流体力学第6章流体运动微分方程
合集下载
流体力学-N-S方程
dvx v x v x v x v x 1 p 2 vx vx vy vz x dt t x y z dvy v y v y v y v y 1 p 2 Y vy vx vy vz y dt t x y z 1 p 2 dvz v z v z v z v z Z vz vx vy vz z dt t x y z X
实际流体的运动微分 方程
——纳维-斯托克斯方程式 (N-S方程式)
以应力表示的黏性流体运动微分方程式
• 一、作用在流体微元上的应力 在粘性不起作用的平衡流体 中,或者在没有粘性的理想运动 流体中,作用在流体微元表面上 的表面力只有与表面相垂直的压 应力,而且压应力又具有一点上 各向同性的性质。
图一
v x x v y
(6)
由式(6)可以看出,由于各个方向的直线应变速 度不见得相等,因而这种由于粘性阻碍作用所产生的 法向应力也是各向不等的,p'xxp'yyp'zz统称为一点上的 各项异性压强。 • 于是在实际流体运动时,一点上的法向应力除了由 于分子运动统计平均的各向同性压强p之外,还需加上 由于粘性影响而与直线变形有关的各向异性压强,最 后可以得到法向应力与直线应变速度之间的关系为
(9)
此式说明一点上的各向同性压强也就是不可 压缩实际流体中不同方向压强的算术平均值。这 给具体计算实际流体中的压强带来很大的方便, 我们无需进一步研究各向异性压强,只要找出各 向同性压强与其他流动参数之间的关系,则据此 算出的各向同性压强事实上也就是不可压缩实际 运动流体一点上的流体动压强。
p的含义
但是在运动着的实际流体中取出边长dx、dy、 dz的六面体微元,如右图1多示,由于粘性影响,当 微元有剪切变形时,作用在微元体ABCDEFGH上的表 面力就不仅有压应力p,而且也有切应力τ 。当微元 有直线变形时,一点上的压应力也不再具有各项同 性的性质了。
实际流体的运动微分 方程
——纳维-斯托克斯方程式 (N-S方程式)
以应力表示的黏性流体运动微分方程式
• 一、作用在流体微元上的应力 在粘性不起作用的平衡流体 中,或者在没有粘性的理想运动 流体中,作用在流体微元表面上 的表面力只有与表面相垂直的压 应力,而且压应力又具有一点上 各向同性的性质。
图一
v x x v y
(6)
由式(6)可以看出,由于各个方向的直线应变速 度不见得相等,因而这种由于粘性阻碍作用所产生的 法向应力也是各向不等的,p'xxp'yyp'zz统称为一点上的 各项异性压强。 • 于是在实际流体运动时,一点上的法向应力除了由 于分子运动统计平均的各向同性压强p之外,还需加上 由于粘性影响而与直线变形有关的各向异性压强,最 后可以得到法向应力与直线应变速度之间的关系为
(9)
此式说明一点上的各向同性压强也就是不可 压缩实际流体中不同方向压强的算术平均值。这 给具体计算实际流体中的压强带来很大的方便, 我们无需进一步研究各向异性压强,只要找出各 向同性压强与其他流动参数之间的关系,则据此 算出的各向同性压强事实上也就是不可压缩实际 运动流体一点上的流体动压强。
p的含义
但是在运动着的实际流体中取出边长dx、dy、 dz的六面体微元,如右图1多示,由于粘性影响,当 微元有剪切变形时,作用在微元体ABCDEFGH上的表 面力就不仅有压应力p,而且也有切应力τ 。当微元 有直线变形时,一点上的压应力也不再具有各项同 性的性质了。
《工程流体力学》第六章 不可压缩流体平面有势流动
3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍
理想流体的运动微分方程
u y y
uz
uz
u x z
u y z
y
1 p
Z
z
du z dz
u z t
ux
u z x
uy
u z y
uz
u z z
写成矢量表达式为:
1 du F p dt
式中哈密顿算子:
i j k x y z
1.3.6.2 总流
对于粘性流体的总流,作稳定流动时的柏努利方程式为:
z1
p1
1 v1
2g
2
z2
p2
2v2
2g
2
hw
式中:
v1 , v 2 为截面的平均流速; 1 , 2为动能修正系数,通常由实验确定。
对于圆形管道中的稳定缓变流: 层流时 =2;
湍流时 =1.05~1.10;
由柏努利积分式:
U
1
dp
2
u
2
2
得
或
gz
1
gz
1
p
u
C
2
p
u
2
C
2
2
对于流线上任意两个质点1和2来说,有:
g z1 1
p1
u1
2
2
gz2
1
p2
u2 2
式中各项分别为单位质量的流体具有的位能,静压能及动能, J kg ( )。
