苏科版九年级数学上册 第二章 对称图形-圆 单元检测试题(无答案)

合集下载

第2章对称图形—圆常考单元综合测评 2021-2022学年苏科版九年级数学上册(word版含答案)

第2章对称图形—圆常考单元综合测评 2021-2022学年苏科版九年级数学上册(word版含答案)

2021-2022学年苏科版九年级数学上册《第2章对称图形—圆》常考热点单元综合测评(附答案)一.选择题(共10小题,满分30分)1.如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°2.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.33.正六边形的半径与边心距之比为()A.B.C.D.4.如图,在扇形OAB中,∠AOB=110°,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的度数为()A.40°B.50°C.60°D.70°5.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定6.如图,点A的坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小值时,点P的坐标为()A.(﹣4,0)B.(﹣2,0)C.(﹣4,0)或(﹣2,0)D.(﹣3,0)7.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O 直径,作AD交⊙O于点E,连BE,则BE的最小值为()A.6B.8C.10D.128.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定9.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A.B.C.D.2二.填空题(共10小题,满分30分)11.如图,△ABC中,∠A=70°,⊙O截△ABC的三条边所截得弦长相等,则∠BOC =.12.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则弦AD的长是cm.13.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.14.如图,已知AD是∠BAC的平分线,以线段AB为直径作圆,交∠BAC和角平分线于C,D两点.过D向AC作垂线DE垂足为点E.若DE=2CE=4,则直径AB=.15.如图,在Rt△ABC中,∠ACB=90°,BC=2,将Rt△ABC绕点C顺时针旋转60°后得Rt△DEC,此时点B恰好在线段DE上,其中点A经过的路径为弧AD,则图中阴影部分的面积是.16.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.17.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为.18.在直径为200cm的圆柱形油箱内装入一些油以后,截面如图(油面在圆心下):若油面的宽AB=160cm,则油的最大深度为.19.⊙O的直径为10cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离是cm.20.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,CD=2,则EC的长为.三.解答题(共6小题,满分60分)21.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=,求⊙O的直径.22.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.23.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.24.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.25.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)26.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF 的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求的长度;(3)若DE=4,AE=8,求线段EG的长.参考答案一.选择题(共10小题,满分30分)1.解:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BDC=∠BOC=30°.故选:B.2.解:∵P A切⊙O于点A,∴OA⊥P A,∴∠OAP=90°,在Rt△OAP中,∵∠P=30°,∴∠AOP=60°,AP=OA=4,∵∠AOP=∠C+∠OAC=60°,而∠C=∠OAC,∴∠C=30°,∴AC=AP=4.故选:A.3.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.4.解:连接OD,如图,∵扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,∴BC垂直平分OD,∴BD=BO,∵OB=OD,∴BD=BO=DO,∴△OBD为等边三角形,∴∠DOB=60°,∴∠AOD=∠AOB﹣∠DOB=110°﹣60°=50°,∴的度数为50°,故选:B.5.解:如图,连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.6.解:连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,根据垂线段最短,可知当AP⊥x轴时,AP最短,∴P点的坐标是(﹣3,0).故选:D.7.解:如图,连接CE,∴∠CED=∠CEA=90°,∴点E在以AC为直径的⊙Q上,∵AC=10,∴QC=QE=5,当点Q、E、B共线时BE最小,∵BC=12,∴QB==13,∴BE=QB﹣QE=8,故选:B.8.解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.9.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选:B.10.解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选:A.二.填空题(共10小题,满分30分)11.解:过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF、OB、OC,设AB,AC,BC与⊙O的另一个交点分别为E,H,G.由垂径定理得:DM=DE,KQ=KH,FN=FG,∵DE=FG=HK,∴DM=KQ=FN,∵OD=OK=OF,∴由勾股定理得:OM=ON=OQ,即O到三角形ABC三边的距离相等,∴O是△ABC的内心,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=125°,故答案为125°.12.解:连接BD,∵AB为⊙O的直径,∴∠BCA=90°,∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=45°,∴△ABD为等腰直角三角形,∴AD2+BD2=AB2,∵AB=10cm,∴AD=5cm.故答案为5.13.解:设母线长为R,则:65π=π×5R,解得R=13cm.14.解:连接CD,BD,OD,过点D作DP⊥AB于点P,∵DE⊥AC,DE=2CE=4,∴CE=2,∴CD==2,∵AD是∠BAC的平分线,DP⊥AB,DE⊥AC,∴∠BAD=∠DAC,DP=DE=4,∴BD=CD=2,∴PB==2,在Rt△ODP中,设OD=r,则OP=r﹣2,∴r2=(r﹣2)2+42,解得:r=5,∴AB=2r=10.故答案为:10.15.解:过点B作BF⊥EC于点F,由题意可得:BC=CE=2,∠ACD=∠BCE=60°,故△BCE是等边三角形,∴∠ABC=60°,∴AC=BC tan60°=2,∵EC=2,∴FC=EF=1,则BF=,∴图中阴影部分的面积是:S扇形ACD+S△DCE﹣S△ACB﹣S△BCE=﹣=2π﹣.故答案为:2π﹣.16.解:连接CO,OB,则∠O=2∠A=60°,∵OC=OB,∴△BOC是等边三角形,∵⊙O的半径为2,∴BC=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.17.解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=180°﹣∠A=140°,故∠BAC的度数为:40°或140°故答案为:40°或140°.18.40cm解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故答案为40cm.19.解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OF⊥AB,交AB于点F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∴F、E分别为AB、CD的中点,∴AF=BF=AB=4,CE=DE=CD=3,在Rt△COE中,∵OC=5,CE=3,∴OE==4,在Rt△AOF中,OA=5,AF=4,∴OF==3,∴EF=OE﹣OF=4﹣3=1;当两条弦位于圆心O两侧时,如图2所示,同理可得EF=4+3=7,综上,弦AB与CD的距离为7或1.故答案为:7或1.20.解:连接BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.三.解答题(共6小题,满分60分)21.解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB=∠A.又∵C是的中点,∴=,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF=BF;(2)解:∵=,∴BC=CD=6,∵∠ACB=90°,∴AB===10,∴⊙O的半径为5,∵S△ABC=AB•CE=BC•AC,∴CE===.23.解:(1)∵⊙C经过坐标原点,∴∠AOB=90°,∴AB是⊙C的直径.(2)∵四边形AOMB是圆内接四边形,∠BMO=120°,根据圆内接四边形的对角互补得到∠OAB=60°,∴∠ABO=30°,∵点A的坐标为(0,4),∴OA=4,∴AB=2OA=8,⊙C的半径AC==4;∵C在第二象限,∴C点横坐标小于0,设C点坐标为(x,y),由半径AC=OC=4,即=,则==4,解得,y=2,x=﹣2或x=2(舍去),故⊙C的半径为4、圆心C的坐标分别为(﹣2,2).24.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连接AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.25.(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.26.(1)证明:连接OD,如图1,∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB,而∠P+∠DAF+∠DAB=90°,∴∠P=30°,∴∠POD=60°,∴的长度==π;(3)解:连接DG,如图2,∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,∵OE2+DE2=OD2,∴(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,在Rt△DCG中,DG==6,在Rt△DEG中,EG==2.。

