《自动控制原理》第4章 线性系统的根轨迹法

合集下载

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

根轨迹起于开环极点,终于开环零点。
由根轨迹方程,有
m
n
K (s zi )+ (s pi )=0
i 1
i 1
根轨迹起点 K =0 s pi , i 1, , n n个开环有限极点
由根轨迹方程,又有
m
n
(s zi )+(K )1 (s pi )=0
i 1
i 1
根轨迹终点 K s zi , i 1, , m m个开环有限零点
a
(2k 1)
nm
, k 0, 1,
ቤተ መጻሕፍቲ ባይዱ
a
=
(a1 n
b1 m
)
由多项式的根与系数关系
n
n
a1 pi b1 zi
i 1
i 1
n
m
pi z j
a
i 1
j 1
nm
例4.2-1 已知单位反馈系统的开环传递函数为
K G(s)
s(s 3) (s )2 2
0, 0
试分析开环极点参数变化时渐近线。
1
n
1
j1 d z j i1 d pi
分离点处相邻两条根 轨分迹离分点支处切一线共之有间多的少
夹条角根等轨于迹分支/?l
分离点处根轨迹的分离角d 为
d (2k 1) / l k 0,1,
分离点处,根轨迹进
侧的开环实有限零极点数为奇数。
系统的开环零极点分为 两类:实数零极点和复数 零极点,且复数零点或复 数极点必共轭成对。
系统开环零极点的分布为
图示,取实轴任一点 s=s1
·对复共轭开环极点
p4 j, p5 p4 j,
(s1 j)+(s1 +j)=2

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理

自动控制原理

L(s)的相角
单位反馈系统的 开环传递函数 一个开环极点 负实轴上点 s1 s2=-1-j
G (s) =
K s
P1=0
∑ ∠( s − z ) −∑ ∠(s − p ) | = −∠s
i =1 i i =1 i
m
n
1
− p1 = −180o
负实轴上都是根轨迹上的点!
∑ ∠( s − z ) −∑ ∠( s − p ) | = −∠s
3.
根轨迹法
一种求取闭环系统的特征根的图解法(1948年 一种求取闭环系统的特征根的图解法(1948年, 由 W. R. Evans在 “ 控制系统的图解分析 ” 一文 Evans 在 控制系统的图解分析” 中提出) 中提出)。 已知开环零极点分布, 已知开环零极点分布,研究一个或几个参数变化 对闭环极点位置的影响, 对闭环极点位置的影响,从而进一步分析系统的 性能(如稳定性、动态性能、稳态性能等) 性能(如稳定性、动态性能、稳态性能等)。 以前控制系统根轨迹绘制很麻烦,现在使用 MATLAB非常方便。 MATLAB非常方便。
根 轨 迹
K : 开环增益 K*: 根轨迹增益
C ( s) K* Φ( s ) = = 2 R( s ) s + 2 s + K *
D( s ) = s 2 + 2 s + K * = 0
λ1, 2 = −1 ± 1 − K *
(4).闭环系统极点与标准化参数之间的关系可由图4-2 闭环系统极点与标准化参数之间的关系可由图4 表示
1 + G (s) H (s) = 0
G (s)H (s) = −1
将上式改写成
G ( s) H (s) e
j ∠G ( s ) H ( s )

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s

j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)

自动控制原理--根轨迹法

自动控制原理--根轨迹法
3
1. 参数根轨迹
以非开环增益为可变参数绘制的根轨 迹为参数根轨迹,以区别以开环增益K*为 可变参数的常规根轨迹。
绘制参数根轨迹的法则与绘制常规根 轨迹的完全相同。只要在绘制参数根轨迹 之前,引入等效单位反馈系统和等效传递 函数概念,则常规根轨迹的所有绘制法则, 均适用于参数根轨迹的绘制。
4
为此,需要对闭环特征方程 1 G(s)H(s) 0 做如下等效变换,变成下面形式:
1 s(5s 1)
C(s)
1
C(s)
5
s(5s 1)
1 Td s
10
11
例:
设单位反馈系统的开环传递函数为
G(s)
K
s(s 1)(Ta s 1)
其中开环增益 K 可自行选定。分析时间常数 Ta 对 系统性能的影响。
解:闭环特征方程
s(s 1)(Ta s 1) K 0 1 Ta s 2 (s 1) 0
s(s 1) K
[s(s 1) K ] Ta s 2 (s 1) 0
G1 (s)

Ta s 2 (s 1) s(s 1) K
12
等效开环极点:
p1,2


1 2

1 K 4
注:若分母多项式为高次时,无法解析求解等效开环极 点,则运用根轨迹法求解。如本例,求解分母特征根的 根轨迹方程为:
G(s)H(s) 5(1 Ta s) 以 Ta 为 变 量 绘 制 s(5s 1) 参数根轨迹。
解: 1 G(s)H(s) 0
(5s 1)s 5(1 Ta s) 0 5s2 s 5 5Tas 0
7
5s2 s 5 5Tas 0
同除 5s2 s 5