1.3.5.2 理想流体稳定流动总流的柏努利方程 任何稳定流动的总流,都可以看成是无穷多微小流束 的总和。在总流中某一微小流束的不同有效截面上的物理 参数不一定相同。 (1)均匀流与缓变流 均匀流:如果有效断面或平均流速沿程不变,且流线为 平行直线这样的稳定流称为均匀流。 非均匀流:如果有效断面沿程变化,或者有效断面不变, 但各断面上速度分布改变,这种流动称为非均匀流。 缓变流:凡有效断面上流线间夹角很小,流线曲率半经 无限大,即流线趋近于平行线的流动称缓变流。
uz
uz
u x z
u y z
y
1 p
Z
z
du z dz
u z t
ux
u z x
uy
u z y
uz
u z z
写成矢量表达式为:
1 du F p dt
式中哈密顿算子:
i j k x y z
1.3.6.2 总流
对于粘性流体的总流,作稳定流动时的柏努利方程式为:
z1
p1
1 v1
2g
2
z2
p2
2v2
2g
2
hw
式中:
v1 , v 2 为截面的平均流速; 1 , 2为动能修正系数,通常由实验确定。
对于圆形管道中的稳定缓变流: 层流时 =2;
湍流时 =1.05~1.10;
由柏努利积分式:
U
1
dp
2
u
2
2
得
或
gz
1
gz
1
p
u
C
2
p
u
2
C
2
2
对于流线上任意两个质点1和2来说,有:
g z1 1
p1
u1
2
2
gz2
1
p2
u2 2
式中各项分别为单位质量的流体具有的位能,静压能及动能, J kg ( )。
1.3.5.2 理想流体稳定流动总流的柏努利方程 任何稳定流动的总流,都可以看成是无穷多微小流束 的总和。在总流中某一微小流束的不同有效截面上的物理 参数不一定相同。 (1)均匀流与缓变流 均匀流:如果有效断面或平均流速沿程不变,且流线为 平行直线这样的稳定流称为均匀流。 非均匀流:如果有效断面沿程变化,或者有效断面不变, 但各断面上速度分布改变,这种流动称为非均匀流。 缓变流:凡有效断面上流线间夹角很小,流线曲率半经 无限大,即流线趋近于平行线的流动称缓变流。
工程流体力学课件 第06章 流体流动微分方程 - 4
② μ和ρ随温度变化不大时,温度对流场(速度和压力)的影响很小,这
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )
时 可以不考虑温度的影响,因此也不需要考虑能量方程。
③ 能量方程的微分形式,其推导过程与连续性方程和动量方程的推导 微分相方似程,方方法程:的结构也相似,数学上并没有太多的特殊性。 流体力学中,微分方法和积分方法都是为了研究流体的质量守恒、动量 守恒和能量守恒。积分法研究系统整体,揭示总体性能;微分法研究空 间任一点和包含该点的流体微元,揭示三维流场的空间分布细节。两种 分析方法相辅相成,都必须要学、必须学好。 微元体分析方法的核心:将雷诺输运定理应用于流体微元控制体。
t
z方向:vz dxdydz
t
6.2.3 以应力表示的运动方程
分别将微元控制体中x-,y-和z-方向的动量各对应项代入雷诺 输运定理,可得三个方向的运动微分方程。
X-:
vx t
vx
vx x
vy
vx y
vz
vx z
fx
xx
x
yx
y
zx
z
Y-:
vy t
vx
vy x
vy
vy y
、vz z
)和体变形率(
vx x
vy y
vz z
)
正应力包含两部分:
v
①流体静压产生的正应力(压应力-p);
②流体运动变形产生的附加黏性正应力。与三个方向的线变形率
以及体变形率有关。这种关系类似于固体中的虎克定律。
xx
p
2
vx x
2 3
vx x
vy y
vz z
xx p xx
xx 附加黏性正应力(或附加正应力)
连续性方程变为:
t
(vx )
流体力学第六讲
八、流量 : 单位时间内流过某一过流断面的流 体体积。
q
dq = v dA
m3/s
l/min
—— 微小流束过流断面的流量。
q = A v dA —— 流束过流断面的流量。
九、断面平均流速 :假想的过流断面上各点处
q v A
都相等的流速。
§3-3 连续方程式(一元流动)
物理本质:控制体中流体质量的增量,必然等于
2
2
物理意义:重力作用下,理想不可压缩流体作定
常流动时,各点处不同性质的流体能量之间可以
相互转换,但在流线任意点处总的机械能守恒。
二、理想流体总流(流束)的伯努利方程
总流 —— 流体通过有限过流断面的流动。
表达了两个过流断面处流体能量的关系,但 要以过流断面上的平均值表示。 1、动能项
以断面平均流速将动能表示为:
p1 1v1 p2 1v2 所以: z1 z2 hf g 2g g 2g
2 2
式中: hf —— 单位重力流体沿总流从1 断面流 到 2 断面,为克服粘性摩擦力而消耗的机械能, 称为能量损失或水头损失。
应用伯努利方程解决工程实际应用问题时应注意 以下几点: 1、适用条件:不可压缩流体、定常流动、质量 力只有重力作用。
考虑粘性后与“理想”的区别: • hf 项 • 过流断面上流速分布不均匀, 用 要用 修正.
