其中正反馈的根轨迹绘制 如前所述。
第4章 线性系统的根轨迹法
4. 根轨迹方程
根轨迹是系统所有闭环极点的集合。 设系统的闭环传递函数为:
C ( s) G(s) Φ( s) = R( s) 1+G ( s) H ( s)
令闭环传递函数表达式的分母为零,得:
1 + G( s ) H ( s ) 0
第4章 线性系统的根轨迹法
或
G(s) H (s) 1
LOGO
自动控制原理 教学课件 2009年淮南师范学院 校级精品课程
电气信息工程系 自动控制原理课程教学组
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
主要内容:
•4-1 根轨迹法的基本概念
•4-2 根轨迹绘制的基本原则 •4-3 广义根轨迹 •4-4 系统性能的分析 •4-5 用MATLAB绘制根轨迹
线性系统的根轨迹法
第4章 线性系统 的根轨迹法
➢根轨迹的基本概念 ➢绘制根轨迹的基本法则 ➢控制系统的根轨迹分析
▪ 对高阶系统而言,采用因式分解求取系统的闭环特征方程根 (即闭环极点)一般是极为困难的。
▪ 在控制系统的设计中,经常需要考察系统某一参数(如开环根 增益)改变时,闭环极点的位置改变情况,以便于根据控制系 统的性能要求,确定这些参数。
是恒包络,而且当码组的变化为0→1,或者 1→0时, 会产生π的最大相位跳变。这种相 位跳变会引起带限滤波后的数字调相信号 包络起伏,甚至出现“0”包络现象,如图9 -1所示。为了消除 π的相位跳变,在 QPSK 的基础上提出 OQPSK。
▪ 图9-1 QPSK 信号限带滤波前、后的波形
每个码元的前一比特为同相分量I(t),后一 比特 为正交分量Q(t),然后利用同相分量和 正交分量分别对两个正交的载波进行2PSK 调制, 最后将两路调制结果叠加,得到 QPSK 信号。在当前任意相位,下一时刻的 相位均有四种 可能取值,因而相位跳变量 可能为0,±π/2或π,如图9- 2(a)所示,当两 个比特同时发生 极性翻转时,将产生π的相 移,经过带通滤波器之后所形成的包络起伏 必然达到最大。
数字高清晰度电视的图像信息速率接 近1GB/s,要在实际信道中传输,除应采用高 效 的信源压缩编码技术、先进的信道编码 技术之外,采用高效的数字调制技术来提高 单位频 带的数据传送速率也是极为重要的。
地提 高数字电视覆盖率,根据数字电视信 道的特点,要进行地面信道、卫星信道、有 线信道的编 码调制后,才能进行传输。由 于数字电视系统中传送的是数字电视信号, 因此必须采用高 速数字调制技术来提高频 谱利用率,从而进一步提高抗干扰能力,以 满足数字高清晰度电 视系统的传输要求。
➢根轨迹的基本概念 ➢绘制根轨迹的基本法则 ➢控制系统的根轨迹分析
▪ 对高阶系统而言,采用因式分解求取系统的闭环特征方程根 (即闭环极点)一般是极为困难的。
▪ 在控制系统的设计中,经常需要考察系统某一参数(如开环根 增益)改变时,闭环极点的位置改变情况,以便于根据控制系 统的性能要求,确定这些参数。
是恒包络,而且当码组的变化为0→1,或者 1→0时, 会产生π的最大相位跳变。这种相 位跳变会引起带限滤波后的数字调相信号 包络起伏,甚至出现“0”包络现象,如图9 -1所示。为了消除 π的相位跳变,在 QPSK 的基础上提出 OQPSK。
▪ 图9-1 QPSK 信号限带滤波前、后的波形
每个码元的前一比特为同相分量I(t),后一 比特 为正交分量Q(t),然后利用同相分量和 正交分量分别对两个正交的载波进行2PSK 调制, 最后将两路调制结果叠加,得到 QPSK 信号。在当前任意相位,下一时刻的 相位均有四种 可能取值,因而相位跳变量 可能为0,±π/2或π,如图9- 2(a)所示,当两 个比特同时发生 极性翻转时,将产生π的相 移,经过带通滤波器之后所形成的包络起伏 必然达到最大。