苏科版九年级数学上册《第二章对称图形——圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形——圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形——圆》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图中的正方形的边长都相等,其中阴影部分面积相等的图形的个数是( )A .1个B .2个C .3个D .4个2.如图,⊙O 是⊙ABC 的外接圆,⊙OCB=30°,则⊙A 的度数等于( )A .60°B .50°C .40°D .30°3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.如图,点A 、B 、C 在圆O 上,若50A ∠=︒,则OBC ∠的度数为( )A .40︒B .45︒C .50︒D .55︒5.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB =6.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A .1B 2C 3D .27.一个圆锥的底面半径为1cm ,侧面积为4πcm 2,现将其侧面展开平铺成的扇形的圆心角为( )A .90°B .135°C .60°D .45°8.如图,AB 为O 的直径,弦CD AB ⊥于点E ,OF BC ⊥于点F ,65BOF ∠=︒则AOD ∠为( )A .70︒B .65︒C .50︒D .45︒9.如图,在菱形ABCD 中60D ∠=︒,AB=4,以B 为圆心、BC 长为半径画弧AC ,点P 为菱形内一点,连接,,PA PB PC .当BPC 为等腰直角三角形时,图中阴影部分的面积为( )A .8323π-B .8323π-C .8πD .8636π-10.如图,在正八边形ABCDEFGH 中,连接AD ,EH ,AE ,DH ,AE 与DH 交于点O .下列结论:①222BC EH AE +=;②22ADAH=+③135AOD ∠=︒;④4ABCDEFGH ABCD S S =八边形四边形,其中正确结论的序号是( )A.①②③B.①②④C.①③④D.②③④二、填空题11.圆心角是270°的扇形的半径为4cm,则这个扇形的面积是2cm.12.若O的圆心O到直线l的距离d小于半径r,则直线l与O的位置关系是.13.将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O重合,且OA 厘米,则AB的长度为厘米.(结两条直角边分别与量角器边缘所在的弧交于A、B两点.若5果保留π)14.如图,已知正方形ABCD的边长为2,点M和N分别从B、C同时出发,以相同的速度沿BC、CD 方向向终点C和D运动.连接AM,BN交于点P,则PC长的最小值为.15.如图,在Rt⊙ABC中,⊙BCA=90°,⊙A=30°,AB=4 3.若动点D在线段AC上(不与点A,C重合),过点D作DE上AC交AB边于点E若点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.三、解答题16.如图,在⊙O中,AC OB,⊙BAO=25°,求⊙BOC的度数.17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,⊙P=30°,求AP的长(结果保留根号).18.在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.,求裁剪的面积.19.已知:如图,在⊙ABC中,AB=AC,以边AB为直径作半圆O,分别交BC,AC于点D,E.(1)求证:BD=DC;(2)若⊙BAC=40°,求弧DE的度数.20.如图,⊙O的直径AB=2,AM、BN是它的两条切线,CD与⊙O相切于点E,与BN、AM交于点C、D ,设AD=x ,BC=y 。

苏科版九年级数学上册期末复习第二章对称图形-圆单元检测试卷附答案解析

苏科版九年级数学上册期末复习第二章对称图形-圆单元检测试卷附答案解析

期末复习:苏科版九年级数学上册第二章对称图形-圆单元检测试卷一、单选题(共10题;共30分)1.下列说法正确的是()A. 弦是直径B. 平分弦的直径垂直弦C. 过三点A,B,C的圆有且只有一个D. 三角形的外心是三角形三边中垂线的交点2.已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为()A. 0B. 1C. 2D. 无法确定3.若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A. 130°B. 100°C. 50°D. 65°7.如图,弦AB和CD相交于点P,∠B=30°,∠APC=80°,则∠BAD的度数为()A. 20°B. 50°C. 70°D. 110°8.如图,直径为10的⨀A经过点C(0,5)和点O(0,0),B是y轴右侧⨀A优弧上一点,则∠OBC的余弦值为()A. B. C. D.9.如图,圆O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD的度数是()A. 120°B. 130°C. 140°D. 150°10.如图,MN是半径为2的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为( )A. 4B. 2C. 4D. 2二、填空题(共10题;共33分)11.三角形三边垂直平分线的交点到三角形________的距离相等.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的直径________cm.13.圆心角为120°,半径为6cm的扇形的弧长是________cm.14.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠COA的度数是________ .15.如图,正五边形ABCDE内接于圆O,F是圆O上一点,则∠CFD=________度.16.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.17.如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是________.18.在直角坐标系中,☉M的圆心坐标是(m,0),半径是2,如果☉M与y轴相切,那么m=________;如果☉M与y轴相交,那么m的取值范围是________.19.如图,四边形的四个顶点都落在上,,连结,若∠,则∠的度数是________.20.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为________cm.三、解答题(共8题;共57分)21.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)22.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.23.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.24.如图,在⊙O中,=,∠ACB=60°,求证∠AOB=∠BOC=∠COA.25.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.26.如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.27.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.28.如图,在⊙O中,=,点D、E分别在半径OA和OB上,AD=BE求证:CD=CE.答案解析部分一、单选题1.【答案】D【考点】圆的认识,垂径定理,确定圆的条件,三角形的外接圆与外心【解析】【分析】利用弦的定义、垂径定理以及不在同一直线上的三点确定一个圆即可作出判断.【解答】A、弦是圆上任意两点的连线,而圆是过圆心的弦,故弦不一定是直径,故选项错误;B、平分弦(弦不是直径)的直径垂直于弦,故选项错误;C、过不在一条直线上的三点的圆有且只有一个,故选项错误;D、正确.故选D.【点评】本题考查了弦的定义、垂径定理以及不在同一直线上的三点确定一个圆,要注意到垂径定理叙述中:被平分的弦必须不是直径2.【答案】C【考点】直线与圆的位置关系【解析】【分析】首先求得该圆的半径,再根据直线和圆的位置关系与数量之间的联系进行分析判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,进而利用直线与圆相交有两个交点,相切有一个交点,相离没有交点,即可得出答案.【解答】根据题意,得该圆的半径是6cm,即大于圆心到直线的距离5cm,则直线和圆相交,故直线l与⊙O的交点个数为2.故选:C.【点评】此题主要考查了直线与圆的位置关系,这里要特别注意12是圆的直径;掌握直线和圆的位置关系与数量之间的联系是解题的关键3.【答案】B【考点】直线与圆的位置关系【解析】【解答】本题中圆的半径为10cm,点到直线的距离为10cm,则直线与圆相切.【分析】当圆心到直线的距离等于半径则直线与圆相切;当圆心到直线的距离小于半径则直线与圆相交;当圆心到直线的距离大于半径则直线与圆相离.此题的半径为10,而圆心到到直线l的距离为10cm就能做出判断。

