自动控制理论 线性系统的根轨迹法

合集下载

自动控制原理第5章根轨迹分析法

自动控制原理第5章根轨迹分析法

04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

根轨迹起于开环极点,终于开环零点。
由根轨迹方程,有
m
n
K (s zi )+ (s pi )=0
i 1
i 1
根轨迹起点 K =0 s pi , i 1, , n n个开环有限极点
由根轨迹方程,又有
m
n
(s zi )+(K )1 (s pi )=0
i 1
i 1
根轨迹终点 K s zi , i 1, , m m个开环有限零点
a
(2k 1)
nm
, k 0, 1,
ቤተ መጻሕፍቲ ባይዱ
a
=
(a1 n
b1 m
)
由多项式的根与系数关系
n
n
a1 pi b1 zi
i 1
i 1
n
m
pi z j
a
i 1
j 1
nm
例4.2-1 已知单位反馈系统的开环传递函数为
K G(s)
s(s 3) (s )2 2
0, 0
试分析开环极点参数变化时渐近线。
1
n
1
j1 d z j i1 d pi
分离点处相邻两条根 轨分迹离分点支处切一线共之有间多的少
夹条角根等轨于迹分支/?l
分离点处根轨迹的分离角d 为
d (2k 1) / l k 0,1,
分离点处,根轨迹进
侧的开环实有限零极点数为奇数。
系统的开环零极点分为 两类:实数零极点和复数 零极点,且复数零点或复 数极点必共轭成对。
系统开环零极点的分布为
图示,取实轴任一点 s=s1
·对复共轭开环极点
p4 j, p5 p4 j,
(s1 j)+(s1 +j)=2

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理-第四章 线性系统的根轨迹法(4)

自动控制原理-第四章  线性系统的根轨迹法(4)

暂态响应呈振荡性质,其超调量主要取决于主导极点的衰
减率
1 n

d n 1 2
1 2
并与其它极点接近原点的程度有关,调整时间主要取决于主
导极点的实部
1



n
(4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数
极点的实部绝对值 1 n 。
(5)实数零、极点影响。闭环极点的存在会增大系统的阻尼比, 使响应速度减慢,超调量减少。闭环零点的存在减小系统阻尼, 使响应速度加快,超调量增加。
4-4 系统性能的分析
系统闭环零、极点位置与暂态响应的关系:
(1)稳定性。系统的稳定性只取决于闭环极点的位置。
(2)运行形式。如果闭环系统无零点,闭环极点均为实数 极点,则系统的暂态响应为单调的;如果闭环极点均为复 数极点,则系统的暂态响应为振荡的。
(3)超调量。如果系统具有一对闭环主导极点,则系统的
4-7 线性系统根轨迹分析的MATLAB方法
1、绘制零极点分布图 :[ p,z]=pzmap(sys);
2、绘制根轨迹图 绘制根轨迹一般步骤为: (1)先将特征方程写成 1 A P(s) 0 形式,得到等效的开 环传递函数 G A P(s) ; Q(s)
Q(s)
(2)调用rlocus命令绘制根轨迹。
Hale Waihona Puke (6)偶极子及其影响。如果系统中存在非常接近的零点和极 点,其相互距离比其本身的模值小一个数量级以上,则把这对 闭环零、极点称为偶极子。偶极子的位置距离原点非常近时, 其对暂态响应的影响一般需要考虑,但不会影响闭环主导极点 的主导作用。偶极子的位置距离原点较远时,其对暂态响应的 影响可以忽略。 (7)主导极点及高阶系统化简。在s平面上,离虚轴靠 近而附近又没有其它闭环零点的一些闭环极点 ,对系统 影响最大,称为主导极点。凡比主导极点的实部大3~6 倍以上的其他闭环零、极点,其影响均可忽略不计。对 于高阶系统,略去不十分靠近原点的偶极子,保留一个 或几个最靠近虚轴又不十分靠近闭环零点的主导极点, 将高阶系统简化为只有一、两个闭环零点和两、三个闭 环极点的二阶或三阶系统。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