(完整版)第四章根轨迹法

(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化

自动控制原理第四章

自动控制原理第四章
问题在于逐点计算工作量大,若要更有效的绘 制根轨迹就必须找出绘根轨迹的规律…
. . .. . ..
-1
2 1
s
关系
R( s )
f
G( s)
H (s)
C ( s)
* 前向通路传函: G ( s) KG
(s z ) (s p )
i 1 i i 1 q i
根轨迹不会穿越虚轴进入右半s平面,则系 统稳定,如果根轨迹越过虚轴进入s右半平面, 此时根轨迹与虚轴交点处的K值,就是临界开 环增益。 2.稳态性能
开环传递函数在坐标 原点有一个极点,所 以属I型系统
jw
. . .. . ..
-1
2 1
s
由坐标原点处的极点数确定系统类型; 若给定系统的稳态误差要求,则可以确定 闭环极点位置的容许范围。
绘制根轨迹方法: 1.试探法:任选s1点看是否满足相角条件; 2.按基本规则(如下节讲述)手工绘制;
3.用计算机绘制。
4.2 根轨迹绘制的基本法则
一、绘制根轨迹的基本法则 法则1. 根轨迹的起点和终点 根轨迹起始于开环极点,终止于开环零点,若n>m, 则有n-m条根轨迹终止于无穷远处。
K
n
m
j
nm
与实轴的夹角: a (2k 1)
nm
k 0,1,..., n m 1
180
sa n m 1

0
sa
nm 2

90
180
90
0
sa 0 n m 3 60

60
s a 45 0 nm 4

45
证明: G s H s K s zi

自动控制原理_第4章_线性系统的根轨迹法

自动控制原理_第4章_线性系统的根轨迹法

4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b

* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1

j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自动控制理论第四章 线性系统的根轨迹分析

自动控制理论第四章 线性系统的根轨迹分析

由以上分析得知:
根轨迹表明了系统参数对闭环极点分布的影 响,通过它可以分析系统的稳定性、稳态和 暂态性能与系统参数之间的关系。
利用根轨迹,可对系统动态特性进行下述分析: (1)判断该系统在K1从0到变化时的稳定性; (2)判断系统在K1从0到变化时根轨迹的条数; (3)判断该系统K1取值在何范围时处于过阻尼、 临界阻尼和 欠阻尼状态; (4)判断系统的“型”,从而计算系统稳态特性; (5)当K1值确定后,在根轨迹上找到闭环极点,从而计算系 统闭环性能指标;或反之;
•根轨迹法作为经典控制理论的基本方法,与频率特性法 互为补充,是分析和研究自动控制系统的有效工具。
•实际上,我们可以利用matlab方便地绘制系统的根轨 迹图。
本章内容
第一节 根轨迹的基本概念 第二节 绘制根轨迹的方法 第三节 参量根轨迹和多回路系统根轨迹 第四节 正反馈系统和零度根轨迹 第五节 利用根轨迹分析系统的暂态性能 第六节 延迟系统的根轨迹 本章小结、重点和习题
当K1由0变化到时,试按一般步骤与规则绘制 其根轨迹图。 解: (1)本系统为3阶系统,有3条根轨迹; (2)起始点:系统没有开环零点,只有三个开环 极点,分别为p1=0,p2=-1,p3=-2。 (3)渐近线:K1时, p1 p2 p3 0 1 2 a 1 有3条根轨迹趋向无穷远处, nm 30 其渐近线与实轴的交点和 (2q 1)180 (2q 1)180 a nm 3 倾角分别为:
满足相角条件,s1=-1.5+j2.5是该系统根轨迹上的点。
(3)利用幅值条件求得与s1 相对应的K1值。
K1