部编版2020九年级数学上册 第二章 对称图形—圆章末单元测试题三 (新版)苏科版

部编版2020九年级数学上册 第二章 对称图形—圆章末单元测试题三 (新版)苏科版

第二章对称图形—圆1.如图,已知A、B、C三点在⊙O上,∠A=50°,则∠BOC的度数为B OCAA.50° B.25° C.75° D.100°2.如图,在∆ABC中, ∠C=90°,分别以A、B为圆心,2为半径画圆,则图中阴影部分的面积和为 ( )A BCA.3π B.2π C.π D.2π33.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A. 1 B. 1.2 C. 2 D. 34.如图,AB是⊙O的直径,AM和BN是它的两条切线,DC切⊙O 于E,交AM于D,交BN于C.若AD⋅BC=9,则直径AB的长为A.32 B. 6 C. 9 D.135.如图,在正方形纸板上剪下一个扇形和圆,刚好能围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,则r与R之间的关系为()A.R=2r B.4R=9r C.R=3r D.R=4r6.如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=34,则弦AC的长为()A. 3 B.7 C.32D.347.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为()A. 2 B. 1 C. 1.5 D. 0.58.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为()A . 32° B. 30° C. 26° D. 13°9.如图,在△ABC 中,AB=8 cm ,BC=4 cm ,∠ABC=30°,把△ABC 以点B 为中心按逆时针方向旋转,使点C 旋转到AB 边的延长线上的点C'处,那么AC 边扫过的图形(图中阴影部分)面积是( )A . 20π cm 2B . (20π+8) cm 2C . 16π cm 2D . (16π+8) cm 210.以下命题:①直径相等的圆是等圆; ②长度相等弧是等弧; ③相等的弦所对的弧也相等; ④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是( )A . 4B . 3C . 2D . 111.一条弦AB 把圆的 直径分成3和11两 部分,弦 和 直径相交 成300角,则AB 的长为 . 12.如图,点A 、B 、C 在半径为1的⊙O 上,的长为π,则∠ACB 的大小是_____.13.如图,已知等腰△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E ,若CD =5,CE =4,则⊙O 的半径是________.14.如图,四边形ABCD 内接于⊙O , E 为CD 的延长线上一点.若110B ∠=°,则ADE ∠的大小为____________.15.如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D点,若AB=10,AC=8,则DC长为________.16.已知⊙O的周长为8 cm,若PO=2cm,则点P在_______;若PO=4cm,则点P在_____;若PO=6cm,则点P在_______.17.用一张半径为9cm、圆心角为的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是____cm.18.已知圆锥底面半径为5cm,高为12cm,则它的侧面展开图的面积是cm2.19.如图,⊙ O是△ ABC的外接圆,∠ AOB=70°,则∠ C为______度.20.如图是一个装有两个大小相同的球形礼品的包装盒,其中两个小球之间有个等腰三角形隔板,已知矩形长为45cm,宽为20cm,两圆与矩形的边以及等腰△ABC的腰都相切,则所需的三角形隔板的底边AB长为___________21.在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.22.(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.23.如图,已知△ABC,AC=3,BC=4,∠C=90°,以点C为圆心作⊙C,半径为r.(1) 当r取什么值时,点A、B在⊙C外.(2)当r在什么范围时,点A在⊙C内,点B在⊙C外.24.如何在操场上画一个半径为5m的圆,请说明你的理由?25.如图,在△ABC中,过点A作AD⊥BC,垂足为点D,以AD为半径的⊙A分别与边AC、AB交于点E和点F,DE∥AB,延长CA交⊙A于点G,连接BG.(1)求证:BG是⊙A的切线;(2)若∠ACB=30°,AD=3,求图中阴影部分的面积.26.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.27.如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F , 60B ∠=︒, 70C ∠=︒.(1)求∠BOC 的度数;(2)求∠EDF 的度数.答案:1.D试题分析:根据圆周角定理求解即可.∵∠A=50°,∴∠BOC=2∠A=100°.故选D .考点:圆周角定理.2.C.试题分析:先根据直角三角形的性质求出直角三角形两锐角的和,再根据扇形的面积公式进行计算即可.∵△ABC 中,∠C=90°,∴∠A+∠B=90°,∵两圆的半径都为2cm,∴S阴影=2902=360ππ⨯⨯.故选C.3.A分析:利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.详解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选:A.点拨:题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.4.B试题解析:如图,连接OC .∵AM 和BN 是它的两条切线,∴AM ⊥AB ,BN ⊥AB ,∴AM ∥BN ,∴∠ADE+∠BCE=180°∵DC 切⊙O 于E ,∴∠ODE=12∠ADE ,∠OCE=12∠BCE , ∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB ,∵∠OAD=∠OBC=90°,∴△AOD ∽△BCO ,∴=AD AO BO BC, ∴OA 2=AD•BC=9,∴OA=3,∴AB=2•OA=6.故选B .点拨:本题考查切线的性质、平行线的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形性质解决问题,属于中考常考题型.5.D试题分析:求得侧面展开图的弧长,以及圆锥的底面周长,让它们相等即可求得r 与R 之间的关系. 解:由题意得:=2πr,解得:R=4r ,故选D .6.A 延长AO 交圆于点D ,连接CD ,由圆周角定理,得:∠ACD=90°,∠D=∠B∴sinD=sinB=34,Rt△ADC中,sinD=34,AD=2R=4,∴AC=AD•sinD=3.故选A.7.B试题分析:连接OD.AD是切线,点D是切点,∴BC⊥AD,∴∠ODA=∠ACB=90°,BC∥OD.∵AB=O B=2,则点B是AO的中点,∴BC=OD=1.故选B.8.A分析:连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.详解:连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故选A.9.A因为△ABC ≌△A′BC ,所以AC 边扫过的图形中阴影部分的面积是一个圆环的面积,即=20πcm²,故选A .10.D以下命题:①直径相等的圆是等圆,正确; ②长度相等弧是等弧,错误,只有在同圆或等圆中长度相等的弧是等弧;③相等的弦所对的弧也相等,错误;④圆的对称轴是直径,错误,应该是直径所在的直线;⑤相等的圆周角所对的弧相等,错误;所以正确的只有1个,故选D.11.56. 试题分析:如图,过点O 作OF ⊥AB 于点F ,设弦AB 与直径CD 相交于点E ,连接OB ,∵分直径成3和11两部分,∴CD=14,∴OC=12CD=7,∴OE=OC ﹣CE=4,∵∠OE F=30°,∴OF=12OE=2(cm ),∴BF=22OB OF =35,∴AB=2BF=56.故答案为:56.12.36°试题解析:连结OA 、OB .设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°..13.258如图所示:连接OD、BD,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,又∵AB=BC,∴AD=CD,又∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵DE是⊙O的切线,∴DE⊥OD,∴DE⊥BC,∵CD=5,CE=4,22543,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴BD=35 BC,∵BD2+CD2=BC2,∴(35BC )2+52=BC 2,解得BC=254,∵AB=BC,∴AB=254,∴⊙O 的半径是: 254÷2=258.故答案是: 258.14.110°解析:∵四边形ABCD 内接于圆O ,∠B=110°,∴∠ADC=180°−∠B=70°,∴∠ADE=180°−∠ADC=110°.故答案为:110°.15.412试题分析:解:连接BC ,∵AB 为⊙O 直径,∴∠ACB =90°,∴BC 22AB AC -22108-=6,∵BD 切⊙O 于点B ,∴∠DBA =90°,∴∠ABC +∠DBC =90°,∵∠A +∠ABC =90°,∴∠A =∠DBC ,又∠ACB =∠BCD =90°,∴△ACB ∽△BCD ,∴AC BC BC DC=, ∴DC =2BC AC =268=4.5. 故答案为4.5.点拨:此题主要考查了切线的性质、圆周角定理、相似三角形的判定与性质和勾股定理的综合应用,题目有一定的综合性,找出其中的相似三角形是解决此题的关键.16.⊙O 内,⊙O 上,⊙O 外试题分析:点到圆心的距离为d ,圆半径为r :当r d >时,点在圆外;当r d =时,点在圆上;当r d <时,点在圆内.由题意得⊙O 的半径cm r 428=÷=ππ若PO=2cm,则点P 在⊙O 内;若PO=4cm,则点P 在⊙O 上;若PO=6cm ,则点P 在⊙O 外.考点:点与圆的位置关系17.3分析:根据圆锥的底面周长等于侧面展开图的扇形弧长是6π,列出方程求解即可.详解:半径为9cm 、圆心角为120°的扇形弧长是:=6π,设圆锥的底面半径是r ,则2πr=6π,解得:r=3cm .这个圆锥形冰淇淋的底面半径是3cm .故答案为:3.点拨:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键. 18.65π试题分析:∵圆锥的底面半径、高和母线长组成直角三角形,且圆锥的高为12cm ,底面半径为5cm , ∴根据勾股定理,圆锥的母线长为:13cm 。