v
求动能时,
(4)伯努利方程的两种形式 • 沿流线的伯努利方程 用于求流线上某点 的 v、p 或 z ; • 沿总流的伯努利方程 用于求过流断面上 的平均流速 v,及某点的压强 p 或位置高度 z 。
(5)方程中的压强 p 可以是绝对压强或相对压强。 (6)缓变流动 流线平行或曲率半径很大处 的流动。 p 特点:沿流线法向,位置水头 z 与压强水头 g 之和是一个常数。 p z 两个过流断面须取在缓变流处,此时, g 可在断面上任意一点处取值。 对于管流则常在管轴线上取值。
流体力学第6章(7-11节)
K 1 K 2 2 n dA
A
例
试证明均匀流的速度环量等于零。
证明: 流体以等速度v∞水平方向流动,首先求沿 矩形封闭曲线的速度环量
12341 12 23 34 41 bv 0 bv 0 0
其次求圆周线的速度环量
K
2 0
v ABx v 1 ( v x v x x dx) 2 x
v BCy
v y v y v y 1 (vy dy v y dx dy ) 2 y x y
1 v v v ( v x x dx x dy v x x dy ) 2 x y y
stokes
1、汤姆逊(Thomson)定理
正压的理想流体在有势质量力的作用下沿任
何封闭流体线的速度环量不随时间变化,
即 d 0 。
dt
证明:
v d s ( v x dx v y dy v z dz )
d d ( v x dx v y dy v z dz ) dt dt
d ( x' )dx'
微段dx’上的涡通量dΓ 对P点的诱导速度为:
sind ( x' )dx' sin dv x 2r0 2r0 ( x' ) ydx' 2 ( x x' ) 2 y 2
在整个涡层AB上积分可得点P的诱导速度为:
1 vx 2
B
( x' )ydx'
( x x' ) y
2
B A
A
2
1 vy 2
( x' )(x x' )dx'
第1学期大气科学专业流体力学第6章旋转流体动力学
该算子是联系惯性坐标系与旋转坐标系的普遍关系。
8
9
牛顿第二定理是建立在惯性坐标系的基础上的,即:
daVa
Fi
dt
i
以下分析得出适用于描述旋转流体的运动方程。
10
da A dA A dt dt
Va V r
daVa dt
dVa dt
Va
daVa
d
V r
V r
dt
dt
daVa dV 2V ( r ) dt dt
第六章 旋转流体动力学
前面讨论的流体运动,是在惯性坐标系下进行的, 并没有考虑地球的旋转效应。
地球自身以一定速度自转,而地球的旋转效应, 将会对地球大气、海洋等流体的运动产生很显著的影 响。
大多数的地球物理流体力学所关心的问题均属于 旋转流体动力学问题。
1
低压 高压
2
低压 高压
3
本章将主要介绍考虑旋转效应下的流体运动。 主要内容
根据矢量运算法则
(a b) (b • )a (a • )b a( • b) b( • a)
(k V ) (V • )k (k • )V k( •V ) V ( • k)
31
(k V ) (V • )k (k • )V k( •V ) V ( • k)
①
②
由于是 k 常矢量,
)V
1 R0
1 p
1 Fr
g
Ek2V 2k
V
21
特征罗斯贝数
R0
特征惯性力 特征偏向力
U2 /L U
U
/
L
是衡量旋转效应的一个重要量。
22
R0 U / L
由Rossby数的定义可知:
8
9
牛顿第二定理是建立在惯性坐标系的基础上的,即:
daVa
Fi
dt
i
以下分析得出适用于描述旋转流体的运动方程。
10
da A dA A dt dt
Va V r
daVa dt
dVa dt
Va
daVa
d
V r
V r
dt
dt
daVa dV 2V ( r ) dt dt
第六章 旋转流体动力学
前面讨论的流体运动,是在惯性坐标系下进行的, 并没有考虑地球的旋转效应。
地球自身以一定速度自转,而地球的旋转效应, 将会对地球大气、海洋等流体的运动产生很显著的影 响。
大多数的地球物理流体力学所关心的问题均属于 旋转流体动力学问题。
1
低压 高压
2
低压 高压
3
本章将主要介绍考虑旋转效应下的流体运动。 主要内容
根据矢量运算法则
(a b) (b • )a (a • )b a( • b) b( • a)
(k V ) (V • )k (k • )V k( •V ) V ( • k)
31
(k V ) (V • )k (k • )V k( •V ) V ( • k)
①
②
由于是 k 常矢量,
)V
1 R0
1 p
1 Fr
g
Ek2V 2k
V
21
特征罗斯贝数
R0
特征惯性力 特征偏向力
U2 /L U
U
/
L
是衡量旋转效应的一个重要量。
22