数字高清晰度电视的图像信息速率接 近1GB/s,要在实际信道中传输,除应采用高 效 的信源压缩编码技术、先进的信道编码 技术之外,采用高效的数字调制技术来提高 单位频 带的数据传送速率也是极为重要的。
地提 高数字电视覆盖率,根据数字电视信 道的特点,要进行地面信道、卫星信道、有 线信道的编 码调制后,才能进行传输。由 于数字电视系统中传送的是数字电视信号, 因此必须采用高 速数字调制技术来提高频 谱利用率,从而进一步提高抗干扰能力,以 满足数字高清晰度电 视系统的传输要求。
第4章 根轨迹法
j 1 i 1 n
(2k 1)180 (2k 1)
k 0, 1, 2,
zj
4.2 绘制根轨迹的基本规则
1.根轨迹的对称性
根轨迹关于实轴对称。因为系统的闭环极 点为实根或复根,复根共轭成对出现且关于 实轴对称,因此系统的根轨迹关于实轴对称。
2.根轨迹的条数(分支数)
zj
[例4-3]
已知单位负反馈系统的开环传递函数为
Kr G(s) H (s) s ( s 2)( s 4)
试概略绘制该系统的根轨迹。
[解] 根据开环传递函数可知,无系统的开环
零点,则m=0;开环极点有3个,即n=3,分别 为 p1 0 、p2 2 和 p3 4 。将开环极点 用“×”在复平面上标出,如图4-4所示。根据 根轨迹绘制规则确定其根轨迹。
p 180 ( p1 z1 ) ( p1 p2 ) 180 90 90 180
1
zp j
l
[例4-4] [解]
p p 180
2 1
jω
×j 2
-2
-1
0 0
σ
j2 ×
图4-5 例4-4系统的根轨迹
4.4 本章小结
第4 章
根轨迹法
根轨迹法的基本概念 绘制根轨迹的基本规则 参量根轨迹的绘制 本章小结
4.1 根轨迹法的基本概念
1948年,伊凡斯(W.R.Evans)提出 了一种简便的求解闭环极点的图解方 法—根轨迹法。
4.1.1 根轨迹
根轨迹定义
根轨迹与系统性能的关系
根轨迹定义
根轨迹:当控制系统的开环传递函数的某个 参数从零变化到无穷大时,闭环极点在s平面上 的变化轨迹称之为根轨迹。 根轨迹法:利用根轨迹进行线性控制系统分 析和设计的方法称为根轨迹法。 [例4-1]单位负反馈控制系统如图4-1所示, 试分析参数K变化对系统性能的影响
(2k 1)180 (2k 1)
k 0, 1, 2,
zj
4.2 绘制根轨迹的基本规则
1.根轨迹的对称性
根轨迹关于实轴对称。因为系统的闭环极 点为实根或复根,复根共轭成对出现且关于 实轴对称,因此系统的根轨迹关于实轴对称。
2.根轨迹的条数(分支数)
zj
[例4-3]
已知单位负反馈系统的开环传递函数为
Kr G(s) H (s) s ( s 2)( s 4)
试概略绘制该系统的根轨迹。
[解] 根据开环传递函数可知,无系统的开环
零点,则m=0;开环极点有3个,即n=3,分别 为 p1 0 、p2 2 和 p3 4 。将开环极点 用“×”在复平面上标出,如图4-4所示。根据 根轨迹绘制规则确定其根轨迹。
p 180 ( p1 z1 ) ( p1 p2 ) 180 90 90 180
1
zp j
l
[例4-4] [解]
p p 180
2 1
jω
×j 2
-2
-1
0 0
σ
j2 ×
图4-5 例4-4系统的根轨迹
4.4 本章小结
第4 章
根轨迹法
根轨迹法的基本概念 绘制根轨迹的基本规则 参量根轨迹的绘制 本章小结
4.1 根轨迹法的基本概念
1948年,伊凡斯(W.R.Evans)提出 了一种简便的求解闭环极点的图解方 法—根轨迹法。
4.1.1 根轨迹
根轨迹定义
根轨迹与系统性能的关系
根轨迹定义
根轨迹:当控制系统的开环传递函数的某个 参数从零变化到无穷大时,闭环极点在s平面上 的变化轨迹称之为根轨迹。 根轨迹法:利用根轨迹进行线性控制系统分 析和设计的方法称为根轨迹法。 [例4-1]单位负反馈控制系统如图4-1所示, 试分析参数K变化对系统性能的影响
线性系统的根轨迹法
g
i
3)若n>m,另(n-m)条根轨迹的终点??