苏科版九年级数学上册《第2章 对称图形~圆》单元测试卷【含答案】

苏科版九年级数学上册《第2章 对称图形~圆》单元测试卷【含答案】

苏科版九年级数学上册《第2章对称图形~圆》单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.⊙O的弦A B的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm3.如图所示,正六边形ABCDEF内接于圆O,则∠ADB的度数为()A.60°B.45°C.30°D.22.5°4.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦5.如图,圆O的弦中最长的是()A.AB B.CD C.EF D.GH6.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断7.如图,⊙O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠P=30°,则弦AB的长为()A.2B.2C.D.28.下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.同一条弦所对的两条弧一定是等弧9.《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸10.下列说法正确的是()A.等弧所对的圆心角相等B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆D.相等的圆心角所对的弧相等二.填空题11.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,则∠ACD=度.12.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD 的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.13.已知圆中最长的弦为6,则这个圆的半径为.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.15.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为.16.如图△ABC中外接圆的圆心坐标是.17.根据“不在同一直线上的三点确定一个圆”,可以判断平面直角坐标系内的三个点A (3,0)、B(0,﹣4)、C(2,﹣3)确定一个圆(填“能”或“不能”).18.如图,在⊙O中,AB=2CD,那么2(填“>,<或=”).19.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.20.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则CM的长为.三.解答题21.如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.(1)求AF、AE的长;(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.23.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.24.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)25.如图,BD=OD,∠B=38°,求∠AOD的度数.26.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.27.如图,要把破残的圆片复制完整,已知弧上的点A、B、C.(1)试确定所在圆的圆心O;(2)设△ABC是等腰三角形,底边BC=10厘米,腰AB=6厘米,求圆片的半径R.(结果保留根号)答案与试题解析一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:如图∵AE=AB=4cm∴OA===5cm.故选:B.3.解:∵正六边形ABCDEF内接于圆O∴的度数等于360°÷6=60°∴∠ADB=30°故选:C.4.解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,故选:D.5.解:如图所示,圆O的弦中最长的是AB.故选:A.6.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:C.7.解:连接OA,作OC⊥AB于C,则AC=BC,∵OP=4,∠P=30°,∴OC=2,∴AC==,∴AB=2AC=2,故选:A.8.解:A、过圆心的弦是圆的直径,说法正确;B、等弧的长度一定相等,说法正确;C、周长相等的两个圆是等圆,说法正确;D、同一条弦所对的两条弧一定是等弧,说法错误,应是同一条弦对的两条弧只有在这条弦是直径的情况下是等弧,故原说法错误,符合题意;故选:D.9.解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x寸,则OC=OD=x寸,∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.10.解:等弧所对的圆心角相等,A正确;平分弦的直径垂直于这条弦(此弦不能是直径),B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,故选:A.二.填空题11.解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.12.解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故60°.13.解:∵圆中最长的弦为6,∴⊙O的直径为6,∴圆的半径为3.故3.14.解:连接OD,∵CD⊥AB于点E,直径AB过O,∴DE=CE=CD=×8=4,∠OED=90°,由勾股定理得:OD===5,即⊙O的半径为5.故5.15.解:作OD⊥AB于D,连接OA.∵OD⊥AB,OA=2,∴OD=OA=1,在Rt△OAD中AD===,∴AB=2AD=2.故2.16.解:分别作三角形的三边的垂直平分线,可知相交于点(6,2),即△ABC中外接圆的圆心坐标是(6,2).故(6,2).17.解:设经过A,B两点的直线解析式为y=kx+b,由A(3,0)、B(0,﹣4),得,解得.∴经过A,B两点的直线解析式为y=x﹣4;当x=2时y=x﹣4=﹣≠﹣3,所以点C(2,﹣3)不在直线AB上,即A,B,C三点不在同一直线上,因为“两点确定一条直线”,所以A,B,C三点可以确定一个圆.故答案为能.18.解:如图,过点O作OM⊥AB,垂足为N,交⊙O于点M,连接MA,MB,由垂径定理得,AN=BN,=,∵AB=2CD,∵AN=BN=CD,又∵MA>AN,∴MA>CD,∴>,∴2>2,即,>2,故>.19.解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故7.20.解:连接OA,∵直径CD⊥AB,AB=8,∴AM=BM=AB=4,在Rt△AOM中,OA=5,AM=4,根据勾股定理得:OM==3,则CM=OC﹣OM=5﹣3=2,故2三.解答题21.解:(1)∵矩形ABCD中AB=3,AD=4,∴AC=BD==5,∵AF•BD=AB•AD,∴AF==,同理可得DE=,在Rt△ADE中,AE==;(2)∵AF<AB<AE<AD<AC,∴若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,即点F在圆内,点D、C在圆外,∴⊙A的半径r的取值范围为2.4<r<4.22.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.23.解:∵AB、CD为⊙O中两条直径,∴OA=OB,OC=OD,∵CE=DF,∴OE=OF,在△AOF和△BOE中,,∴△AOF≌△BOE(SAS),∴AF=BE.24.解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===4,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.25.解:∵BD=OD,∠B=38°,∴∠DOB=∠B=38°,∴∠ADO=∠DOB+∠B=2×38°=76°,∵OA=OD,∴∠A=∠ADO=76°,∴∠AOD=180°﹣∠A﹣∠ADO=180°﹣76°﹣76°=28°.26.解:∵OB=OC∴∠OCB=∠OBC=40°(2分)∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)又∵OA=OC∴∠OAC==15°(6分)27.解:(1)作DO⊥AB.DO必过圆心,作EO⊥AC,EO必过圆心,DO、EO交点必为圆心;(2)设半径为r.连接OA,因为BA=AC,故AO⊥BC.所以:CD=×10=5,AD==.根据勾股定理,(R﹣)2+52=R2,解得R=.。

2021年苏科版九年级数学上册《第2章 对称图形——圆》单元检测卷含答案

2021年苏科版九年级数学上册《第2章 对称图形——圆》单元检测卷含答案

九年级上册数学《第2章对称图形——圆》单元测试卷一.选择题1.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.2B.3C.4D.52.在直径为20cm的圆柱形油槽内装入一些油后,截面如图所示,若油槽面宽AB=16cm,则油的最大深度为()A.4cm B.6cm C.8cm D.10cm3.经过不在同一直线上的三个点可以作圆的个数是()A.1B.2C.3D.无数4.如图,四边形A BCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.100°B.80°C.60°D.40°5.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O 的直径为()A.4B.5C.8D.106.已知⊙O的直径为6,点P到圆心O的距离为4,则点P在()A.⊙O内B.⊙O外C.⊙O上D.无法确定7.如图,A,B,C是⊙O上的三点,AB,AC的圆心O的两侧,若∠ABO=20°,∠ACO =30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°8.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE 的长为()A.B.1C.D.a9.如图,已知⊙O的半径为3,弦C D=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.1210.已知⊙O1,⊙O2,⊙O3是等圆,△A BP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④二.填空题11.在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是cm.12.一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为cm.13.如图,已知⊙O中,弦AB、CD交于P,AP=PB=4,CP=2,则CD=.14.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.15.在平面直角坐标系中有A,B,C三点,A(1,3),B(3,3),C(5,1).现在要画一个圆同时经过这三点,则圆心坐标为.16.如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有个.17.如图,A B是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是.18.如图,在圆内接四边形ABCD中,若∠A、∠C的度数之比为4:5,则∠C的度数是.19.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.三.解答题21.如图,两个同心圆的圆心为O,大圆的弦AB交小圆于C、D,求证:AC=BD.22.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.23.如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.24.如图,四边形ABCD内接于⊙O,连接AC、BD相交于点E.(1)如图1,若AC=BD,求证:AE=DE;(2)如图2,若AC⊥BD,连接OC,求证:∠OCD=∠ACB.25.已知⊙O经过四边形ABCD的B、D两点,并与四条边分别交于点E、F、G、H,且=.(1)如图①,连接BD,若B D是⊙O的直径,求证:∠A=∠C;(2)如图②,若的度数为θ,∠A=α,∠C=β,请直接写出θ、α和β之间的数量关系.26.在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.27.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案与试题解析一.选择题1.解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选:D.2.解:过圆心O向AB作垂线,交AB于点C.根据勾股定理可得OC==6.所以油的最大深度为10﹣6=4(cm).故选:A.3.解:经过不在同一直线上的三点确定一个圆.故选:A.4.解:∵四边形ABC D内接于⊙O,∴∠B+∠ADC=180°,又∠ADC=140°,∴∠B=40°,由圆周角定理得,∠AOC=2∠B=80°,故选:B.5.解:∵AB⊥CD,AP=PB=4,∴C D为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,∴CD=10,6.解:∵⊙O的直径为6,∴⊙O的半径为3,∵点P到圆心O的距离为4,∴4>3,∴点P在⊙O外.故选:B.7.解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×20°=40°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=100°.故选:A.8.解:∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°;∵AB=BD,∴,∴∠AED=∠AOB;∵BC=AB=BD,∴∠D=∠BCD;∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°;又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形;在等腰△EAC和等腰△OAB中,∠AEC=∠AOB,∴△EAC≌△OAB;∴AE=OA=1.故选:B.9.解:延长AP交⊙O于T,连接BT.设PC=x.∵AB是直径,∴∠ATB=90°,∵∠APB=120°,∴∠BPT=60°,∴PT=PB•cos60°=PB,∵PA•PB=2PA•PT=2PC•PD=2x•(4﹣x)=﹣2(x﹣2)2+8,∵﹣2<0,∴x=2时,PA•PB的最大值为8,故选:C.10.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:D.二.填空题11.解:连接OC、OA.则OC⊥AB于点D,OC=OA=×52=26cm,OD=OC﹣CD=26﹣16=10cm.在直角△OAD中,AD===24(cm),则AB=2AD=48cm.故答案是:48.12.解:设弧所在圆的半径为r,由题意得,,解得,r=40cm.故应填40.13.解:∵弦AB、CD交于P,∴PA•PB=PC•PD,∴4×4=2×PD,解得,PD=8,∴CD=PC+PD=10,故答案为:10.14.解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接C O交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.15.解:∵A(1,3),B(3,3),C(5,1)不在同一直线上∴经过点A,B,C可以确定一个圆∴该圆圆心必在线段AB的垂直平分线上∴设圆心坐标为M(2,m)则点M在线段BC的垂直平分线上∴MB=MC由勾股定理得:=∴1+m2﹣6m+9=9+m2﹣2m+1∴m=0∴圆心坐标为M(2,0)故答案为:(2,0).16.解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,∴,则y=,∴,解得x=3或﹣3(舍),∴OC=3>4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则,即,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=6,图中OC=3,同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.17.解:连接OA,∵C是AB的中点,∴AC=AB=2,OC⊥AB,∴OA2=OC2+AC2,即OA2=(OA﹣1)2+22,解得,OA=,故答案为:.18.解:∵∠A、∠C的度数之比为4:5,∴设∠A=4x,则∠C=5x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠C=100°.故答案为:100°.19.解:∵每个小方格都是边长为1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=,∴的长为:=π,故答案为:π.20.解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.三.解答题21.证明:过O作OE⊥AB于E,则OE⊥CD,∵OE过O,∴由垂径定理得:AE=BE,CE=DE,∴AE﹣CE=BE﹣DE,即AC=BD.22.解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.23.(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.24.证明:(1)∵AC=BD,∴=,即+=+,∴=,∴∠ADB=∠CAD,∴AE=DE;(2)作直径CF,连接DF,如图2,∵AC⊥BD,∴∠AED=90°,∴∠ADE+∠CAD=90°,∵∠ACB=∠ADE,∠F=∠CAD,∴∠ACB+∠F=90°,∵CF为直径,∴∠CDF=90°,∴∠F+∠FCD=90°,∴∠ACB=∠FCD,即∠OCD=∠ACB.25.解:(1)连接DF、DG.∵B D是⊙O的直径,∴∠DFB=∠DGB=90°,∵=,∴∠EDF=∠HDG,∵∠DFB=∠EDF+∠A,∠DGB=∠HDG+∠C,∴∠A=∠C.(2)结论:α+β+θ=180°.理由:如图②中,连接DF,BH.∵=,∴∠ADF=∠HB G=θ,∵∠AFD+∠DFB=180°,∠DFB+∠DHB=180°,∴∠AFD=∠DHB,∵∠A+∠ADF+∠AFD=180°,∠AFD=∠DHB=∠C+∠HBG,∴∠A+θ+∠C+θ=180°,∴α+β+θ=180°.26.解:(1)直线DA与图形W的公共点的个数为1个;∵点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,∵到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∵∠B=22.5°,∴∠APD=45°,∵点D到点A的距离也等于a,∴DA=AP=a,∴∠D=∠APD=45°,∴∠PAD=90°,∴DA⊥PA,∴DA为⊙P的切线,∴直线DA与图形W的公共点的个数为1个;(2)∵AP=BP,∴∠BAP=∠B=22.5°,∵∠BAC=90°,∴∠PAC=∠PCA=67.5°,∴PA=PC=a,∴点C在⊙P上,∵AE⊥BD交图形W于点E,∴=,∴AC=CE,∴∠DPE=∠APD=45°,∴∠APE=90°,∵EP=AP=a=2,∴AE=,∠E=45°,∵∠B=22.5°,AE⊥BD,∴∠BAE=67.5°,∴∠AFE=∠BAE=67.5°.∴EF=AE=.27.解:(1)∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴,即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2∴CM=DM=,由(1)知AM•MB=CM•MD.∴AM•MB=•=5.1、三人行,必有我师。