R0 U / L
由Rossby数的定义可知:
流体力学中的三大基本方程
dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(
,
x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。
流体力学中三大基本方程
( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
t
t
(微团密度在单位时间内的变率及微团体积的乘积)
⑶根据连续性条件:
t x ( x ) y ( y) z ( z) 0
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
dy
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程:
得x方向上的运动微分方程:
d d txd x d y d z p xd x d y d z fx d x d y d z
单位体积流体的运动微分方程:
dx
dt
同理可得在单位时间内沿y,z方向流出 及 流入控制体的质
量差为
vy
d
x
d
yd和z
vz
dxdydz
y
z
故单位时间内流出及流入微元体流体质量总变化为:
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
pxfx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
同理可得y,z方向上的:
《工程流体力学》 第六章 管内流动及水力计算
r02
4
d dl
(p
gh)
l
vl max
vl
r0
ro2
4
d dl
(p
gh)
粘性流体在圆管中作层
所以,vl
2020/6/11
ro2 r 2
4
d dl
( p gh)
流流动时,流速的分布为
一旋转抛物面。
12
《工程流体力学》 第六章 管内流动和水力计算
§6.4 圆管中的层流流动
三、平均速度和流量
qV
0
0
H
h1 9m;h2 0.7m; hw 13m 求: H
2 h1
h2
2
解 : 由 伯努 利方 程( 地面 为0位 势)
(H
h1
)
pa
g
0
h2
pa
g
2
22
2g
hw
紊流流动: 1.0
得H
2 2
2g
hw
h2
h1
42 2 9.806
13 0.7 9
5.52
(m)
2020/6/11
4
《工程流体力学》 第六章 管内流动和水力计算
持前种情况下的流速不变,流动又为何状态?
解:(1) v
qV A
4qV d 2
4 0.01 1.27m / 0.12
s
Re vd 1.27 0.1 1.27 105 2000
1106
所以水为紊流状态。
(2)
Re
vd
1.27 0.1
1.14 104
1114
2000
2020/6/11
μt —流 体 的 脉 动 粘 度 ;
流体力学第六章边界层流动5
2018/10/31 10
层流与紊流、雷诺数
在不同的初始和边界条件下,粘性流体质点的运动会出现两种不同
的运动状态,一种是所有流体质点作定向有规则的运动,另一种是
作无规则不定向的混杂运动。前者称为层流状态,后者称为湍流状 态(别称紊流状态)。首先是英国物理学家雷诺在1883年用实验证
明了两种流态的存在,确定了流态的判别方法。
u???????????????????????用量纲分析的方程分析法可得一般二维流动无量纲方程组用量纲分析的方程分析法可得一般二维流动无量纲方程组621平板层流边界层微分方程精确解0??????yuxuyxre12222yuxuxpeuyuuxuuxxxyxx???????????????1121?11?11?11???2?2015112924忽略第二方程最后一项第三方程除压强项的其他项
vc d Re c
Re c
vc d
Re 2320时,管中是层 流; Re 2320时,管中是紊 流。
2018/10/31 13
根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种 流动状态,若全部边界层内部都是层流,称为层流边界层;若全部边界层 内部都是湍流,称为湍流边界层;若在边界层起始部分内是层流,而在 其余部分内是紊流,称为混合边界层。如图所示,在层流变为紊流之间 有一过渡区。在紊流边界层内紧靠壁面处也有一层极薄的层流底层。
dp dU U dx dx
②第二式右边得到简化(x方向二阶偏导数消失),有利于数值计算。 利用该方程就可计算壁切应力和流动阻力,具有里程碑式意义。
2018/10/31 25
布拉修斯利用相似性解法,引入无量纲坐标:
Rex
*
*
层流与紊流、雷诺数
