线性系统的根轨迹分析.

合集下载

夏德钤《自动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】

夏德钤《自动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】

夏德钤《⾃动控制原理》(第4版)章节题库-第4章线性系统的根轨迹分析【圣才出品】第4章 线性系统的根轨迹分析1.系统的开环传递函数试证明:点在根轨迹上,并求出相应的和系统开环增益K。

证明:根据系统的开环传递函数可知,系统的开环极点为由闭环根轨迹的相⾓条件可得:当时,故点在根轨迹上。

由闭环根轨迹的幅值条件可知,此时即相应的根轨迹增益和系统开环增益仿真曲线如图4-1所⽰。

MATLAB程序:exe402.m2.设单位反馈控制系统的开环传递函数为试⽤解析法绘出K*从零变到⽆穷时的闭环根轨迹图,并判断下列点是否在根轨迹上:(﹣2+j0),(0+j1),(﹣3+j2)解:闭环传递函数为则闭环特征⽅程为闭环特征根为当。

可逐个描点得闭环根轨迹如图4-2所⽰,从图4-2中明显可见,只有(-2,j0)在根轨迹上。

图4-23.设单位反馈控制系统的开环传递函数如下,试概略绘制闭环根轨迹图。

解:(1)系统的开环传递函数令为根轨迹增益。

①实轴上的根轨迹:[0,-2],[-5,-∞)。

②根轨迹的渐近线:③根轨迹的分离点:根轨迹的分离点坐标满⾜解得④根轨迹与虚轴的交点:由系统的开环传递函数可知系统的闭环特征⽅程令s=jω,将其代⼊上式可得即由于ω≠0,故可解得则根轨迹与虚轴的交点为±j3.16。

根据以上⼏点,可以画出概略根轨迹如图4-3所⽰。

图4-3 系统(1)概略根轨迹图(2)系统的开环传递函数①实轴上的根轨迹[0,-2],[-3,-5]。

③根轨迹的分离点:根轨迹的分离点坐标满⾜通过试凑可得d=-0.89。

根据以上⼏点,可以画出概略根轨迹如图4-4所⽰。

图4-4 系统(2)概略根轨迹图(3)系统的开环传递函数①实轴上的根轨迹:[-1,-3],[-10,-5]。

②根轨迹的渐近线:③根轨迹的分离点:根轨迹的分离点坐标满⾜通过试凑可得d=-7.27。

根据以上⼏点,可以画出概略根轨迹如图4-5所⽰。

图4-5 系统(3)概略根轨迹图(4)系统的开环传递函数实轴上的根轨迹为[-2,-1],系统概略根轨迹如图4-6所⽰。

自动控制原理-线性系统的根轨迹实验报告

自动控制原理-线性系统的根轨迹实验报告

一、 实验结果及分析1.(1) )136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: 运行结果:num=[1];den=[1 8 27 38 26 0];rlocus(num,den)[r,k]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =0.0021 + 0.9627ik = 28.7425 r =-2.8199 + 2.1667i-2.8199 - 2.1667i-0.0145 + 0.9873i-0.0145 - 0.9873iG=tf([1,12],[1,23,242,1220,1000]);rlocus (G);[k,r]=rlocfind(G)G_c=feedback(G,1);step(G_c)结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。

由根轨迹图和运行结果知,当0<K<28.7425时,系统总是稳定的。

(2) )10)(10012)(1()12()(2+++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: 运行结果:num=[1 12];den=[1 23 242 1220 1000];rlocus(num,den)[k,r]=rlocfind(num,den)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')选定图中根轨迹与虚轴的交点,单击鼠标左键得:selected_point =0.0059 + 9.8758ik =1.0652e+003 r=-11.4165 + 2.9641i -11.4165 - 2.9641i -0.0835 + 9.9528i -0.0835 - 9.9528i 结论:根轨迹与虚轴有交点,所以在K 从零到无穷变化时,系统的稳定性会发生变化。

线性系统的根轨迹-自动控制原理实验报告

线性系统的根轨迹-自动控制原理实验报告

自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。

2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。

《自动控制原理》第4章 线性系统的根轨迹法

《自动控制原理》第4章 线性系统的根轨迹法
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,

4第四章__根轨迹法(2)