《自动控制原理》第4章 线性系统的根轨迹法

《自动控制原理》第4章 线性系统的根轨迹法
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,

第4章 线性系统的根轨迹法(《自动控制原理》课件)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同

自动控制原理4 根轨迹法的基本概念

自动控制原理4 根轨迹法的基本概念

K*
K* 8.16
1.1
pi 71.6
例子4-5 P150
解:1) m=1,n=3,
z1=-20,p1=0,p2=p3=-12, 2)实轴上0--12 ,-12--20 必为根轨迹。 3)渐近线。n-m=2 故有2条渐近线.
G(s) K * (s 20) s(s2 24s 144)
m
n
pi ( pl zi ) ( pl pi )
izl zi )
j 1
jl
p2 1800 56.50 190 590 (108.50 900 370 )
790
z2 1800 1530 1990 1210 63.50 1170 900
(2)闭环极点与开环零点、开环极点以及根轨迹增益均有关。 (需专门研究)
j1
(3)
m
K*
(s z j )
m
(zj)
K limsνG(s) H(s) limsν
(4)根轨迹法 s0
s0

j1 nν
(s
pi )
K*
j1 nν
( pi )
根轨迹图
闭环极点
闭环传递函数
性i 1能指标
i 1
3.根轨迹方程
4-2 根轨迹绘制的基本法则
法则1 根轨迹的起点和终点。 法则2 根轨迹的分支数、对称性和连续性。 法则3 根轨迹的渐近线 法则4 实轴上的根轨迹 法则5 根轨迹的分离点和分离角 法则6 根轨迹的起始角与终止角 法则7 根轨迹与虚轴的交点 法则8 根之和
法则一、根轨迹的对称性、分支数和分布性
1.根轨迹连续且对称于实轴。 2. 根轨迹的分支数与开环有限零点数m与有 限个极点数n中的最大者相等。

自动控制原理-线性系统的根轨迹法1

自动控制原理-线性系统的根轨迹法1

16
规则4:实轴上的根轨迹 规则 若实轴的某一个区域是一部分根轨迹,则必有:其右边 (开环实数零点数+开环实数极点数)为奇数。 这个结论可以用相角条件证明。 由相角条件
∑ ∠(s − z ) −∑ ∠(s − p ) = (2k +1)π
j =1 j i =1 i
m
n

× × × ×
σ
17
规则5:根轨迹渐近线 规则 当 n>m 时,则有(n-m) 条根轨迹分支终止于无限零点。 这些根轨迹分支趋向无穷远的渐近线由与实轴的夹角和 交点来确定。 与实轴夹角

K →∞
K = 2.5
2
稳态性能 开环传递函数在坐标原点有
一个极点,系统为1型系统,根轨迹上 的K值就是静态速度误差系数。如果给 定系统的稳态误差要求,则由根轨迹图 可以确定闭环极点位置的容许位置。 由开环传递函数绘制根轨迹,通常 采用根轨迹增益 根轨迹增益,根轨迹增益与开环增 根轨迹增益 益之间有一个转换关系。
o o
与实轴交点
σa =
i =1
∑ pi − ∑ z j
j =1
n
m
n−m
( 0 − 4 − 1 + j − 1 − j ) − ( − 1) = = − 1 .67 4 −1
23
24
规则6:根轨迹分离点和会合点 规则 两条或两条以上的根轨迹分支在 s 平面上相遇又立即 分开的点称为分离点(会合点)。 分离点(会合点)的坐标 d 由下列方程所决定:
K =1
1
K =0
−2
−1
0
σ
K = 0.5
−1
−2
动态性能
由K值变化所对应的闭环极 点分布来估计。

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

自动控制原理-胡寿松-第四章-线性系统的根轨迹法.详解

系统的信号流图见图4-28,从信号流图中看出,系统中含有一个积分环节, 因此为1型系统,因此系统对阶跃输入信号的稳态误差为0。
K m 变化时系统的根轨迹, 2)为了绘制电动机传递系数(含放大器附加增益) 可将有关参数代入传递函数中,并将系统的特征方程进行整理,等价根轨迹增 益方程为:
1 K* P( s ) ( s 6.93 j 6.93)( s 6.93 j 6.93) 1 K * Q( s ) s 2 ( s 13.86)
当所有根轨迹分支都在左半平面时,系统稳定。 2) 稳态性能:
回忆:稳态性能主要取决于系统的开环增益和积分环节个数。
由根轨迹图不仅可以方便的确定开环增益和积分环节个数,而且可以根据给定系统 的稳态误差要求, 确定闭环极点位置的容许范围。
3)动态性能: 回忆:动态性能形态主要取决于系统的——闭环极点。 从根轨迹图上,可以直观地看到特征根随着参数的变化情况,从而,可以方便地 确定动态性能随着参数的变化情况。
K * lim
s

