实验四 线性系统的根轨迹

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: 学号: 得分:

实验四 线性系统的根轨迹

一、实验目的

1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。 二、基础知识及MATLAB 函数

根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。这个参数一般选为开环系统的增益K 。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。

假设系统的对象模型可以表示为

1121

0111()()m m m m n n n n

b s b s b s b G s KG s K s a s b s a -+--++++==++++

系统的闭环特征方程可以写成

01()0KG s +=

对每一个K 的取值,我们可以得到一组系统的闭环极点。如果我们改变K 的数值,则可以得到一系列这样的极点集合。若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。

绘制系统的根轨迹rlocus ()

MATLAB 中绘制根轨迹的函数调用格式为:

rlocus(num,den) 开环增益k 的范围自动设定。 rlocus(num,den,k) 开环增益k 的范围人工设定。 rlocus(p,z) 依据开环零极点绘制根轨迹。 r=rlocus(num,den) 不作图,返回闭环根矩阵。 [r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向

量k 。

其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。K 为根轨迹增益,可设定增益范围。

例3-1:已知系统的开环传递函数32(1)

()429

s G s K s s s *

+=+++,绘制系统的根轨迹的matlab

的调用语句如下:

num=[1 1]; %定义分子多项式 den=[1 4 2 9]; %定义分母多项式 rlocus (num;den) %绘制系统的根轨迹 grid %画网格标度线

xlabel(‘Real Axis ’),ylabel(‘Imaginary Axis ’) %给坐标轴加上说明 title(‘Root Locus ’) %给图形加上标题名 则该系统的根轨迹如图3-1(a )所示。

若上例要绘制K 在(1,10)的根轨迹图,则此时的matlab 的调用格式如下,对应的根轨迹如图3-1(b )所示。

num=[1 1]; den=[1 4 2 9];

k=1:0.5:10;

rlocus (num;den;k)

1)确定闭环根位置对应增益值K 的函数rlocfind ()

在MATLAB 中,提供了rlocfind 函数获取与特定的复根对应的增益K 的值。在求出的根轨迹图上,可确定选定点的增益值K 和闭环根r (向量)的值。该函数的调用格式为:

[k,r]=rlocfind(num,den)

执行前,先执行绘制根轨迹命令rlocus (num,den ),作出根轨迹图。执行rlocfind 命令时,出现提示语句“Select a point in the graphics window ”,即要求在根轨迹图上选定闭环极点。将鼠标移至根轨迹图选定的位置,单击左键确定,根轨迹图上出现“+”标记,即得到了该点的增益K 和闭环根r 的返回变量值。

例3-2:系统的开环传递函数为23256

()8325

s s G s K s s s *

++=+++,试求:(1)系统的根轨迹;(2)

系统稳定的K 的范围;(3)K=1时闭环系统阶跃响应曲线。则此时的matlab 的调用格式为:

G=tf([1,5,6];[1,8,3,25]);

rlocus (G); %绘制系统的根轨迹

[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G ,1); %形成单位负反馈闭环系统

step(G_c) %绘制闭环系统的阶跃响应曲线

则系统的根轨迹图和闭环系统阶跃响应曲线如图3-2所示。

其中,调用rlocfind ()函数,求出系统与虚轴交点的K 值,可得与虚轴交点的K 值为0.0264,故系统稳定的K 的范围为(0.0264,)K ∈∞。

(a ) 完整根轨迹图形 (b )特定增益范围内的根轨迹图形

图3-1 系统的根轨迹图形

(a )根轨迹图形 (b )K=1时的阶跃响应曲线

图3-2 系统的根轨迹和阶跃响应曲线

三、实验内容

1.请绘制下面系统的根轨迹曲线

22()(22)(613)

K

G s s s s s s =++++

2(12)

()(1)(12100)(10)

K s G s s s s s +=++++

2(0.051)

()(0.07141)(0.0120.11)

K G s s s s s +=

+++

同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 四、实验报告

1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。

3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。

4.写出实验的心得与体会。 五、预习要求

1. 预习实验中的基础知识,运行编制好的MATLAB 语句,熟悉根轨迹的绘制函数rlocus()及分析函数rlocfind(),sgrid()。

2. 掌握用根轨迹分析系统性能的图解方法,思考当系统参数K 变化时,对系统稳定性的影响。

四:1. 2

2()(22)(613)

K

G s s s s s s =

++++

(1)程序代码:

G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G)

G_c=feedback(G,1); step(G_c)

(2)实验结果:

相关文档
最新文档