4第四章__根轨迹法(2)
3
2
1
Imag Axis
0
-1
-2
-3 -2
-1.5
-1
-0.5 Real Axis
0
0.5
1
第四章 线性系统的根轨迹分析
2)确定内环的闭环极点 要求内环的反馈系数 内环的特征方程 3.2<Kf<3.5
( s 0.6)(s2 2s 4) K f 0
在实轴上选取试验点进行试探,P1=-1.6时,Kf =3.36 可求得内环的另外两个闭环极点为 p2 0.5 j1.83 p3 0.5 j1.83 3)绘制外环的根轨迹图 外环的开环传递函数
(2)根轨迹的起点 (3)实轴上的根轨迹
0,-1,-3
终点 均为∞
[0 , ] [3 , 1]
第四章 线性系统的根轨迹分析
(4)根轨迹的渐近线
a
n
2k 180 0 ,120 nm
m j i 1 i
k 0、 1
a=
( p ) ( z )
i 1 j与虚轴的交点 (相同) (9)闭环极点的和 (相同)
第四章 线性系统的根轨迹分析
例:控制系统方框图如下所示
R(s )


Kc s2


K0 s( s 1)
C (s )
1 s3
系统的内环为正反馈,绘制内环根轨迹图。 解: (1)内环的开环传递函数
G1 ( s ) H1 ( s ) K0 s( s 1)(s 3)
第四章 线性系统的根轨迹分析
4-3
广义根轨迹
其它种类的根轨迹: 1.参数根轨迹
2.多回路系统的根轨迹 3.正反馈回路和零度根轨迹

第四章线性系统的根轨迹法

第四章线性系统的根轨迹法
2. 零度根轨迹: 1 实轴上根轨迹区间右侧开环零极点数目之和为偶数 2 实轴与渐近线正方向夹角2kπ/n-m 3 求出射角和入射角时2kπ
4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s

j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)

第4章 线性系统的根轨迹分析

第4章  线性系统的根轨迹分析

3.暂态性能 (1) 当0<K< 0.25时, 闭环特征根为实根,系统是过 阻尼状态,阶跃响应为非周期 过程。
∞ K K=0 × -1 K

K=0.25 K=0 ×
σ
(2) 当K=0.25时,两 特征根重合,均为-0.5,系 统处于临界阻尼状态。

(3) 当K>0.25时,两特征根变为共轭 复根,系统处于欠阻尼状态,阶跃响应为衰 减振荡过程。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1)( j 2) K 1 0 j ( 2 j 3 2) K 1 0 j 3 3 2 j 2 K 1 0

j 2
K1=6
实部 虚部
K 13 2 0 2 3 0
i 1
n
q 0,1,2,

(**)
三.根据相角条件确定根轨迹上的点
设某一系统的开环零极点如图, 在S平面中的任意一点 s 0 ,用 相角条件可以判断 s 0 是不是根 轨迹的点。 1.从 s 0 到各零极点连直线 2.用量角器量(s0 p1 ) ,…等 各个角. 3.将量好的值代入(**) 式,若等式成立,则 s 0 就是根 轨迹上的点.
§4-1根轨迹的基本概念

G H
绘制根轨迹是求解特征方程的根,特征方程可改 写为 G ( S ) H ( S ) 1
G( S ) H ( S ) 是复变量S的函数,根据上式两边的
幅值和相角分别相等的条件,可以得到
§4-1根轨迹的基本概念
G( S ) H ( S ) 1
G( S ) H ( S ) 180(2q 1),
z1