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案一、单选题1.如图,四边形ABCD 内接于O .若108B ∠=︒,则D ∠的大小为( )A .54︒B .62︒C .72︒D .82︒2.下列命题中,是真命题的有( )①相等的角是对顶角②三角形的外心是它的三条角平分线的交点 ③四边相等的四边形是菱形④线段垂直平分线上的点与这条线段两个端点的距离相等 A .①③B .①④C .②③D .③④3.如图,△ABC 内接于△O ,△A =30°,则△BOC 的度数为( )A .30°B .60°C .75°D .120°4.如图,BC 是△O 的直径,点A ,D 在△O 上,若△ADC =48°,则△ACB 等于( )度.A .42B .48C .46D .505.已知圆锥的底面直径是12 cm ,母线长为8 cm ,则这个圆锥的侧面积是( )A .48 cm 2B .48 cm 2C .96 cm 2D .96 cm 26.如图, EM 经过圆心 O , EM CD ⊥ 于 M ,若 4CD = , EN=6 ,则 CED 所在圆的半径为( )A.103B.83C.3D.47.如图,圆内接正六边形ABCDEF的周长为12cm,则该正六边形的内切圆半径为()A3cm B.2cm C.3cm D5cm8.如图,△O中,弦AC= 23,沿AC折叠劣弧AC交直径AB于D,DB=2,则直径AB=()A.4B.154C.32D.59.已知△O的半径为13cm,弦AB△CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm10.如图,已知△O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm11.如图,BC是△O的直径,AD是△O的切线,切点为D,AD与CB的延长线交于点A,△C=30°,给出下面四个结论:①AD=DC ;②AB=BD ;③AB=12BC ;④BD=CD , 其中正确的个数为( )A .4个B .3个C .2个D .1个12.如图,点16P P ~是O 的六等分点.若156PP P ,235P P P 的周长分别为1C 和2C ,面积分别为1S 和2S ,则下列正确的是( )A .12C C =B .212C C = C .12S S =D .212S S =二、填空题13.圆周角的度数等于它所对弧上的圆心角度数的 .14.已知直角三角形的两条直角边长分别为 6 和 8 ,那么这个三角形的外接圆半径等于 . 15.已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AD 边上一动点,将△ABE 沿BE 折叠,使点A 的对应点A′恰好落在矩形ABCD 的对角线上,则AE 的长为 .17.在平面直角坐标系xOy 中,A 为y 轴正半轴上一点.已知点()10B , ()50C , P 是ABC 的外接圆.△点P 的横坐标为 ;△若BAC ∠最大时,则点A 的坐标为 .三、解答题18.如图,AB 与△O 相切于点B ,AO 及AO 的延长线分别交△O 于D 、C 两点,若△A=40°,求△C 的度数.19.如图3-1所示,O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点 6cm CD =,求直径AB 的长.20.如图,已知△O 分别切△ABC 的三条边AB 、BC 、CA 于点D 、E 、F 210ABCScm = C △ABC =10cm且△C=60°.求: (1)△O 的半径r ;(2)扇形OEF 的面积(结果保留π); (3)扇形OEF 的周长(结果保留π)21.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC ,BC 的交点分别为D 、E ,且=.(1)试判断△ABC 的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin△ABD 的值.22.如图,O 为Rt ABC 的外接圆 90ACB ∠=︒ BC =3,4AC = 点D 是O 上的动点,且点C 、D 分别位于AB 的两侧.(1)求O 的半径;(2)当42CD =时,求ACD ∠的度数;(3)设AD 的中点为M ,在点D 的运动过程中,线段CM 是否存在最大值?若存在,求出CM 的最大值;若不存在,请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:因为,四边形ABCD 内接于O 108B ∠=︒所以,D ∠=180°-18010872B ∠=︒-︒=︒ 故答案为:C【分析】根据题意求出108B ∠=︒,再计算求解即可。

塘实验中学苏科版九年级数学上册单元练习题:第二章对称图形—圆六(无答案)

塘实验中学苏科版九年级数学上册单元练习题:第二章对称图形—圆六(无答案)