由
kg
(s p )
j 1 m j
n
同理,若m>n, (s p ) s 则有 (m-n) 条根轨迹起于无穷远处。 lim lim lim s 当 s 时,
i 1 i
(s z )
s
可知, k
n j 1 m j
Kg= 0 2
Kg=1 1
Kg
Kg= 0 0
当 k g 1 时,闭环两个实极点重合,系统为 临界阻尼系统,单位阶跃响应为非周期过程。
当 k g 1 时,闭环极点为一对共轭复数极点, 系统为欠阻尼系统,单位阶跃响应为阻尼振荡 过程。
3. 根轨迹的条件方程
系统的结构如图所示:
开环传函:
1.根轨迹的定义
当某一参数从0变化时,系统闭环特征 方程的根在s 平面上的变化轨迹,称为根轨 迹。 当闭环系统没有零、极点相消时,闭环特 征根就是闭环传递函数的极点,即闭环极点。
引例:
已知系统的结构图所示,分 析 0 K 时,闭环特征根在 s平面上变化的轨迹。 解:系统的开环传递函数为
pj zi
s-zi
矢量的模:
s zi
s pj
矢量的相角:
(矢量与正实轴的夹角)
( s zi )
( s p j )
Kg
( s z
i 1 n j 1
m
i
) 1 )
——根轨迹的条件方程
( s p
j
• 根轨迹方程可看成一个矢量方程,因此可分 解出以下的模值条件和相角条件方程:
g
时,左边=∞
n
n m
i
3)若n>m,另(n-m)条根轨迹的终点??
由
kg
(s p )
j 1 m j
n
同理,若m>n, (s p ) s 则有 (m-n) 条根轨迹起于无穷远处。 lim lim lim s 当 s 时,
i 1 i
(s z )
s
可知, k
n j 1 m j
Kg= 0 2
Kg=1 1
Kg
Kg= 0 0
当 k g 1 时,闭环两个实极点重合,系统为 临界阻尼系统,单位阶跃响应为非周期过程。
当 k g 1 时,闭环极点为一对共轭复数极点, 系统为欠阻尼系统,单位阶跃响应为阻尼振荡 过程。
3. 根轨迹的条件方程
系统的结构如图所示:
开环传函:
1.根轨迹的定义
当某一参数从0变化时,系统闭环特征 方程的根在s 平面上的变化轨迹,称为根轨 迹。 当闭环系统没有零、极点相消时,闭环特 征根就是闭环传递函数的极点,即闭环极点。
引例:
已知系统的结构图所示,分 析 0 K 时,闭环特征根在 s平面上变化的轨迹。 解:系统的开环传递函数为
pj zi
s-zi
矢量的模:
s zi
s pj
矢量的相角:
(矢量与正实轴的夹角)
( s zi )
( s p j )
Kg
( s z
i 1 n j 1
m
i
) 1 )
——根轨迹的条件方程
( s p
j
• 根轨迹方程可看成一个矢量方程,因此可分 解出以下的模值条件和相角条件方程:
g
时,左边=∞
n
n m
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交角
Root Locus 6
4
2
Imaginary Axis
0
-2
-4
-6 -10
-8
-6
-4 Real Axis
-2
0
2
法则四 实轴上的根轨迹: 实轴上的某一区域 , 若其右 边开环实数零、极点个数之和为奇数 , 则该区域 必是根轨迹。
实轴上的根轨迹
测试点右侧相角中的每一个相角都等于π,而 π与 -π代表相同角度,因此减去π角就相当于加 上π角。于是s0位于根轨迹上的等效条件是
研究根轨迹的目的:分析系统性能(稳定性、 稳态性能、动态性能)
二、闭环零、极点与开环零、极点之间的关系
系统的结构图如下:
R( s )
G (s)
H (s)
C (s)
-
系统闭环传递函数为
G( s) ( s) 1 G( s) H ( s)