实验2 线性系统的根轨迹分析

实验2 线性系统的根轨迹分析
Harbin Institute of Technology
自动控制理论实验报告
实验二 线性系统的根轨迹分析
哈尔滨工业大学
实验二 线性系统的根轨迹分析
一、实验目的
1、掌握使用MATLAB绘制控制系统根轨迹图的方法;
2、掌握根据根轨迹法对控制系统进行性能分析方法。
二、 实验设备
Pc机一台,MATLAB软件。
三、实验内容
A、已知一负反馈系统的开环传递函数为
(1)绘制根迹。
(2)选取根轨迹与虚轴的交点,并确定系统稳定的根轨迹增益K的范围 。
(3)确定分离点的超调量 及开环增益K。
(4)用时域相应曲线验证系统稳定的根轨迹增益K的范围
(5)分析根轨迹的一般规律。
B、. 已知系统的开环传递函数为:
求:1)绘制根轨迹。
2)选择系统当阻尼比 =0.7时系统闭环极点的坐标值及增益K值。
分析系统性能。
四、实验结果与分析
A:1、根轨迹
2、由根轨迹图知,与虚轴交点i=4.46,增益K=12,故K<12时系统稳定
3、由根轨迹图知,分离点超调量Mp=0%,增益K=0.458
4、将不同的K带入时域响应,如下图
由图可知当K=11.9时系统依旧稳定,但当K=12时系统已经开始震荡,进入临界稳定。故与根轨迹结论一致。
超调量越靠近虚轴越大,系统处于欠阻尼状态,其动态响应将出现衰减振荡,而且越靠近虚轴,增益K越大,阻尼越小,振荡频率 越高,振幅衰减越大。
5)当根轨迹与虚轴相交时,闭环根位于虚轴上,闭环极点是一对纯虚根,阻尼 ,超调量最大,系统处于无阻尼状态,其动态响应将出现等幅振荡。此时对应的增益 ,称为临界稳定增益。
5、根轨迹的一般规律
1)根轨迹,随着k值从 变化,趋向无穷远处或者零点。

根轨迹法PPT课件

根轨迹法PPT课件
定闭环极点位置。另一方面分析设计系统时经常要研究一个 或者多个参量在一定范围内变化时对闭环极点位置及系统性 能的影响.
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
时,闭环系统特征方程的根在 s 平面上变化的轨迹。
解: n 3,m 0
① p1 0,p2 1,p3 2 为根轨迹的起点;
开环无零点,故三个分支终点均趋向无穷远。

a
(2q 1)
nm
(2q 1)
3
60、180、300
(q 0,1,2)
n
m
a
i 1
pi z j
j 1
nm
3 0 1 3
③ 实轴上根轨迹:
( ,2],[1,0]
j
p3 2
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
对于实轴上0至1线段的实数根而言,其对应的K*值在
b 点为极大值。
可以证明,当l 条根轨迹分支进入并立即离开分离点时,
分离角为 (2k 1) l .
k 0,1, ,l -1
例4-3:求上例中 b 点的坐标。
[规则3] 根轨迹的渐进线
当开环有限极点数 n大于有限零点数时,有 (n m)
条根轨迹分支沿着与实轴交角为 a 、交点为 a的一组

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验

《模块化自控原理》线性系统的根轨迹分析实验模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。

下面是对该实验的详细说明和分析。

1.实验目的1.1理解线性系统的根轨迹概念及其重要性;1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;1.3掌握根轨迹分析实验的具体步骤;1.4提高实验操作和数据处理的能力。

2.实验原理2.1根轨迹的概念根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。

2.2根轨迹的画法根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。

根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。

2.3根轨迹分析的应用根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;-根轨迹与虚轴交点奇数个则系统不稳定;-根轨迹的分布越往左上角或右上角,系统的动态特性越好。

3.实验装置和器材3.1实验装置数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。

3.2实验器材电脑、电源线、连接线、示波器探头等。

4.实验步骤4.1连接实验装置将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器等设备进行连接。

4.2系统参数调整设置合适的实验参数,包括采样频率、控制周期、信号幅值等。

4.3系统根轨迹绘制在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函数和稳定域范围,绘制系统的根轨迹。