j 1 i 1 m
n
s pi s zj
lim s
s
nm
, 0 ,
nm nm
(无穷零点)
(无穷极点)
(n m 1)
(续)
且均为实数开环零、极点。
(续)
(续)
小结论: 由两个极点(实数极点或者复数极点)和一个有限零点组成的开环系 统,只要有限零点没有位于两个实数极点之间,当 K * 从零变化到无穷时, 闭环根轨迹的复数部分,是以有限零点为圆心,以有限零点到重根点的距 离为半径的一个圆,或圆的一部分。这在数学上是可以严格证明的。
例如,在上列程序之后增加语句: [k,p]=rlocfind(num,den)

自动控制原理-胡寿松-第四章

自动控制原理-胡寿松-第四章

过阻尼系统;
当K=0. 5时:
临界阻尼系统;
当K>0. 5时:
欠阻尼系统。
(s)
s2
2K 2s
2K
11
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
上述分析表明:根轨迹与系统性能之间有 着比较密切的联系。
对于高阶系统而言,用解析的方法绘制系 统的根轨迹图,显然是不适用的。希望能有简 便的图解方法,可根据已知的开环传递函数迅 速绘出闭环系统的根轨迹。为此,需要研究闭 环零、极点与开环零、极点之间的关系。
(2)稳态性能:由开环系统 在坐标原点处的极点数可判断 出系统的型别,而此时的K值 就是相应的静态误差系数。如 果给定系统的稳态误差要求, 则由根轨迹图可以确定闭环极 点位置的容许范围。
G(s) K s(0.5s 1)
10
4-1 根轨迹法的基本概念
2. 根轨迹与系统性能
(3)动态性能:
当0<K<0. 5时:
12
3. 闭环零、极点与 开环零、极点之间的关系
一般情况下,前向通路传递函数G(s)可表示为:
f
G(s)
KG
(1s
1)(
2 2
s2
2
1
2
s
1)L
sv (T1s 1)(T22s2 2 2T2s 1)L
KG*
(s zi )
i 1 q
(s pi )
i 1
KG
为前向通路增益;K
* G
为前向通路根轨迹增益。
m
(s zj)
等价为:
K * j1 n
1
(s pi )
2
第四章 线性系统的根轨迹法
4-1 根轨迹法的基本概念

自动控制理论例题集锦-第4章

自动控制理论例题集锦-第4章

以行列辅助方程 根据以上所计算根轨迹参数,绘制根轨迹如图4-3所示。
图4-3
例4 已知系统的开环传递函数为
1. 绘制时系统的根轨迹图。确定闭环共轭复数极点具有阻尼比时的
闭环传递函数。
2. 绘制时系统的根轨迹图。确定系统输出无衰减振荡分量时的闭环
传递函数。Leabharlann 解:1. 绘制时系统的根轨迹图。
系统的开环传递函数为
根据以上所计算根轨迹参数,绘制根轨迹如图4-1所示。
2. 确定的取值范围。
与分离点相应的可由模值条件求得
由如图4-1可知,使系统的阶跃响应呈现衰减振荡形式的的取值范
围为。
图4-1
解:
系统的开环传递函数为 1. 系统有三个开环极点:,没有开环零点。将开环零、极点标在平 面上。
2. 根轨迹的分支数。 特征方程为三阶,故有三条根轨迹分支。3条根轨迹分支分别起始 于开环极点,,终止于开环无限零点。 3. 实轴上的根轨迹。 实轴上的根轨迹为整个负实轴。 4. 渐近线的位置与方向。 渐近线与实轴的交点 渐近线与正实轴的夹角 5. 分离点和分离角。 根据分离点公式 解得,不在根轨迹上,故无分离点。 6. 根轨迹的起始角。 7. 与虚轴的交点。 将代入系统闭环特征方程 实部、虚部为零 解得;。 根据以上所计算根轨迹参数,绘制根轨迹如图4-2所示。
渐近线与正实轴的夹角 ⑤ 分离点。 解得。因为在实轴的根轨迹区段上,故是分离点。是否为分离点, 应看其是否满足相角条件。 可见满足相角条件,故是分离点。同样也是分离点。 ⑥ 根轨迹的起始角。 ⑦ 与虚轴的交点。 系统闭环特征方程为 列写劳斯表 令,解得。 以行列辅助方程 根据以上所计算根轨迹参数,绘制根轨迹如图4-6所示。 由图4-7所示所示根轨迹知当时,闭环极点均位于左半平面,系统 稳定。 2. 由图可见,在整个从0→∞的根轨迹上,对于为任何值时,没有 四个闭环极点均为实数的情况,故该系统不存在不振荡的单调运动过 程。