在不同的初始和边界条件下,粘性流体质点的运动会出现两种不同
的运动状态,一种是所有流体质点作定向有规则的运动,另一种是
作无规则不定向的混杂运动。前者称为层流状态,后者称为湍流状 态(别称紊流状态)。首先是英国物理学家雷诺在1883年用实验证
明了两种流态的存在,确定了流态的判别方法。
u???????????????????????用量纲分析的方程分析法可得一般二维流动无量纲方程组用量纲分析的方程分析法可得一般二维流动无量纲方程组621平板层流边界层微分方程精确解0??????yuxuyxre12222yuxuxpeuyuuxuuxxxyxx???????????????1121?11?11?11???2?2015112924忽略第二方程最后一项第三方程除压强项的其他项
vc d Re c
Re c
vc d
Re 2320时,管中是层 流; Re 2320时,管中是紊 流。
2018/10/31 13
根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种 流动状态,若全部边界层内部都是层流,称为层流边界层;若全部边界层 内部都是湍流,称为湍流边界层;若在边界层起始部分内是层流,而在 其余部分内是紊流,称为混合边界层。如图所示,在层流变为紊流之间 有一过渡区。在紊流边界层内紧靠壁面处也有一层极薄的层流底层。
dp dU U dx dx
②第二式右边得到简化(x方向二阶偏导数消失),有利于数值计算。 利用该方程就可计算壁切应力和流动阻力,具有里程碑式意义。
2018/10/31 25
布拉修斯利用相似性解法,引入无量纲坐标:
Rex
*
*
流体力学连续性方程微分形式
0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时
u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应
等于六面体内因密度变化而减少的质量,即:
[
•
( u x ) x
( u y ) ( u z ) y ]dxdydz dxdydz z t
流体的连续性微分方程的一般形式:
适用范围:理想流体或实际流体;恒定流或非恒定流;可压
第三节 流体动力学基本方程式
一、连续性微分方程
1
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz
等,即pxx pyy pzz。任一点动压强为:
p xx p p zz ) 3 u
流体力学基本方程
∂t
∂t
单位时段内控制体内流体质量的增量为:
∂ρ dtdxdydz / dt = ∂ρ dxdydz
(2)
∂t
∂t
− [∂(ρ vx ) + ∂(ρ vy ) + ∂(ρ vz )]dxdydz
(1)∂x∂y Nhomakorabea∂z
∂ρ + ∂(ρ vx ) + ∂(ρ vy ) + ∂(ρ vz ) = 0
∂t ∂x
系统:一团流体的集合,在运动过程中,系统始终包含着确定的这些流体 质点。有确定的质量,而这一团流体的表面常常是不断变形的。 控制体:控制体是流场中某一确定的空间区域,即相对于坐标系是固定不 变的。控制体的表面是控制面,控制体的形状是根据流体运动情况和边界 情况选定的。
7
第二节 流体运动的基本概念
一、定常流、非定常流
∂v = 2 ∂y
∂w = 4 ∂z
∂u + ∂v + ∂w = 6 + 2 + 4 = 12 ≠ 0 ∂x ∂y ∂z
对不可压缩流体,以上流动不存在。对可压缩流体,因密度的变化未给 出,故无法判断。
例题3:假定流管形状不随时间变化,设A为流管的横断面积,且在A断面 上流动物理量是均匀的,试证明连续性方程具有下述形式:
20
江苏大学
Jiangsu University
对于定常流动:控制体内的质量增量 ,所以流入 = 流出
单位时间内流入控制体的质量: ρ v1 A1 单位时间内流出控制体的质量: ρ v2 A2
v1 A1 = v2 A2 Q1 = Q2
例1:如上图所示,有二块平 行平板,上板以匀速v向下平 移,间隙中的油向左右挤出 ,前后油液无流动。间隙宽b ,高h(t),求油的平均流速 随位置变化的关系u(x)。
流体力学第6章流体运动微分方程
代入式(5)可得
b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。
b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。
第6章-流体流动微分方程-例题
0 0 0
θ:
2 v ∂v v v ∂vθ ∂v ⎡ ∂ ⎛1 ∂ 1 1 ∂p ⎞ 1 ∂ vθ 2 ∂vr ⎤ + ν ⎢ ⎜ (rvθ) + + vr θ + θ θ + r θ = fθ − + ⎟ 2 ρ r ∂θ r r ∂θ r