4.4根轨迹分析根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。

4.5记录实验数据记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。

第4章线性系统的根轨迹分析

第4章线性系统的根轨迹分析
➢根轨迹的渐近线 根轨迹的渐近线就是确定当开环零点数目m小于极点 数目n时,(n-m)条根轨迹沿什么方向趋于[s]平面无 穷远处。由式(4-1-7)及式(4-2-1)求得
k (s z1)(s z2 )(s zm ) 1 (s p1)(s p2 )(s pn )
(4-2-6)
g(t) c(t) 1 et /
闭环系统特征方程为
f (s) s3 3s2 2s k 0
df (s) 3s2 6s 2 0 ds
s1 0.422, s2 1.578
由前边分析得知,s2 不是根轨迹上的点,故舍 去。s1是根轨迹与实轴分离点坐标。最后画出
根轨迹如图4-2-4所示。
图4-2-4 例4-2-1的跟轨迹图
利用多项式乘法和除法,由式(4-2-6)可得
n
s n ( pi )s n1
k
i 1 m
s m ( z j )s m1
j 1
m
n
s nm ( z j
pi )s nm1
j 1
i 1
将式(4-2-8)代入上式可得
m
n
(s )nm snm ( z j pi )snm1
(n m)
(4-2-1)
式中 s z j ( j 1,2,, m) 为系统的开环零点 s pi (i 1,2,, n) 为系统的开环极点
k称为根轨迹增益或根轨迹放大倍数。设系统为v型, 即有s=0的开环极点,将式(4-2-1)改写为
G(s)H (s)
K (1s 1)( 2s 1)( ms 1)
当1<k<∞时,两个闭环极点变为一对共轭复数极点
明当sk1→、s21、∞ 时s12,位js1于、k(s-121,将,且j趋0s1)、向点s于且2 无平的限行实远于部处虚不。轴随图的k变4直-化1线的,上控说。

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的根轨迹分析)【圣才出品】

夏德铃《自动控制理论》(第4版)笔记和考研真题详解(线性系统的根轨迹分析)【圣才出品】

(3)如果系统具有一对主导极点,则系统的暂态响应呈振荡性质,其超调量主要决
定于主导极点的衰减率
,并与其他零、极点接近坐标原点的程度有关,
而调整时间主要取决于主导极点的实部
(4)如果在系统中存在偶极子。如偶极子的位置接近坐标原点,其影响往往需要考
虑。
(5)如果除了一对主导复数极点之外,系统还具有若干实数零、极点,则零点的存
③规则七:根轨迹的出射角为:
3 / 52
圣才电子书

十万种考研考证电子书、题库视频学习平 台
入射角为:
其他规则均不变。
四、滞后系统的根轨迹 滞后环节的存在使系统的根轨迹具有一定的特殊性,并往往对系统的稳定性带来不利 的影响。 1.绘制滞后系统根轨迹的相位条件和幅值条件 (1)幅值条件
4.2 名校考研真题详解
6 / 52
圣才电子书

十万种考研考证电子书、题库视频学习平 台
一、选择题
1.开环系统传递函数为 上,有( )根轨迹趋于无穷远。[东南大学研]
有( )根轨迹完全落在实轴
A.3 条,1 条
B.1 条,3 条
C.2 条,3 条
D.2 条,2 条
【答案】C
3.闭环极点的确定 (1)闭环极点的定义 闭环极点是指当 K1(或 K)值满足幅值条件时,对应的根轨迹上的点。 (2)闭环极点的作用 利用幅值条件,可以确定根轨迹上任一点所对应的 K1 值。
三、广义根轨迹 根轨迹一般都是以系统的开环增益 K1 为可变参量,还有许多其他种类的根轨迹,它们 是:参数根轨迹,多回路系统的根轨迹,正反馈回路和零度根轨迹。 1.参数根轨迹 (1)定义 参数根轨迹是指以所选可变参量 α 代替 K1 的位置所画出的根轨迹。 (2)表达式

实验三 线性系统的根轨迹分析

实验三  线性系统的根轨迹分析

实验三 线性系统的根轨迹分析09电信 任旭乐 20095042046一、 实验目的1.熟悉Matlab 的基本操作;2.掌握利用Matlab 函数实现系统根轨迹的绘制及设计的方法。

3.能够根据所得结果对系统进行性能分析。

二、 实验内容1、已知单位负反馈系统的开环传递函数为: (1)试画出K=0 →∞时的闭环系统根轨迹; (2)求出临界时的K 值及闭环极点; (3)求出使系统稳定的K 值的区间; (4)利用Matlab 函数将剩余的根求出。

程序: a=[1 0]; b=[0.05 1]; c=[0.05 0.2 1]; d=conv(a,b); e=conv(c,d); G=tf([1],e); figure(1); rlocus(G);[k,pole]=rlocfind(G);解:(1)根轨迹如图所示。