s1 ( s1 2) ( s1 6.6) ( s1 4)
1.5 j 2.5 0.5 j 2.5 5.1 j 2.5 2.5 j 2.5

第4章 线性系统的根轨迹法

第4章 线性系统的根轨迹法

1.绘制根轨迹的基本法则 法则1 根轨迹的起点和终点。根轨迹起始于开环 极点,终止于开环零点。 对于实际的物理系统,开环零点数m一般小于 或等于开环极点数n。 法则2 根轨迹的分支数、对称性和连续性。根轨 迹的分支数与开环有限零点数和有限极点数中的 大者相等,它们是连续的并且对称于实轴。
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
2.附加开环零点的作用 在控制系统设计中,常用附加位置适当 的开环零点来改善系统性能。 研究附加开环零点的作用的方法,就是 将开环零点取不同的值绘制K变化时的根轨 迹。由此可分析和设计附加零点对改善系统 性能的影响。
第4章 线性系统的根轨迹法
3.零度根轨迹 非最小相位系统——指在s右半平面具有 开环零极点的控制系统。此其根轨迹相角遵 循00+2kπ,称之为零度根轨迹。 零度根轨迹的绘制方法,与常规根轨迹 的绘制方法不同。其中正反馈的根轨迹绘制 如前所述。
第4章 线性系统的根轨迹法
4. 根轨迹方程
根轨迹是系统所有闭环极点的集合。 设系统的闭环传递函数为:
C ( s) G(s) Φ( s) = R( s) 1+G ( s) H ( s)
令闭环传递函数表达式的分母为零,得:
1 + G( s ) H ( s ) 0
第4章 线性系统的根轨迹法

G(s) H (s) 1
LOGO
自动控制原理 教学课件 2009年淮南师范学院 校级精品课程
电气信息工程系 自动控制原理课程教学组
第4章 线性系统的根轨迹法
第4章 线性系统的根轨迹法
主要内容:
•4-1 根轨迹法的基本概念
•4-2 根轨迹绘制的基本原则 •4-3 广义根轨迹 •4-4 系统性能的分析 •4-5 用MATLAB绘制根轨迹

自动控制原理 第四章 线性系统的根轨迹方法(2011-3) (2)

自动控制原理 第四章 线性系统的根轨迹方法(2011-3) (2)
要求等价为:
பைடு நூலகம்β = 45
−ξπ 1−ξ 2
β = 60
[ s]
j
⎧45° < β < 60° ⎨ ⎩ 2 < ωn < 5
−5
−2
0
13
ξ ξ ξ ξ ξ ξ ξ
= 0.0 σ % = 100% = 0.4 σ % = 25% = 0.5 σ % = 15% = 0.6 σ % = 10% = 0.7 σ % = 5% = 0.8 σ % = 2% = 1.0 σ % = 0%
A
ξ = 0.5
Im
λ3 = −2.34 X
−2
λ1 = −0.33 + j0.58
−1
X
−0.5
60
0
X
Re
λ2 = −0.33 − j0.58
21
三、高阶系统动态性能指标估算
1、高阶系统单位阶跃响应
(1) 高阶系统的单位阶跃响应包括常数项和响应模态。 (2) 除常数项以外,高阶系统的单位阶跃响应是系统模态的组 合,组合系数即部分分式系数。 (3) 模态由闭环极点确定,而部分分式系数与闭环零点、极点 分布有关,闭环零点、极点对系统动态性能均有影响。
ξ ≥ 1− r
( α)
2
ωd ≤ r
α − r ≤ ωn ≤ α + r
α − r ≤ ξωn ≤ α + r
如果设定区域
ξωn ≥ q
则选择 r ≤ min
(α − q , α
ξ ≥ ξ min
1− ξ
2 min
)
8
[例]:如图系统,求系统具有最小阻尼时K值及相应的 动态性能和稳态误差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
交角为 的一组渐近线,趋向无穷远处。
n
m
pi z j
根轨迹方程第二种形式: j1 n
1
(s pi )
i 1
1.幅值条件: 或
m
K * | s z j |
j 1 n
1
| s pi |
i 1
n
| s pi |
K*
i 1 m
| s zj |
j 1
作用:确定根轨迹上各点对应的K*值。
2.相角条件:
m
n
(s z j ) (s pi ) (2k 1)
s3 1 2 0
s2 3 k* 0
s1
6 k*
3
s0
k*
k* 6 s j 2
38
方法二:
1
k*
0
j( j 1)( j 2)
(k * 32 ) j(2 3) 0
(k * 32 ) 0
(2
3
)
0
k* 6
2
39
Matlab仿真结果
40
法则八:闭环极点之和
当n m 2时:
K 0 0.1 0.25 0.5