第二章对称图形—圆单元练习题六1.如图,AB 为圆O 的直径,BC 为圆O 的一弦,自O 点作BC 的垂线,且交BC 于D 点.若AB=16,BC=12,则△OBD 的面积为何?( )A . 6B . 12C . 15D . 302.如图,点A 、B 、C 是⊙O 上的三点,若∠BOC=80°,则∠A 的度数是( )A .30°B .40°C .50°D .100°3.如图4,A 是半径为5的⊙O 内的一点,且OA =3.过点A 且长小于8的弦有( )A .0条B .1条C .2条D .4条4.如图,AB 是⊙O 的直径,C 、D 在⊙O 上, AD CDBC ==,若∠DAB=58o ,则∠CAB=( )A .20oB .22oC .24oD .26o5.如图,⊙O 是△ABC 的外接圆,∠AOB=60°,则∠C 的度数为( )A .25°B .30°C .35°D .40°6.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .cmB .cmC .cm 或cmD .cm 或cm7.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 ( )A . 25°B . 65°C . 50°D . 130°8.如图,点A 在以BC 为直径的⊙O 内,且AB=AC ,以点A 为圆心,AC 长为半径作弧,得到扇形ABC ,剪下扇形ABC 围成一个圆锥(AB 和AC 重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是( )A .31B .32C .2D .39.如图,一条公路的转弯处是一段圆弧(图中的弧AB ),点O 是这段弧的圆心,C 是弧AB 上一点,OC ⊥AB ,垂足为D .若这段弯路的半径是100m ,CD=20m ,则A 、B 两点的直线距离是……( )A .60mB .80mC .100mD .120m10.如图,AB 是⊙O 的直径,∠C =30,则∠ABD = ( )A. 30B. 40C. 50D. 6011.如图,在扇形OAB 中,∠AOB=90°,半径OA=6.将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则有下列选项:①∠ACD=60°;②CB=63;③阴影部分的周长为12+3π;④阴影部分的面积为9π﹣123.其中正确的是 (填写编号).12.如图,在⊙O 中,AB 为直径,C 、D 为⊙O 上两点,若∠C =25°,则∠ABD =_____.13.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=87°,则∠AOC 的大小是_____.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心,OA 的长为半径作OC AB 和于点C ,若OA=2,则阴影部分的面积为_____.15.如图,在⊙O 中,AB 是⊙O 的直径,AB=8cm ,C 、D 为弧AB 的三等分点,M 是AB 上一动点,CM+DM 的最小值是 cm .16.一个圆锥的侧面积为12πcm 2,母线长为6cm ,则这个圆锥底面圆的半径为 cm .17.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果∠APB=60°,PA=8,那么弦AB 的长是18.用半径为10cm 的半圆,做成一个圆锥的侧面,那么这个圆锥的底面半径为________.19.(2015秋•湖南月考)如图,△ABC 内接于⊙O ,BC=12cm ,∠A=60°.⊙O 的直径为 .20.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .21.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x 2﹣2x ﹣3的图象与x 轴交于点A 、B ,与y 轴交于点D ,AB 为半圆直径,半圆圆心为点M ,半圆与y 轴的正半轴交于点C .(1)求点C 的坐标;(2)分别求出经过点C 和点D 的“蛋圆”的切线的表达式.22.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD⊥AE 于D .1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan ∠BAD=12,求⊙O 的半径.23.如图,点E 是△ABC 的内心,线段AE 的延长线交△ABC 的外接圆于点D .(1)求证:ED=BD ;(2)若∠BAC=90°,△ABC 的外接圆的直径是6,求BD 的长.24.如图,AB 为⊙O 直径,E 为⊙O 上一点,∠EAB 的平分线AC 交 ⊙O 于C 点,过C 点作CD ⊥A E 的延长线于D 点,直线CD 与射线AB 交于P 点.(1)求证:DC 为⊙O 切线;(2)若DC=1,O 半径长;②求PB 的长.25.如图,⊙O的半径为2,过点A(4,0)的直线与⊙O相切于点B,与y轴相交于点C.(1)求AB的长;(2)如果把直线AC看成一次函数y=kx+b的图像,试求k、b的值.26.如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.27.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA,OB,OC,AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分的面积(结果保留π和根号).28.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.。