(2)临界时k=4.62;闭环极点p=0.336+4.34j (3)由图可知:0<k<4.62时系统稳定。

Root LocusReal AxisI m a g i n a r y A x i s-80-60-40-200204060-60-40-20204060System: G Gain: 4.62P ole: 0.336 + 4.34i Damping: -0.0772Overshoot (%): 128Frequency (rad/sec): 4.35System: G Gain: 0P ole: 0Damping: -1Overshoot (%): 0Frequency (rad/sec): 0System: GGain: 8.5P ole: -19.5Damping: 1Overshoot (%): 0Frequency (rad/sec): 19.5根轨迹2()(0.051)(0.050.21)KG s s s s s =+++2、已知单位负反馈系统的开环传递函数为:(1)试画出K=0 →∞时的闭环系统根轨迹;(2)找出ζ=0.707附近的点,绘制出其相应的单位阶跃响应曲线。

线性控制系统的根轨迹分析法

线性控制系统的根轨迹分析法

PART 01
引言
线性控制系统简介
线性控制系统是由线性微分方程描述 的一类控制系统,其特点是系统的输 出和输入之间存在线性关系。
线性控制系统广泛应用于工程领域, 如航空航天、化工、电力等,用于实 现各种控制目标,如稳定性、快速性 和准确性。
根轨迹分析法的定义和重要性
根轨迹分析法是一种通过分析线性控制系统闭环极点的变化来研究系统性能的方法。
系统校正与改进
通过根轨迹分析,可以找到系统性 能不足的原因,进而对系统进行校 正或改进设计。
PART 04
根轨迹分析法的限制和挑 战
参数变化对根轨迹的影响
01
参数变化可能导致根轨迹的形状和位置发生变化,从而影响 系统的稳定性和性能。
02
参数变化可能使系统从稳定状态变为不稳定状态,或反之。
03
参数变化可能影响系统的动态响应,如调节时间和超调量。
分析系统动态特性
通过根轨迹分析,可以了 解系统在不同参数下的动 态特性,如超调和调节时 间等。
控制系统性能优化
1 2 3
优化系统性能指标
通过调整系统参数,利用根轨迹分析优化控制系 统的性能指标,如减小超调量、缩短调节时间等。
提高系统抗干扰能力
通过根轨迹分析,可以找到提高系统抗干扰能力 的参数设置,使系统在受到扰动时仍能保持良好 的性能。
分支性
当参数变化超过一定阈值 时,根轨迹可能出现分支, 表示系统出现多解或不稳 定。
PART 03
根轨迹分析法的应用
控制系统稳定性分析
判断系统稳定
通过根轨迹分析,可以判 断线性控制系统的稳定性, 即系统在受到扰动后是否 能恢复稳定状态。
确定系统临界状态
根轨迹分析可以确定系统 临界状态,即系统在某一 特定参数下从稳定状态变 为不稳定状态。

第4章线性系统的根轨迹法.

第4章线性系统的根轨迹法.

C(s)
G1 ( s) C ( s) G( s) R( s) 1 G1 ( s) H ( s)
闭环控制系统的性能取决于闭环零、极点
闭环零点=G 1(s)中的零点和H(s)中的极点,很容易求得 闭环极点由特征方程:1+ G1 (s) H(s)=0 求出,很难求得
第四章 根轨迹法 5
根轨迹法的优点:不用求解高阶方程,通过图解的方法 找出闭环极点,并且知道闭环极点的变化趋势,可以方便地 实现高阶系统的性能分析和设计。 根轨迹的定义:开环传递函数中某一参数从0→∞变化时,
第四章 根轨迹法 22
当n>m时,起始于n个开环极点的n支根轨迹, 有m支终止于开环零点,有n-m支终止于无穷远处。 用式(4-9)可以解释这一规则:终点就是K→∞ 的点,要K→∞只有两种情况,一是 s=zl(l=1,2,…,m),二是s→∞。这时,无穷远处也 称为‘无穷远零点’。 当 n<m 时,终止于 m 个开环零点 m 支根轨迹, 有 n 支来自个开环极点,有 m-n 支来自无穷远处。 必需指出,实际系统极少有 n<m的情况,但是在处 理特殊根轨迹时,常常将系统特征方程变形,变形 后的等价系统可能会出现这种情况。
1948年伊凡思(W.R.Evans)提出了根轨迹法, 它不直接求解特征方程,而用图解法来确定系统 的闭环特征根。所谓根轨迹就是系统的某个参数 连续变化时,闭环特征根在复平面上画出的轨迹, 如果这个参数是开环增益,在根轨迹上就可以根 据已知的开环增益找到相应的闭环特征根,也可 以根据期望的闭环特征根确定开环增益。
第四章 根轨迹法 23
规则二:根轨迹的分支数和对称性
根轨迹对称于实轴,连续变化,并且有max(n,m) 支。 因为根轨迹是闭环特征方程的根,无论K如何 变化特征方程始终有max(n,m)个根,即使出现重 根,当K从零到无穷大连续变化时重根不可能始终 为重根,所以根轨迹一定有max(n,m)支。 特征方程的根要么是实根(在实轴上)要么是 共轭复根(对称于实轴),所以根轨迹一定对称于 实轴且连续变化。