s1 0 -0.11 -0.5 -0.5+j0.5 … s2 -1 -0.89 -0.5 -0.5-j0.5 …
-0.5+j∞ -0.5-j∞
6
7
根轨迹的定义 根轨迹是指系统中某个参数由0→∞变 化时,闭环特征根在s 平面上变化的 曲线。
8
1948年,Evans提出根轨迹法: 1. 在[s],由系统 开环传递函数绘出闭环
j1 d p j
d 2.3
•分离角
d
2
54
G0 ( s)
s(s
k* 3)(s2
2s
2)
(6)根轨迹与虚轴的交点
闭环特征方程:s4 5s3 8s2 6s k* 0 s j
(4 82 k*) j(53 6) 0
0
k* 0
或k*
1.1 8.16
55
G0 ( s)
s(s
(
s
)
1
Байду номын сангаас
G(s) G(s)H
(
s)
15
闭环特征方程: 1 G(s)H(s) 0
G(s)H (s) 1
根轨迹方程
16
将开环传函写成零极点形式:
m
G(s)H (s)
M (s) N (s)
K* (s zj )
j 1
n
(s pi )
i 1
K* :开环(根轨迹)增益
m
K * (s z j )
a
i 1
j 1
nm
a
(2k 1)
nm
(k 0,1,,n m 1)
23
结论 渐近线以(σa,0)为出发点的一组射线; 射线条数是n-m,且均分360。
24
法则四:实轴上的根轨迹的分布
若s1右侧实轴上的开环零、极点数目之和 为奇数,则s1所在的区域是根轨迹。 找一测试点s1
25
例:已知单位负反馈系统开环传递函数
根轨迹。 2.根据闭环极点的分布对系统性能分析。
9
引例系统分析
• 稳定性分析
条件:闭环特征根都位于[s]的左半平面。
当开环增益K: 0→∞时,根轨迹均在[s]平面的 左半部,因此,系统对所有的K值都是稳定的。
• 动态分析 当0 ≤ K < 0.25时 闭环特征根:两个不等实根 系统呈过阻尼状态 系统对阶跃输入的动态响应过程
j 1
i 1
结论:相角条件是确定[S]根轨迹的充要条件
说明:
此根轨迹方程决定的根轨迹称为常规根轨迹 (或180。根轨迹)
4.3 根轨迹的绘制法则
20
表示开环极点 表示开环零点 箭头 表示参数增加的方向
21
法则一:根轨迹的起点和终点
• 根轨迹起于开环极点,终于开环零点。
(有限零极点与无限零极点)
2)
(4)渐近线
3条
渐近线与实轴的夹角
a
3
5
3
渐近线与实轴的交点(σa , 0)
3
pi
a
i 1
3
6.67
47
(5)分离点与分离角
G0 ( s)
s3
k 20s2
50s
1
1
1
0
d d 10 5 2 d 10 5 2
d 2 20d 50 d 2 (10 5 2 )d d 2 (10 5 2 )d
开环极点与开环零点之间,可能存在。
28
分离点坐标
n
1
m
1
i1 d pi j1 d z j
注:若无有限开环零点,令右端=0
29
2、分离角
分离角:根轨迹进入分离点的切线方向与 离开分离点的切线方向的夹角。
d
1 (2k l
1)
(k 0,1,,l 1)
l:进入分离点的分支数
例: 开环传函
G(s)H (s) K*(s 4) s(s 2)
(2k 1)
4
p1 (2k 1) ( p1 z1) ( p1 pj )
j2 4
(2k 1) z1p1 pj p1 j2
34
起始角终止角计算公式
m
n
pi (2k 1) z j pi pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z jzi ) pjzi
d 3 20d 2 50d
0
3d 2 40d 50 0
d1 20 5 10 d 2 20 5 10 1.39
3
3
•分离角
d
2
48
G0 ( s)
s3
k 20s2
50s
(6)根轨迹与虚轴的交点
闭环特征方程:s3 20s2 50s k 0 s j
(k 202 ) j(50 3) 0
第四章 线性系统的根轨迹法
中国石油大学自动化系
第三章 时域分析法
输入信号
系统传递函数
输出信号
分析:动态性能 稳定性 稳态性能
2
主要内容
4.1 根轨迹的基本概念 4.2 根轨迹方程 4.3 根轨迹的绘制法则 4.4 根轨迹绘制举例 4.5 广义根轨迹 4.6 系统性能分析 4.7 用Matlab绘制根轨迹
(2)实轴上的根轨迹 (3)根轨迹分支数
4
52
G0 ( s)
s(s
k* 3)(s2
2s
2)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.25
53
G0 ( s)
s(s
k* 3)(s2
2s
2)
(5)分离点与分离角
解析法:
4 1 0
1
根轨迹特征:半圆
半径: k*
负实轴
分离点: ( k*,0)
5)
(5)分离点与分离角
N(s) 1 N(s) 0
D(s) s2 (s 2)(s 5) D(s) 4s3 21s2 20s
N (s)D(s) N (s)D(s) 0
s1 0 s2 5 s3 4 4
•分离角
d
2
61
62
4.5 广义根轨迹
除了K*变化的常规根轨迹,其他情 况的根轨迹属于广义根轨迹。
n
n
pi si const
i1
i1
根轨迹重心 当增益K变化, 某些闭环极点在S平面上向左移动时, 则必有另一些极点向右移动。
4.4 根轨迹绘制举例
42
一、典型开环零极点分布及闭环根轨迹 (P159 图4-15)
相关文档
最新文档