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆  单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 2.(本题3分)在一个圆中任意画4条半径,则这个圆中有扇形( )A .4个B .8个C .12个D .16个3.(本题3分)如图,半径为5的⊙A 中,弦BC ED ,所对的圆心角分别是BAC ∠,EAD ∠.已知6DE =,180BAC EAD ∠+∠=︒,则弦BC 的弦心距等于( )A B C .4 D .34.(本题3分)如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B 等于( )A .27︒B .32︒C .36︒D .54︒5.(本题3分)如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,⊙CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π6.(本题3分)如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则⊙BCD 的度数为( )A .54°B .27°C .63°D .36°7.(本题3分)如图,半径为3的⊙O 内有一点A ,OA P 在⊙O 上,当⊙OP A 最大时,S ⊙OP A 等于( )A .32BCD .18.(本题3分)如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥ ,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒9.(本题3分)如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2 10.(本题3分)O 的半径为5,同一个平面内有一点P ,且OP =7,则P 与O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .12.(本题3分)如图,在O 中,半径OC 垂直AB 于,8,2D AB CD ==,则O 的半径是_____.13.(本题3分)如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则⊙D =______.14.(本题3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊙OA ,OC 交AB 于点P ,已知⊙OAB =22°,则⊙OCB =__________.15.(本题3分)已知圆心角为120的扇形的面积为212cm π,则扇形的弧长是________cm .16.(本题3分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.17.(本题3分)在一个圆中,有个圆心角为160°的扇形,则这个扇形的面积是整个圆面积的________. 18.(本题3分)如图,⊙ABC 内接于⊙O ,若⊙OBC=25°,则⊙A=_____.19.(本题3分)如图,Rt ABC △中,90C ∠=︒,30ABC ∠=︒,6AB =.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA DE =,则AD 的取值范围是______.20.(本题3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为_______.三、解答题(本大题共10小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题5分)如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.(本题5分)如图,大正方形的边长为8厘米,求阴影部分的周长和面积(结果保留π)23.(本题5分)如图所示,⊙B=⊙OAF=90°,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆的面积.24.(本题5分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)25.(本题5分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm,求半圆的半径.26.(本题5分)如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?=,以AB为直径的O分别交BC,AC于点D,27.(本题6分)已知:如图,在ABC中,AB ACE,连结EB,交OD于点F.⊥.(1)求证:OD BE(2)若DE =,5AB =,求AE 的长.28.(本题6分)如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.29.(本题8分)如图,在Rt⊙ABC 中,90C ∠=︒,AD 平分⊙BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)30.(本题10分)如图,在Rt ⊙ABC 中,⊙C =90°,以BC 为直径的⊙O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为⊙O 的切线.(2)若MH =32,AC BC =34,求⊙O 的半径. (3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊙BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.答案1.B解:⊙⊙OCA=50°,OA=OC,⊙⊙A=50°,⊙⊙BOC=2⊙A=100°,⊙AB=4,⊙BO=2,⊙BC的长为:10021819ππ⨯=故选B.2.C解:图中有四条半径,以其中一条半径为始边,可以找到3个扇形, 所以可以把这个图分成4×3=12个扇形,故选C.3.D解:作AH⊙BC于H,作直径CF,连结BF,如图,⊙⊙BAC+⊙EAD=180°,⊙BAC+⊙BAF=180°,⊙⊙DAE=⊙BAF,⊙DE BF=,⊙DE=BF=6,⊙AH⊙BC,⊙CH=BH,而CA=AF,⊙AH为⊙CBF的中位线,⊙AH=12BF=3,故选:D.4.A⊙PA 切O 于点A ,⊙90PAO ∠=︒,⊙36P ∠=︒,⊙903654POA ∠=︒-︒=︒, ⊙1272B POA ∠=∠=︒, 故A .5.D解:如图,连接OC ,⊙OA =OC ,⊙CAB =30°,⊙⊙C =⊙CAB =30°,⊙⊙AOC =120°,⊙弧AC 的长度l =12064180ππ⨯=. 故选:D .6.C⊙一块直角三角板ABC 的斜边AB 与量角器的直径重合, ⊙点A. B. C. D 都在以AB 为直径的圆上,⊙点D 对应54°,即⊙AOD=54°, ⊙⊙ACD=12⊙AOD=27°, ⊙⊙BCD=90°−⊙ACD=63°.故选C.7.B解:如图所示:OA 、OP 是定值,PA OA ∴⊥时,OPA ∠最大,在直角三角形OPA 中,OA =3OP =,PA ∴=12OPA S OA AP ∆∴=⋅12==. 故选:B .8.C解:在优弧AB 上取一点F ,连接AF ,BF .⊙,CD OA CE OB ⊥⊥ ,⊙⊙CDO=⊙CEO=90°.⊙40DCE ∠=︒,⊙⊙O=140°,⊙⊙F=70°,⊙⊙ACB=180°-70°=110°.故选C .9.D由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .10.C解:因为75OP =>,所以点P 与圆O 的位置关系是点在圆外,故选:C11.4⊙扇形周长等于铁丝的长为8 cm ,扇形的半径是2 cm ,⊙扇形弧长是4 cm ,⊙12S lr=扇形214242cm=⨯⨯=.故4.12.5设⊙O的半径为r,则OD=r-2,⊙OC⊙AB,⊙AD=BD=12AB=4,在Rt⊙AOD中,⊙OD2+AD2=OA2,⊙(r-2)2+42=r2,解得r=5,即⊙O的半径为5.故5.13.60°⊙四边形ABCD内接于⊙O,⊙⊙D+⊙B=180°,由圆周角定理得,⊙D=12⊙AOC,⊙四边形OABC为平行四边形,⊙⊙AOC=⊙B,⊙2⊙D=180°−⊙D,解得,⊙D=60°,故60.14.44°连接OB,⊙BC是⊙O的切线,⊙OB⊙BC,⊙⊙OBA+⊙CBP=90°,⊙OC⊙OA,⊙OA=OB ,⊙OAB=22°,⊙⊙OAB=⊙OBA=22°,⊙⊙APO=⊙CBP=68°,⊙⊙APO=⊙CPB ,⊙⊙CPB=⊙ABP=68°,⊙⊙OCB=180°-68°-68°=44°,故答案为44°15.4π令扇形的半径和弧长分别为R 和l ,则S=2120360R π=12π, ⊙R=6cm , ⊙l=0208161π⨯=4πcm . ⊙扇形的弧长为4πcm .16.35r <<.根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.17.49160°÷360°=49 故答案为.4918.65°.连接OC .⊙OB=OC ,⊙OBC=25°⊙⊙BOC=130°, ⊙⊙A=12⊙BOC=65°. 故答案是:65°.19.23AD ≤<以D 为圆心,AD 的长为半径画圆,当圆与BC 相切,如图⊙,DE BC ⊥时,30ABC =︒∠, ⊙12DE BD =, ⊙DA DE =⊙2DB DA =6AB =,2AD DE ∴==⊙DE 到BC 的最短距离为2⊙2AD ≥当圆与BC 相交时,如图⊙,若交点为B 和C ,则132AD AB ==, ⊙3AD < AD ∴的取值范围是23AD ≤<.20.120⊙圆锥的底面半径为1,⊙圆锥的底面周长为2π,⊙圆锥的高是⊙圆锥的母线长为3,设扇形的圆心角为n°, ⊙32180n ππ⨯==2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为120°.21.40度 49π2cm解:由题意可知:BA =6πcm , CD =4π,设⊙AOB=n ,AO=R ,则CO=R ﹣9,由弧长公式得:l =180n R π,⊙618041809n nR nR ⨯=⎧⎨⨯=-⎩,解得:n=40,R=27,故扇形OAB 的圆心角是40度.⊙R=27,R ﹣9=18,⊙S 扇形OCD = 12×4π×18=36π(cm 2),S 扇形OAB = 12×6π×27=81π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =81π﹣36π=45π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=45π+4π=49π(cm 2).22.(16)4π+厘米;(32)8π+平方厘米解:周长:π×8×14×2+8×12×4 =8π×12+16=4π+16(厘米);面积:8×8×12+π×282÷()×12=32+8π(平方厘米).答:阴影部分的周长是4π+16厘米,面积是32+8π平方厘米.23.图中半圆的面积是169π8cm 2. 解:如图,⊙在直角⊙ABO 中,⊙B =90°,BO =3 cm ,AB =4 cm ,⊙AO 5 cm.则在直角⊙AFO 中,由勾股定理,得到FO 13 cm ,⊙图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. 24.作图见解析. 在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.25.R =.如下图所示,圆心为A ,设大正方形的边长为2x ,圆的半径为R ,⊙正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,⊙AE BC x ==,2CE x =,⊙小正方形的面积为216cm ,⊙小正方形的边长4cm EF DF ==,由勾股定理得,22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得4x =,⊙R =.26.选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.⊙圆锥形漏斗的底面半径为20cm,高为,⊙圆锥的母线长为R==60(cm).设圆锥的侧面展开图的圆心角为n°,则有60180nπ⨯=2π×20,解得:n=120.方案一:如图⊙,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为cm.此时矩形的面积为60⨯(cm2).方案二:如图⊙,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).⊙>5400,⊙方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.27.(1)见解析;(2)3(1)证明:⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙AB=AC,⊙⊙C=⊙ABC.⊙BO=OD,⊙⊙ODB=⊙ABC,⊙⊙C=⊙ODB,⊙OD//AC,⊙OD⊙BE;(2)解:⊙OD⊙BE,⊙弧BD=弧DE,⊙AB=5,则OB=OD=52,设OF=x,则DF=52-x,⊙BF2=BD2-DF2=OB2-OF2,即2-(52-x)2=(52)2-x 2, 解得x=32, ⊙OF//AE ,OA=OB , ⊙AE=2OF=2×32=3. 28.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .⊙ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.⊙ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.29.(1)证明见解析 (2)23π(1)连接OD .⊙OA =OD ,⊙⊙OAD =⊙ODA .⊙⊙OAD =⊙DAC ,⊙⊙ODA =⊙DAC ,⊙OD ⊙AC ,⊙⊙ODB =⊙C =90°,⊙OD ⊙BC ,⊙BC 是⊙O 的切线. (2)连接OE ,OE 交AD 于K .⊙AE DE =,⊙OE ⊙AD .⊙⊙OAK =⊙EAK ,AK =AK ,⊙AKO =⊙AKE =90°,⊙⊙AKO ⊙⊙AKE ,⊙AO =AE =OE ,⊙⊙AOE 是等边三角形,⊙⊙AOE =60°,⊙S 阴=S 扇形OAE ﹣S ⊙AOE 2602360π⋅⋅=2223π=- 30.(1)证明见解析;(2)2;(3)4813. 解:(1)连接OH 、OM ,⊙H 是AC 的中点,O 是BC 的中点⊙OH 是⊙ABC 的中位线 ,⊙OH ⊙AB ,⊙⊙COH =⊙ABC ,⊙MOH =⊙OMB又⊙OB =OM ,⊙⊙OMB =⊙MBO ,⊙⊙COH =⊙MOH ,在⊙COH 与⊙MOH 中,⊙OC =OM ,⊙COH =⊙MOH ,OH =OH⊙⊙COH ⊙⊙MOH (SAS ),⊙⊙HCO =⊙HMO =90°,⊙MH 是⊙O 的切线;(2)⊙MH 、AC 是⊙O 的切线,⊙HC =MH =32, ⊙AC =2HC =3, ⊙AC BC =34, ⊙BC =4 ,⊙⊙O 的半径为2;(3)连接OA 、CN 、ON ,OA 与CN 相交于点I , ⊙AC 与AN 都是⊙O 的切线 ,⊙AC =AN ,AO 平分⊙CAD ,⊙AO ⊙CN ,⊙AC =3,OC =2 ,⊙由勾股定理可求得:A O ⊙12AC •OC =12AO •CI ,⊙CI ,⊙由垂径定理可求得:C N =13, 设OE =x ,由勾股定理可得:2222CN CE ON OE -=-, ⊙22144(2)413x x -+=-, ⊙x =1013, ⊙CE =1013, 由勾股定理可求得:EN =2413, ⊙由垂径定理可知:NQ =2EN =4813.。