线性系统的根轨迹法

线性系统的根轨迹法
g
i
3)若n>m,另(n-m)条根轨迹的终点??

kg
(s p )
j 1 m j
n
同理,若m>n, (s p ) s 则有 (m-n) 条根轨迹起于无穷远处。 lim lim lim s 当 s 时,
i 1 i
(s z )
s
可知, k
n j 1 m j
Kg= 0 2
Kg=1 1
Kg
Kg= 0 0

当 k g 1 时,闭环两个实极点重合,系统为 临界阻尼系统,单位阶跃响应为非周期过程。
当 k g 1 时,闭环极点为一对共轭复数极点, 系统为欠阻尼系统,单位阶跃响应为阻尼振荡 过程。
3. 根轨迹的条件方程
系统的结构如图所示:
开环传函:
1.根轨迹的定义
当某一参数从0变化时,系统闭环特征 方程的根在s 平面上的变化轨迹,称为根轨 迹。 当闭环系统没有零、极点相消时,闭环特 征根就是闭环传递函数的极点,即闭环极点。
引例:
已知系统的结构图所示,分 析 0 K 时,闭环特征根在 s平面上变化的轨迹。 解:系统的开环传递函数为
pj zi
s-zi
矢量的模:
s zi
s pj
矢量的相角:
(矢量与正实轴的夹角)
( s zi )
( s p j )
Kg
( s z
i 1 n j 1
m
i
) 1 )
——根轨迹的条件方程
( s p
j
• 根轨迹方程可看成一个矢量方程,因此可分 解出以下的模值条件和相角条件方程:
g
时,左边=∞
n
n m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n

(S
i1
Pi) 0
根轨迹起始于开环极点 Pi 根轨迹终点在K1= ∞ 处
m (Sj1 Nhomakorabea Z j) 0
根轨迹终止在开环零点 Zj
n条轨迹从开环极点出发,只能有m条 终止在开环零点, n>m, 另外n-m 条应终止何处? 根轨迹法
余下n-m条根轨迹将终止在无穷远处

(S Z 1 )(S Z 2 ) (S Zm) (S P 1 )(S P 2 ) (S Pn) (S Z 1 )(S Z 2 ) (S Zm) (S P 1 )(S P 2 ) (S Pm)(S Pm 1 ) (S Pn) 1 K1 1 K1
(M+ N)* 180O = -[2q+1]*180O M+ N= 2q+1



( S a Z 1 ) 180 (S a (S a

幅角为零的零、极点在实轴上试验点左边 共轭零、极点的幅角其和为零 实轴上试验点右边的零、极点其幅角为180°
要判断实轴上的 某点Sa是不是根轨迹上的点,只要计算 一下它右边的实轴上零极点的幅角和是否符合幅角条件
P 3 ) 180 P 4 ) 180
1 G (s)H (s)
G (s)H (S )
1
m
G ( s ) H ( S ) 180 ( 2 q 1 ), q 0 ,1 , 2
m