天津大学812 自动控制原理课件 第4章 线性系统的根轨迹法

天津大学812  自动控制原理课件 第4章 线性系统的根轨迹法

二、根轨迹方程
根轨迹:当系统某一参数由0变化到无穷大时,闭环系统特征根在s平面上 的轨迹。 由(4-1)可得闭环系统的特征方程为 1 G(s) H (s) 0 由(4-3)式得
(s z )
j
m
K*
(s p )
i i
m
j n
1 1e j ( 2 k 1)
( k 0,1,2,
n m n * i j i i 1 j 1 i 1
例:要求系统闭环主导极点的阻尼比为0.5,试确定系统的根轨迹增益K*、 闭环主导极点和系统开环增益K。
K* G( s) H ( s) , s(s 3)(s 2 2s 2)
ξ =0.5
解:过原点作ξ=0.5的等阻尼线, 等阻尼线与根轨迹分支的交点 即为待求的一个闭环极点 0.41 j 0.71 ,另一共轭闭环极点为 0.41 j 0.71 ; 由根轨迹增益公式,可得2.63,; 由开环传函可得开环增益为 K K * 1 0;.44

j 1
m
z j pi

j 1, j i

n
Pj Pi
Pi 180o
同理可证终止角公式。
例4-3 P148 设系统的开环传递函数为
K * (s 1.5)(s 2 j )(s 2 j ) G( s) s(s 2.5)(s 0.5 j1.5)(s 0.5 1.5 j )
连续变化,则根轨迹连续变化;由于代数方程的根关于 实轴对称,根轨迹也关于实轴对称。
法则3:根轨迹的渐近线:当开环极点数n大于开环零数m时,有n-m条根 轨迹分支沿着与实轴交角为 a 、交点为 a 的一组渐近线趋向无 穷远处,其中:

自动控制原理_第4章_线性系统的根轨迹法

自动控制原理_第4章_线性系统的根轨迹法

4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b

* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1

j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法
仿真与实验研究
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数

自动控制原理 第4章 线性系统的根轨迹法:根轨迹法的基本概念 绘制的基本法则

自动控制原理 第4章 线性系统的根轨迹法:根轨迹法的基本概念 绘制的基本法则

-1.5
相角条件:92.49o- 66.27o- 78.8o- 127.53o= –180o 模值条件 K*= 2.26×2.11×2.61 = 6 2.072
k* 6 k 4 1.5 1.5
k * (s 1) G (s )H (s ) (s 0.5)( s 1.5)( s 2)
根轨迹的模值条件与相角条件 没有零点的相角条件和模值条件你会推吗? 相角条件: (P140) n m
∑ ∠ (s-z ) - ∑ ∠ (s-p ) = (2k+1) π j i j=1 i=1
m 绘制根轨迹的充要条件
k=0, ±1, ±2, …
模值条件:
1+K Kn =
i=1
) ∏︱ ( s - zn ︱ j p s ︱ ︱ ∏ j=1 i * *
规则6:根轨迹的起始角(出射角)和终止角 (入射角)
起始角(出射角):根轨迹离开复平面上开环极点处的
切线与实轴的夹角
pi

m n o pi 1 8 0 zj p p p i j i 1 j 1 j j i
终止角(入射角):根轨迹进入复平面上开环零点处的
j
-2
-1
0
综上所述: (1)k*从0 ~ ∞ 时,系统的根轨迹是连续变化。可见:
系统的参量变化对系统闭环极点分布的影响。
(2)由根轨迹图,可得系统动、静态性能的信息: 1)稳定性 无论k*值如何变化( k*>0),闭环极点不出现
在s的右半平面,所以系统是稳定的。
2)稳态误差
I型系统,K为静态速度误差系数。
2019/2/17
特征方程:
S2+2s+2k=0