∂r ⎝ r ∂r ∂t ∂r ∂θ 2 r 2 ∂θ ⎥ ⎠ ⎣ ⎦
工程流体力学——第六章 流体流动微分方程——例题
CH6-5
r:
2 ⎡ ∂ ⎛1 ∂ ∂vr ∂v v ∂v v 2 1 ∂p ⎞ 1 ∂ vr 2 ∂vθ ⎤ + vr r + θ r − θ = f r − + − 2 + ν ⎢ ⎜ (rvr) ⎥ ⎟ 2 2 r r ∂ r ∂θ ⎦ θ r N ρ ∂r ∂t ∂ ∂r ⎝ r ∂r ⎠ r ∂θ ⎣
∂vz dv =μ z ∂r dr
由此可知:(a)不可压缩一维稳态层流每点各方向正应力=-p,因此分析 相应问题时微元体表面正应力可直接以压力标注;(b)管内流体既有沿 z 方向 的切应力,同时也伴随有 r 方向的切应力。 ⑤ 因 ∂p*/ ∂z = ∂p / ∂z =const 且 vz =vz (r ) ,故 z 方向运动方程为常微分方程, 其边界条件为 vz r = R = 0 、 (dvz /dr ) r =0 = 0 ;积分运动方程并以 −Δp /L 替代 ∂p / ∂z 可得 速度分布,进而得到切应力分布,其结果为:
CH6-7
对于内筒转动外筒固定的情况, 由于离心 力与压差力均指向外壁, 两者都促使流体向外 层运动, 故流体沿切向的层流流动难以保持稳 定。该条件下,雷诺数定义及过渡雷诺数分别 为:
工程流体力学 第6章 粘性流体管道内流动
de 2ab ab
第6章 粘性流体管道内流动
6.4 管内流动的两种损失
不可压粘性流体的总流伯努利方程:
V12 p1 V22 p2 1 gz1 2 gz2 hw 2 2
hw——单位重量流体损失的能量。
1.沿程(水头)损失
渐变流中由于流体微团、层间、流体与管壁间粘性摩擦引
教学内容
第0章 绪论 第1章 流体的主要物理性质 第2章 流体静力学 第3章 流体流动的基本方程 第4章 旋涡理论和势流理论 第5章 相似理论与量纲分析 第6章 粘性流体管内流动 第7章 粘性流体绕物体的流动
第6章 粘性流体管内流动
6.1 粘性流体中的应力分析
理想流体—无粘性,无切向应力; 实际流体—有粘性,存在切向应力,表现为阻碍流体运动的 摩擦力,消耗机械能。
是t时刻的脉动速度但脉动速度的时均量为零即u010tuudtt?在横向也存在横向脉动且第6章粘性流体管道内流动在横向yz也存在横向脉动且0vw依上法湍流中有瞬时压强p时均压强脉动压强p且pppp01tppdtt?010tppdtt?若湍流中各物理量的时均值如不随时间而变仅是空间点的函数即uvwp?第6章粘性流体管道内流动随时间而变仅是间点的函数即uuxyzppxyz?则被称为恒定的湍流运动但湍流的瞬时运动总是非恒定的
时,随着 当逐渐加大玻璃管内流速到达某一上临界值 Vcr 玻璃管内流速的再增大,颜色水与周围清水混合,使整个圆管 都带有颜色,表明此时质点的运动轨迹极不规则,各层质点相 互掺混,称这种流动状态为湍流。
从层流到湍
流的转捩阶段称
为过渡流,一般 将它作为湍流的 初级阶段。
第6章 粘性流体管道内流动
6.3.2 层流和湍流
6.2 不可压缩粘性流体的运动微分方程
第6章 粘性流体管道内流动
6.4 管内流动的两种损失
不可压粘性流体的总流伯努利方程:
V12 p1 V22 p2 1 gz1 2 gz2 hw 2 2
hw——单位重量流体损失的能量。
1.沿程(水头)损失
渐变流中由于流体微团、层间、流体与管壁间粘性摩擦引
教学内容
第0章 绪论 第1章 流体的主要物理性质 第2章 流体静力学 第3章 流体流动的基本方程 第4章 旋涡理论和势流理论 第5章 相似理论与量纲分析 第6章 粘性流体管内流动 第7章 粘性流体绕物体的流动
第6章 粘性流体管内流动
6.1 粘性流体中的应力分析
理想流体—无粘性,无切向应力; 实际流体—有粘性,存在切向应力,表现为阻碍流体运动的 摩擦力,消耗机械能。
是t时刻的脉动速度但脉动速度的时均量为零即u010tuudtt?在横向也存在横向脉动且第6章粘性流体管道内流动在横向yz也存在横向脉动且0vw依上法湍流中有瞬时压强p时均压强脉动压强p且pppp01tppdtt?010tppdtt?若湍流中各物理量的时均值如不随时间而变仅是空间点的函数即uvwp?第6章粘性流体管道内流动随时间而变仅是间点的函数即uuxyzppxyz?则被称为恒定的湍流运动但湍流的瞬时运动总是非恒定的
时,随着 当逐渐加大玻璃管内流速到达某一上临界值 Vcr 玻璃管内流速的再增大,颜色水与周围清水混合,使整个圆管 都带有颜色,表明此时质点的运动轨迹极不规则,各层质点相 互掺混,称这种流动状态为湍流。