0
K 1 (S G ( S ) H ( S )
j1 n
Z j) 1
K ( G ( S ) H ( S )
j1 n
z2
根据绘制根轨迹的两个基本条件, 演绎出八条绘制根轨迹的基本规则; 根据这些规则绘制根轨迹不必计算 特征根而只要做简单的计算和判断。
根轨迹法 二、 绘制根轨迹的基本规则 规则一 根轨迹连续且对称于实轴
因为K1连续变化;系数为实数,有复根必共轭
规则二
m
根轨迹起始于开环极点,终止在开环零点
(S
j1 n
共轭复根 两根对称
∞ - 4+j∞ - 4-j∞
16
K
实根 -ζω<0
根轨迹如下:
根轨迹可以提供有关 系统性能的信息
根轨迹提供的信息: 1、K1从0→∞变化,根轨迹不 会进入右半平面。即:无论 如何该系统是稳定的 2、K1>16,根轨迹进入复平面。 即:此时系统阶跃响应会振 荡(ωd不为零) ; K1越大 振荡越厉害(ζ小)、振荡 频率越高(ωd大) 3、K1=16 时系统阶跃响应临 界振荡
规则三
实轴上的根轨迹

P5 Z2 P2 Sa P4 Z1 P3 0
例如,某系统开环零极点分布 如图。现在要判断实轴上的 某点Sa是不是根轨迹上的点

各开环零、极点的幅角: (Sa Z 2 ) 0 观察左边等式有如下结论:
(S a (S a (S a P 5) 0 P1 ) 1 P2 ) 2
|S
i1 m
-
Pi |

幅角条件
z1
d P2 b a Sa
j

j1
(S
Z j)

i1
(S

Pi) (2q 1) * 180

左例:幅值应满足: a b 1
c d

c
k1

幅角应满足:

P1
1 2 3
4
( 2 q 1 )180
实轴上的某一点如果在根轨迹上, 那麽,在它右边的零、极点总数 应为奇数个。 ——规则三 根 轨 迹 法
设实轴上试验点右边有 M个零、N个极点,根据幅角条件则有: M*180O - N* 180O = -(2q+1)180O 两边同时加上 得 得 2N* 180O 即M+ N为奇数
P1 j Sa P5 Z2 P2 P4 Z1 P3 0
§4-2 绘制根轨迹的 基本条件和基本规则
一、 绘制根轨迹的基本条件
系统闭环特征方程为:
D ( S ) 1 G ( s ) H ( s )
R (s)
G (s)
H (s)
G (s)
C (s)
系统闭环特征方程的根为:
1 G (s)H (S ) 0 G (s)H (S ) 1
G B (s)
zj
S

Z j) 1
(S
i1

Pi)
(
i1
pi
S

Pi)
绘制根轨迹的两个基本条件 :
幅值条件和幅角条件
m
幅值条件
|S
j1 n

Zj | 1 K1
n
由 于 S 是 复 数 , 所 以 D(s) 也是复数;上式两边的幅 值和幅角应分别相等;从 而,得到绘制根轨迹的两 个基本条件:幅值条件和 幅角条件
Z j) Pi) 1 K1
(S
i1
以 K1 为参变量的根轨迹: 是K1 从0(起点)到(终点)变化时 系统闭环极点在根平面上的轨迹 起点和终点确定方法如下页:
m
(S
j 1 n
Z j) Pi) 1 K1
(S
i1
根轨迹法
K1从0→∞变化,根轨迹起点在K1=0处
不妨假设极点p1,p2,…,pm;分别终止在z1,z2,…,zm 那麽,余下n-m个极点只能是S→∞ 即:终止在无穷远处 例如,上一节的二阶系统例子
由幅角条件很容易得到实轴上的根轨迹:
m n

j 1
(S

Z j)

i 1
(S

Pi) (2q 1) * 180

根轨迹法
P1 j
第四章 线性系统的根轨迹分析
§4-1 根轨迹的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 广义根轨迹 §4-4 迟后系统的根轨迹 §4-5 利用根轨迹分析系统的性能
§4-1 根轨迹的基本概念
例:已知单位反馈系统开环传递函 数,求K1从0→∞变化时,系统闭 环根轨迹
解:系统闭环特征方程为:D(s)=S2+8S+K1=0 特征根为: S1,S2= - 4 ±
16 K 1
K s(s 8)
当K1从0到无穷变化时,两根在根平面上的轨迹是两条连 续曲线 - 系统闭环根轨迹
根 S1= - 4 + S2= - 4 16
K1
K
1 1
0 0 -8
0 → 16 0 →- 4 - 8→ - 4
16 - 4 - 4
重 根
16 → ∞ - 4 + j K 1 16 - 4 - j K 1 16
相关文档
最新文档