自动控制理论第四章 线性系统的根轨迹分析

自动控制理论第四章 线性系统的根轨迹分析

由以上分析得知:
根轨迹表明了系统参数对闭环极点分布的影 响,通过它可以分析系统的稳定性、稳态和 暂态性能与系统参数之间的关系。
利用根轨迹,可对系统动态特性进行下述分析: (1)判断该系统在K1从0到变化时的稳定性; (2)判断系统在K1从0到变化时根轨迹的条数; (3)判断该系统K1取值在何范围时处于过阻尼、 临界阻尼和 欠阻尼状态; (4)判断系统的“型”,从而计算系统稳态特性; (5)当K1值确定后,在根轨迹上找到闭环极点,从而计算系 统闭环性能指标;或反之;
•根轨迹法作为经典控制理论的基本方法,与频率特性法 互为补充,是分析和研究自动控制系统的有效工具。
•实际上,我们可以利用matlab方便地绘制系统的根轨 迹图。
本章内容
第一节 根轨迹的基本概念 第二节 绘制根轨迹的方法 第三节 参量根轨迹和多回路系统根轨迹 第四节 正反馈系统和零度根轨迹 第五节 利用根轨迹分析系统的暂态性能 第六节 延迟系统的根轨迹 本章小结、重点和习题
当K1由0变化到时,试按一般步骤与规则绘制 其根轨迹图。 解: (1)本系统为3阶系统,有3条根轨迹; (2)起始点:系统没有开环零点,只有三个开环 极点,分别为p1=0,p2=-1,p3=-2。 (3)渐近线:K1时, p1 p2 p3 0 1 2 a 1 有3条根轨迹趋向无穷远处, nm 30 其渐近线与实轴的交点和 (2q 1)180 (2q 1)180 a nm 3 倾角分别为:
满足相角条件,s1=-1.5+j2.5是该系统根轨迹上的点。
(3)利用幅值条件求得与s1 相对应的K1值。
K1

s1 ( s1 2) ( s1 6.6) ( s1 4)
1.5 j 2.5 0.5 j 2.5 5.1 j 2.5 2.5 j 2.5

自动控制原理-线性系统的根轨迹法 (2)

自动控制原理-线性系统的根轨迹法 (2)

閉環控制系統的動態性能與閉環極點在S平面上的 分佈位置是密切相關的,分析系統的性能時,往往要求 確定系統閉環極點的位置.另一方面,在分析和設計系 統時,經常需要研究一個或幾個參量變化時,對系統的 極點和系統性能的影響。
採用分解因式的古典方法求特徵方程式的根通常不容 易,特別是當某一參量發生變化(靈敏度)時,需要反復進 行計算,這時採用上述方法就顯得十分煩瑣,難以在實際 中應用。
K=0.5 K=0
該系統對於所有的K都是穩定的 穩態性能:
-1 0
原點處有一個極點 Ⅰ型系統
根軌跡上的K值就 是靜態誤差係數
0 K 0.5 : 过阻尼系 ,階统 躍回應為非週期過程
動態 K=0.5:临界阻尼 ,階系 躍回统應為非週期過程
性能:
K
0.5:欠阻尼,階系躍统 回應為阻上尼頁振盪下過頁程
返回
根據相角條件,在同一分離點分離的各條根軌跡 分支,它們的切線將均分360度。2條根軌跡在分離 點相隔180度,4條根軌跡在分離點相隔90度。
分離點的座標為:
m
1
n
1
i1 d zi
j1 d p j
分離角:根軌跡進入分離點的切線方向與離開分離點的切 線方向之間的夾角
(2k 1)
l
l-進入並立即離開分離點的 根軌跡條數
根軌跡:當系統某一參數在規定範圍內變化時,相應的系
統閉環特徵方程根在s平面上的位置也隨之變化移動,一個
根形成一條軌跡。
系統特徵根的圖解方法!!!
廣義根軌跡:系統的任意一變化參數形成根軌跡。
狹義根軌跡(通常情況):
變化參數為開環增益K,且其變化取值範圍為0到∞。
自動控制原理
一 根軌跡的概念
根軌跡法:系統某一參數變化時,繪製特徵方程的根在 S平面的位置變化軌跡的圖解方法。 根軌跡法的優點: 1:從已知的開環零、極點的位置及某一變化參數來求 取閉環極點的分佈,即解決閉環特徵式的求根問題。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z1
p3
3
1
p2
s2
s1
p1 s3
4
z2
2
p4
先看试验点s1点: ①成对出现的共轭极点p3、 p4对实轴上任意 试探点构成的两个向量的相角之和为0°; ②成对出现的共轭零点z1、 z2对实轴上任意试探点构成的两个向量的 相角之和为0°; ③试探点左边的极点p2对试探点构成的向量的相角为0°; ④试探点右边的极点p1对试探点构成的向量的相角为180°; 所以s1点满足根轨迹相角条件,于是[-p2 ,-p1]为实轴上的根轨迹。 再看s2点:不满足根轨迹相角条件,所以不是根轨迹上的点。
2、根轨迹的对称性
一般物理系统特征方程的系数是实数,其根必为实根或共 轭复根。即位于复平面的实轴上或对称于实轴。
3、根轨迹的支数、起点和终点: n阶特征方程有n个根。当 K* 从0到无穷大变化时,n个根
在复平面内连续变化组成n支根轨迹。即根轨迹的支数等于系统 阶数。
线性系统的根轨迹法>>根轨迹绘制的基本法则
j 1
i 1
n
d ln (s p j )
d ln m (s zi )
j1
i1
ds
ds
d
n j 1
ln(s
p j )
d
m i 1
ln(s
zi )
ds
ds
n d ln(s p j ) m d ln(s zi )
j 1
ds
i 1
ds
n
1
m
1
j1 s p j i1 s zi
设 K* Kgd 时,特征方程有重根 d ,则必同时满足
F(d ) 0 和 F'(d ) 0
由此得: D( d ) Kgd N( d ) 0 D'( d ) Kgd N '( d ) 0
N '(s)D(s) N(s)D'(s) 0
K gd
D(s) N (s)
s d
注意:由上式可求得的点是分离点和会合点必要条件,还需求
同样s3点也不是根轨迹上的点。
[例]设系统的开环传递函数为:Gk
求实轴上的根轨迹。
(s)
s2 (s
Kg (s 2) 1)(s 5)(s
10)