从层流到湍
流的转捩阶段称
为过渡流,一般 将它作为湍流的 初级阶段。
第6章 粘性流体管道内流动
6.3.2 层流和湍流
6.2 不可压缩粘性流体的运动微分方程
流体力学第6章(1-6节)
x y z
全微分的充分必要条件。
即
d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。
即
d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
全微分的充分必要条件。
即
d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。
即
d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
流体力学(流体运动学)
§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t
得
dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
流体力学知识点总结
强分布图的形心,该作用线与受压面的交点便是压心 P。
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
梯形形心坐标:
a 上底,b 下底
解: 总压力为压强分布图的体积:
作压强×受压平面面积
合力矩定理:合力对 平行移轴定理
真空:当流体中某点的绝对压强小于大气压时, 则该点为真空,其相对压强必为负值。真
空值与相对压强大小相等,正负号相反(必小于 0)
p pabs pa
相对压强和绝对压强的关系
p pa pabs ( pabs pa ) P
绝对压强、相对压强、真空度之间的关系 ( pabs pa )
压强单位
任P一轴的g力si矩n 等于• 各yc分A力对同g一hc轴A力矩p之c A和
.
.
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
解:
hc 1 2 / 2 2 m A 1.5 2 3 m2
P 9.807 2 3 58.84 KN
yc hc 2 m ,
与质量力的合力正交的非水平面。
.
.
3 液体静力学基本方程
z p C
g
p p0 g(H z) p0 gh
P0
P P2 1 Z1 Z2
P—静止液体部某点的压强 h—该点到液面的距离,称淹没深度 Z—该点在坐标平面以上的高度 P0—液体表面压强,对于液面通大气的开口容器,视为
大气 压强并以 Pa 表示 推论
.
.
V
1 dV V dT
1
d dT
单位为“1/K”或“1/℃”
在一定压强下,体积的变化速度与温度成正比。水的压缩系数和热膨胀系数都很小。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vx
( vx
x
)
dx
ρvz
x
y
5
则输出与输入之差为:
( (vx ) (vy ) (vz ) )dxdydz
x
y
z
微元体内质量变化率为:
dxdydz
t
6
根据质量守恒原理有:
(vx ) (vy ) (vz ) 0
x
y
z t
或
( v)
0
t
该式即为直角坐标系下的连续性方程。由于
未作任何假设,该方程适用于层流和湍流、
28
1.初始条件
对非定常流动,要求给定变量初始时刻t=t0 的空间分布
vx vx0 (x, y, z)
vy vz
v v
y0 z0
( x, ( x,
y, y,
z)
z)
p p0 (x, y, z)
牛顿和非牛顿流体。 7
( v)
0
t
对不可压缩流体,ρ=常数,有әρ/әt=0,则 连续性方程为
v 0
不可压缩流体的连续性方程不仅形式简单,而 且应用广泛,很多可压缩流体的流动也可按常 密度流动处理。
8
在直角坐标系中可表示为
vx vy vz 0 x y z
(柱坐标和球坐标下的连续性方程自学。) 对平面流动
)
得
Dvz Dt
fz
1
p z
(
2vz x 2
2vz y 2
2vz z 2
)
Dv
v
(v) v
Dt t
——不可压缩粘性流体的运动微分方程,也
叫Navier-Stokes方程,简称N-S方程。
21
N-S方程
理想流体 欧拉运动 微分方程
欧拉平衡 微分方程
24
N-S方程的矢量形式为
v
( v )
v
f
1
p
27
6.3基本微分方程组的定解条件
N-S方程有四个未知数,vx、vy、vz和p,将 N-S方程和不可压缩流体的连续性方程联立,理 论上可通过积分求解,得到四个未知量。一般 而言,通过积分得到的是微分方程的通解,再 结合基本微分方程组的定解条件,即初始条件 和边界条件,确定积分常数,才能得到具体流 动问题的特解。