将前向通道传递函数G(s)表示为:
2 2 K G ( 1s 1)( 2 s 2 1 2 s 1)… G( s) s (T1s 1)(T22 s 2 2 2T2 s 1)…
和
证明: 渐近线就是s值很大时的根轨迹,因此渐近线
也一定对称于实轴。将开环传递函数写成多项式形 式,得
用多项式除法, 当s值非常大时,开环传递函数 可以近似为:
s s b1s
m m 1
nm
(a1 b1 ) s
n 1
n m 1
bm 1s bm s a1s
n
因为闭环特征方程式的根只有实根和复根两 种,实根位于实轴上,复根必共轭,而根轨迹是 根的集合,故根轨迹对称于实轴。根据对称性, 只需做出上半 s 平面的根轨迹部分,然后利用 对称关系就可画出下半 s 平面的根轨迹部分。
例:已知系统的开环传递函数,试确定 系统的根轨迹图。
Kr(s2+2s+2) G(s)H(s)= s(s+1)(s+2) 解: 开环零、极点分布: 两条根轨迹终止于开环传 递函数的两个零点,另一条 p1= 0 p2= -1 p3= -2 趋于无穷远。 z1= -1+j z2 = -1-j
j
)
K*
( s z ) ( s z
i 1 q i j 1 h j 1 i 1 i
f
l
)
j
( s p ) ( s p
)
根轨迹法的任务是在已知开环零、极点分 布的情况下,如何通过图解法求出闭环极点。
* G ( s ) KG
(s z ) ( s pi )
an 1s an
s b1s
n
n 1
(a1 b1 ) s (a1 b1 ) s
n 1 n 1
...........................
由特征方程1+G(s)H(s)=0得渐进线方程为:
s
nm
自动控制原理
Automatic Control Theory
河南理工电气学院
第 四 章
线性系统的根轨迹法
2
本章基本要求
1.正确理解开环零、极点和闭环零、极点 以及主导极点、偶极子等概念。 2.正确理解和熟记根轨迹方程(模方程及相 角方程)。熟练运用模方程计算根轨迹上任 一点的根轨迹增益和开环增益。 3.正确理解根轨迹法则,法则的证明只需 一般了解,熟练运用根轨迹法则按步骤绘 制反馈系统开环增益K从零变化到正无穷时
R(s)
K设系统的结构如图 r变化时,闭环特征根 在sC(s) 平面上的轨迹 Kr :
2+2s+K R(s) =s∞ ω r j ↑ 闭环特征方程式 Kr 1 2 s 0 s2 +2s+K Kr=0 1r= s1 0 σ -1 -2 特征方程的根 -1 Kr s1.2 =-1± 1-Kr
∞
-
Kr C(s) s(s+2)
系统的三条根轨迹起始 于三个开环传递函数的极 点。
jω
z1 1 p
p3
-2
p2
-1
z2
1 0
-1
法则三
根轨迹的渐近线:当开环极点数n大于开环零点数 m时,系统有n-m条根轨迹终止于S平面的无穷远处 ,这n-m条根轨迹变化趋向的直线叫做根轨迹的渐 近线,因此,渐近线也有n-m条,且它们交于实轴 上的一点。 渐近线与实轴的交点位置和与实轴正 方向的交角分别为:
Kr
0 1 2 ∞
s1
0 -1 -1+j -1+j∞
s2
-2 -1 -1-j
得相应的闭环特征根值:
↑
↑
-1-j∞
根轨迹定义:是指开环系统某个参数由 0 变化 到∞,闭环特征根在s平面上移动的轨迹。
当系统的某个参数变化时,特征方程 的根随之在S平面上移动,系统的性能也 跟着变化。研究S 平面上根的位置随参数 变化的规律及其与系统性能的关系是根轨 迹分析法的主要内容。
2
当s值非常大时,近似有
a1 b1 1 s
1 nm
1 a1 b1 1 nm s
j 2 k 1 nm
则渐近线方程变为:
a1 b1 s 1 s