[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。注意
在原点有两个极点,双重极点用“ ”表示。
[例]系统开环传递函数为:Gk (s)
第五章 线性系统的根轨迹法
1 根轨迹法的基本概念 2 根轨迹绘制的基本原则 3 广义根轨迹
线性系统的根轨迹法>>根轨迹法的基本概念
1948年,W.R.Evans根据反馈控制系统开环传递 函数与其闭环特征方程式之间的内在联系,提出了 一种非常实用的求取闭环特征方程式根的图解法- 根轨迹法。
当系统特征方程式中的某一参数(例如开环增 益 K 、时间常数T)连续由零变化到无穷大时,特征 方程式的根连续变化而在s 平面上形成的运动轨迹, 即为闭环系统特征根的根轨迹。
(1)s n a1s n1 an1s an 0 (2)1 G(s)H (s) 0
(3)1 KL(s) 0
J (s)
(4)J (s) KL(s) 0
(5)G(s)H (s) 1 1 180(2k 1)
(6)G(s)H (s) 180(2k 1) G(s)H(s) 1
需要指出的是,上述六种表达方式其实质是一 致的,都是根据特征方程1 G(s)H (s) 0 而得到的。
30
渐近线与实轴的倾角: (2k 1) 60,180
nm
零极点分布和渐近线(红线) 如图所示。
5
180
60
2
1
0
60
6、根轨迹的会合点和分离点:
若干根轨迹在复平面上某一点相遇后又分开,称该点为分
离点或会合点。
如图所示某系统的根轨迹,由开环
Kg
B
Kg Kg 0 Kg 0
z p2 A p1
[例]单位反馈系统的开环传递函数为:
Gk
(s)
s(s
Kg 1)( s
5)
试确定实轴上根轨迹的会合点和分离点的位置。
[解]: 5
1
0
实轴上根轨迹区间是: (,5]和[5,0]
闭环特征方程为:1源自Gk(s)1
s(s
Kg 1)( s
5)
0
Kg s(s 1)(s 5) (s3 6s2 5s)
K* s(s 1)( s 5)
,试确定根轨迹
支数,起点和终点。若终点在无穷远处,求渐近线与实轴的交
点和倾角。
[解]:根轨迹有3支。起点为开环极点 p1 0, p2 1, p3 5, 无有限值零点,所以三支根轨迹都趋向无穷远。
渐近线与实轴的交点: pi zi 1 5 2
nm
(s zi )
i1 n
lim
s
nm
1
0
(s p j )
(s pj )
j 1
j 1
我们称系统有n-m个无限远零点。有限值零点加无穷远零点 的个数等于极点数。
那么,n-m支根轨迹是如何趋于无限远呢?
4、实轴上的根轨迹:
实轴上具有根轨迹的区间是:其右方 开环系统的零点数和极点数的总和为奇数。
[证明]:例如在实轴上有两个开环极点p1、 p2,复平面上有一对共轭极点p3、 p4和一对 共轭零点z1、 z2 。
根轨迹法简单、实用,是经典控制理论的基本 分析方法之一。
线性系统的根轨迹法>>根轨迹法的基本概念
5.1 根轨迹法概念
5.1.1 系统的根轨迹
[定义]:开环系统传递函数的某一个参数变化时,闭环系统特 征方程的根在复平面上变化的轨迹。
例:如图所示二阶系统,
系统开环传递函数为:
Gk
(s)
K s(0.5s
③求分离会合点的另一个公式
m
(s zi )
设系统开环传递函数为:
Gk (s) K g
i 1 n
(s pj)
j 1
因闭环特征方程为: Gk (s) 1
m
n
即闭环特征方程为: F(s) Kg (s zi ) (s pj ) 0
i 1
j 1
重根时还满足
dF(s) ds
d ds
Kg
m i 1
(s zi )
n
(s
j 1
p j ) 0
n
m
(s p j ) Kg (s zi )
(1)
j 1
i1
d n
dm
ds
(s pj ) Kg
j 1
ds
(s zi )
i1
(2)
(2) (1)
d n
ds j1
n
(s
pj)
dm
ds i1
m
(s
zi )
(s pj ) (s zi )
极点 p1, p2 出发的两支根轨迹,
随着 的K增g大在实轴上A点相遇再 分离进入复平面。随着 的K继g续
增大,又在实轴上B点相遇并分别
沿实轴的左右两方运动。当 Kg
时,一支根轨迹终止于 z, 另一
支走向 。A、B点称为根轨迹在
实轴上的分离点和会合点。
一般说来,若实轴上两相邻开环极点之间有根轨迹,则这 两相邻极点之间必有分离点;
5.2.1 绘制根轨迹的基本规则
以下的讨论是针对零、极点形式的参数 K* 的180度根轨迹的 基本规则。
1、根轨迹的连续性: 闭环系统特征方程的某些系数是增益 K*的函数。当K*从0到
无穷变化时,这些系数是连续变化的。故特征方程的根是连续 变化的,即根轨迹曲线是连续曲线。
线性系统的根轨迹法>>根轨迹绘制的基本法则
k