vz=2y。
答案:
vz
z2 2
zx
2y
15
6.2不可压缩粘性流体运动微分方程 在运动着的不可压缩粘性流体中取微元平
行六面体流体微团,作用在流体微元上的各法 向应力和切向应力如图所示。
16
σyy+
әσyy
әy
dy
әyx yx+ әy dy
dy y
yz+
әyz
әy dy
zx
σzz
σxx xz
zy+
әzy
11
根据边界条件x=0时vx=0代入上式得
0 (1 2y) 0 f ( y)
故有 f ( y) 0
所以
vx (1 2 y)x x 2xy
12
例题:不可压缩流体的速度分布为
u=Ax+By, v=Cx+Dy, w=0
若此流场满足连续性方程和无旋条件,试求 A,B,C,D所满足的条件。不计重力影响。
6 流体流动微分方程
基本内容:
掌握连续性方程及其推导※ 熟悉Navier-Stokes方程 了解Euler方程
1
控制体分析 最大优点在于对定常流动,当已知控制面
上流动的有关信息后,就能求出总力的分量和 平均速度,而不必深究控制体内各处流动的详 细情况,给一些工程问题的求解带来方便。
缺点不能得到控制体内各处流动的细节, 而这对深入研究流体运动是非常重要的。
әz dz
xy
fy
zy
fz fx
σzz+
әσzz
әz
zx+
әzx
әz dz
yz
dz yx σyy
xy+
әxy
әx dx
σxx+
xz+
әxz
әx dx
dz
әσxx
әx
dx
dx zx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
f x dxdydz
xxdydz
(
xx
xx
x
dx)dydz
这一章中我们将推导微分形式的守恒方程。
2
流体流动微分方程包括: 连续性方程 运动方程
连续性方程是流体质量守恒的数学描述。 运动方程是流体动量守恒的数学描述。 二者都是基于流场中的点建立的微分方程。
3
6.1 连续性方程
连续性方程反映流动过程遵循质量守恒。 现取微元体如图。
z
vz
(vz
z
)
dz
ρvx
2
v
t
①
②
③
④
⑤
各项意义为:①非定常项; ②对流项; ③单位质量流体的体积力; ④单位质量流体的压力差; ⑤扩散项或粘性力项
26
由于引入了广义牛顿剪切定律,故N-S方 程只适用于牛顿流体,处理非牛顿流体问题 时可用以应力表示的运动方程。
Navier-Stokes方程是不可压流体理论中 最根本的非线性偏微分方程组,是描述不可 压缩粘性流体运动最完整的方程,是现代流 体力学的主干方程 。
yxdzdx
(
yx
yx
y
dy)dzdx
zx dxdy
( zx
zx
z
dz)dxdy
dxdydz
Dvx Dt
18
化简后得
fx
1
(
xx
x
yx
y
zx
z
)
Dv x Dt
同理得
fy
1
(
yy
y
zy
z
xy
x
)
Dvy Dt
fz
1
(
zz
z
xz
x
yz
y
)
Dvz Dt
——以应力表示的运动方程 19
将切应力和法向应力的关系式
ρvy
v y
(vy
y
)
dy
vx
(
vx
x
)
dx
ρvz
y
x
4
输入微元体的质量流量:
vxdydz vydxdz vzdxdy
输出微元体的质量流量为:
(vx
( vx
x
)
dx)dydz
(vy
( vy
y
)
dy)dxdz
(vz
(vz
z
)
dz)dxdy
z
vz
(vz
z
)
dz
ρvx
ρvy
v y
( v y
y
)
dy
xy
( vx
y
v y x
)
yz
( vz
y
vy z
)
zx
( vx
z
vz x
)
xx
p
2
vx x
yy
p
2
vy y
zz
p
2
vz z
代入上式的第一式并整理得:
20Dvx Dtfx1p x(
2vx x 2
2vx y 2
2vx z 2
)
同 理
Dvy Dt
fy
1
p y
(
2vy x 2
2vy y 2
2vy z 2
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
u v y x
则有 B C 0
14
练习:
有一个三维不可压流场,已知其x向和y向的分 速度为
vx x2 y2z3
vy (xy yz zx)
求其z向的分速度的表达式。当x=0,z=0时,
vx vy 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为
vy y2 y x
试求x方向的速度分量,假定x=0时,vx=0。
10
vy=y2-y-x 解:不可压缩流体的平面运动满足连续性方程
vx vy 0 x y
由已知条件得
vx 2 y 1 0 x
积分得 vx (1 2 y)x f ( y)