1 nm
1 a1 b1 n m * s 1 K e nm s
a1 b1 * (1 ) K s
1 nm
a1 b1 s 1 s
1 nm
K
1 * nm
nm K * e
j 2 k 1 nm
由二项式定理:
1 a1 b1 1 1 1 a1 b1 a1 b1 1 1 1 n m s 2! n m n m s s
i 1
n
|
( s z
j 1
m
j
) ( s pi ) ( 2k 1)
i 1
n
相角方程是决定系统闭环根轨迹的充分必要 条件。
在实际应用中,用相角方程绘制根轨迹,而模值 方程主要用来确定已知根轨迹上某一点的 K * 值。
4-2
绘制根轨迹的基本法则
根据根轨迹方程,无需对闭环特征方 程式求解,只需寻找所有满足相角方程的 s ,便可得到闭环特征方程式根的轨迹。 同时,可由幅值方程来确定根轨迹所对应 的Kr值。 根据根轨迹的基本特征和关键点,就 能比较方便地近似绘制出根轨迹曲线。 根轨迹基本特征为以下九条:
K*
三、根轨迹方程
1、根轨迹方程
G(s)H(s)= –1 [复数方程]
|G(s)H (s )| 1 G(s)H (s ) (2k 1) k 0, 1, 2, L
2、零极点形式 将根轨迹方程写成零 、极点表示的矢量方 程为:
m
K * (s z j )
j 1
m
(s p )
j 2 k* s K e nm s a as
nm
K e
*
得渐近线与实轴的交点和同正实轴的夹角分别 为:
当k取不同值时, 可得 n-m个 a 角, 而σa 不变, 因此根轨
迹渐近线是n-m条与实轴交点为σa 交角为
d ds [G(S)H(S)] = 0 或 1 d ds G(S)H(S) =0
说明: 由上述两种方法求出的根是否为分离点,要 分情形进行确定:若求出的根是实数,要根据 “法则4: 实轴上的根轨迹” 进行确定;若求出 的根是复数,则要根据 “模值条件” 进行确定 。
i 1 i
n
1
表示为其模值方程和相角方程分别为:
K
*
| s z
j 1
j
| 1,
| s
i 1
n
pi |
( s z
j 1
m
j
) ( s pi ) ( 2k 1)
i 1
n
K
*
| s z
j 1 i
m
j
| 1,
| s p
p
j
i
(2k 1)
a b (2k 1) (a b) (2k 1) a b 2k 1
法则五
根轨迹的分离点与分离角:两条或两条以上根轨 迹分支在 s平面上相遇又立即分开的点 , 称为根 轨迹的分离点。分离点的坐标d是下列方程(分离 点方程)的解:
i 1
f i 1 q
f
i 1 q
i
* H( s) K H
(s z (s
j 1
j
l
j 1 h
j
)
pj)
* * G( s) H ( s) KG KH
( s z ) ( s z
i
l
)
(s
i 1 j
pi ) ( s p j )
i 1
j 1 l
基本要求
的闭环根轨迹。 4.正确理解闭环零极点分布和阶跃响应的 定性关系,初步掌握运用根轨迹分析参数 对响应的影响。能熟练运用主导极点、偶 极子等概念,将系统近似为一、二阶系统 给出定量估算。 5.了解绘制广义根轨迹的思路、要点和方 法。
4-1 根轨迹法的基本概念
一、根轨迹法的基本概念 1、根轨迹
式中Κ*可从零变到无穷,当Κ*=0时,有
说明Κ*=0时, 闭环特征方程式的根就是开环传递函 数G(s)H(s)的极点,所以根轨迹必起于开环极点。 n阶系统共有n个开环极点,每个开环极点都对应根 轨迹的一个起点,所以共有n个起点。
所以根轨迹必终止于开环零点。 综上所述:系统共有n个开环零点,其中m个为有 限零点,(n-m)个为无限零点。每个开环零点都 对应根轨迹的一个终点,所以共有n个终点。