[分离点和会合点的求法]:由重根法,求极值法和作图法等。
①重根法:根轨迹在实轴上的分离点或会合点表示这些点是闭
环特征方程的重根点。
m
设系统开环传递函数为: Gk (s) K*
(s zi )
i 1 n
(s pj )
K*
N (s) D(s)
j 1
因闭环特征方程为: Gk (s) 1

F(s) D(s) K*N(s) 0
K 5
K 1
j1
K 0
1K 0
2 0 j1
线性系统的根轨迹法>>根轨迹法的基本概念
根轨迹与系统性能
•稳定性 当增益K由0→∞ ,根轨迹不会越过虚轴进入s平面 右半边,因此系统对所有的值都是稳定的, •稳态特性 开环传递函数在坐标原点有一个极点,所以属I型 系统,根轨迹上的值就是Kv。如果已知ess,则在根轨迹图上可 以确定闭环极点取值的容许范围。 •动态特性
1)
R(s) -
K
C(s)
s(0.5s 1)
闭环传递函数:
(s)
s2
2K 2s
2K
线性系统的根轨迹法>>根轨迹法的基本概念
特征方程为: s2 2s 2K 0
特征根为: s1,2 1 1 2K
[讨论]: ① 当K=0时,s1=0,s2=-2,
是开环传递函数的极点 ② 当K=0.32时,s1=-0.4,s2=-1.6 ③ 当K=0.5时,s1=-1,s2=-1 ④ 当K=1时,s1=-1+j,s2=-1-j ⑤ 当K=5时,s1=-1+3j,s2=-1-3j ⑥ 当K=∞时,s1=-1+∞j,s2=-1-∞j
因此,利用相角条件就可画出根轨迹,即绘制 根轨迹无需考虑幅值条件。而幅值条件用于确定根 轨迹上某一点所对应的 K 值,即根轨迹上凡满足幅 值条件的点就是相应 K 值所对应的系统闭环极点, 反之亦然。
相关文档
最新文档