苏科版九年级数学上册 第2章 对称图形-圆 单元测试卷

苏科版九年级数学上册 第2章 对称图形-圆 单元测试卷

苏科版九年级数学上册第2章对称图形-圆单元测试卷题号一二三总分得分一、选择题(本大题共9小题,共27分)1.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一条直线上,点E,D,C在一条直线上,那么图中有弦()A. 2条B. 3条C. 4条D. 5条2.如图,PA,PB分别切圆O于A,B,并与圆O的一切线分别相交于D,C,已知PA=8cm,则△PCD的周长等于()A. 8cmB. 12cmC. 14cmD. 16cm3.如图,AB为⊙O的切线,A为切点,BO的延长线交⊙O于点C,∠OAC=35°,则∠B的度数是()A. 15°B. 20°C. 25°D. 35°4.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BOD,则⊙O的半径为()∠BAC=12A. 4√2B. 8C. 10D. 65.如图,AB为⊙O的直径,P点在AB延长线上,PM切⊙O于M点,若OA=a,PM=√3a,那么△PMB的周长为()A. 2aB. 2√3aC. aD. (2+√3)a6.如图,AB是⊙O的弦,半径OC⊥AB于点D,下列判断中错误的是()A. OD=DCB. AC⏜=BC⏜C. AD=BD∠AOBD. ∠AOC=127.如图,AB为⊙O的直径,弦CD⊥AB,E为弧BC上一点,若∠CEA=28°,则∠ABD=()A. 14°B. 28°C. 56°D. 80°8.在矩形ABCD中,AB=8,BC=3√5,点P在边AB上,且BP=3AP,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A. 点B,C均在⊙P外B. 点B在⊙P外,点C在⊙P内C. 点B在⊙P内,点C在⊙P外D. 点B,C均在⊙P内9.如图,在△ABC中,∠C=90°,AB=4,以C点为圆心,2为半径作⊙C,则AB的中点O与⊙C的位置关系是().A. 点O在⊙C外B. 点O在⊙C上C. 点O在⊙C内D. 不能确定二、填空题(本大题共8小题,共24分)10.如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=______°,∠ABD=______°.11.已知一个圆锥底面直径为6,母线长为12,则其侧面展开图的圆心角为______度.12.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为______ .13.圆柱的底面半径为1,母线长为2,则它的侧面积为______.(结果保留π)14.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为________cm.15.如图,AB,AC分别为⊙O的内接正六边形、内接正方形的一边,BC是圆内接正n边形的一边,则n=________.16.如图,P是⊙O的弦AB上的一点.PA=6,PB=2,⊙O的半径为5,则OP=_____.17.已知正方形的对角线为4,则它的边长为______.三、解答题(本大题共7小题,共49分)18.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=60°,DE=3√3,求AC的长.19.如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O的周长;(3)在(2)的条件下,求阴影部分的面积.20.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)求图中阴影部分的面积.21.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.22.如图,已知△ABC中,AB=AC,∠A=45°,AB为⊙O的直径,AC交⊙O于点E,连接BE,(1)求∠EBC 的度数;(2)求证:BD =CD .23. 如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于点D ,以AB 上一点O 为圆心作⊙O ,使⊙O 经过点A 和点D .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC =60°,OA =2,求阴影部分面积(结果保留π).1、最困难的事就是认识自己。

九年级上册数学单元测试卷-第2章 对称图形——圆-苏科版(含答案)

九年级上册数学单元测试卷-第2章 对称图形——圆-苏科版(含答案)

九年级上册数学单元测试卷-第2章对称图形——圆-苏科版(含答案)一、单选题(共15题,共计45分)1、如图, A,B,C是⊙O上的三个点,若,则的度数为().A. B. C. D.2、如图,四边形内接于.若,则的大小为()A. B. C. D.3、以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;其中正确的个数是()A.4B.3C.2D.14、如图,⊙O的半径为5,AB为⊙O的弦,OC⊥AB于点C.若OC=3,则AB的长为()A.4B.6C.8D.105、如图,在直角三角形ABC中,∠ACB=90°,CA=4.点P是半圆弧AC的中点,连接BP,线段BP把图形APCB(指半圆和直角三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是()A.2B.4C.1.5π﹣2D.6、如图,在⊙O中,直径AB垂直于弦CD,垂足为P。

若PA=1,PB=4,则CD的长为A. B.2 C.4 D.7、一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为()A.6πB.3πC.πD.2π9、如图,在⊙O中,已知,则AC与BD的关系是()A.AC=BDB.AC<BDC.AC>BDD.不确定10、如图与相切于点为上点,则下列说法中错误的()A. 是圆心角B. 是圆周角C. 是圆周角 D. 是圆心角11、如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于( )A.130°B.140°C.145°D.150°12、如图,⊙O的半径为2,点A的坐标为(2,),直线AB为⊙O的切线,B为切点。

则B点的坐标为( )A.(- , )B.(- ,1)C.(- , )D.(-1,)13、如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.若CE=4,DE=2,则AD的长是()A.2B.6C.3D.614、如图,一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是A. B. C. D.15、如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题(共10题,共计30分)16、已知的半径为,,则点与的位置关系是点在________.17、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.18、如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为________.19、如图OC是⊙O的半径,弦AB⊥OC于点D,点E在⊙O上,EB恰好经过圆心O.连接EC.若∠B=∠E,OD=,则劣弧AB的长为________.20、半径为5cm的圆中,若扇形面积为,则它的圆心角为________.21、如图,AB、AC是⊙O的两条弦,过点B的切线与半径OC的延长线交于点D,若∠D=40∘,则∠A的度数为________.22、如图,AB、CD是⊙O的切线,B、D为切点,AB=2,CD=4,AC=10.若∠A+∠C=90°,则⊙O的半径是________.23、如图,AB为⊙O直径,CD⊥AB,∠BDC=35°,则∠CAD=________24、如图,正方形ABCD的边长为,E在正方形外,DE=DC,过D作DH⊥AE于H,直线DH,EC交于点M,直线CE交直线AD于点P,则下列结论正确的是________①∠DAE=∠DEA;②∠DMC=45°;③;④若MH=2,则S△CMD=25、如图所示,格点△ABC绕点B逆时针旋转得到△EBD,图中每个小正方形的边长是1,则图中阴影部分的面积为________.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、如图1,点I是△ABC的内心,AI的延长线交△ABC的外接圆⊙O于点D.(1)求证:DB=DC=DI;(2)若AB是⊙O的直径,OI⊥AD,求tan的值.28、如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.29、如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF=∠A.(1)求证:直线CF是⊙O的切线;(2)若⊙O的半径为5,DB=4.求sin∠D的值.30、如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.参考答案一、单选题(共15题,共计45分)1、D2、C4、C5、B6、C7、B8、C9、A10、C11、B12、D13、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

九年级数学上册第2章对称图形—圆练习题(新版)苏科版

九年级数学上册第2章对称图形—圆练习题(新版)苏科版

********** 精心制作仅供参照 鼎尚出品 *********第 2 章 对称图形 ——圆2-Y -11 .[2017 ·徐州 ] 如 2- Y - 1,点 A ,B ,C 均在 ⊙ O 上,∠ AOB = 72°, ∠ ACB = () A .28° B . 54° C .18°D . 36°2 .[2017 ·宿迁 ] 若将半径 12 cm 的半 形 片拼成一个 的 面,个 的底面 半径是 ()A . 2 cmB . 3 cmC . 4 cmD . 6 cm3 . [2016 ·南京 ] 已知正六 形的2 , 它的内切 的半径 ()A .1 B. 3 C .2 D .2 32-Y -24 . [2017 · 州 ] 如 2 -Y - 2,在 Rt △ABC 中, ∠ ACB =90°, ∠ A = 56°.以 BC 直︵ ︵径的 ⊙O 交 AB 于点 D , E 是⊙ O 上一点,且 CE =CD , 接 OE , 点 E 作 EF ⊥ OE ,交AC 的延 于点 F , ∠F 的度数 ( )A . 92°B . 108°C . 112°D .124°5 . [2017 ·南京 ] 三点 A(2 , 2) , B(6 , 2) , C(4 , 5) 的 的 心坐 ()17 17 A .(4, 6 )B .(4,3)C .(5, 6 )D .(5, 3)6 . [2017 · 云港 ] 如 2 -Y - 3 所示,一 点从半径2 的 ⊙ O 上的点 A 0 出 ,沿着 射 A 0O 方向运 到 ⊙ O 上的点 A 1 ,再向左沿着与射A 1O 角 60°的方向运 到 ⊙ O上的点 A 2 ;接着又从点 A 2 出 ,沿着射 A 2 O 方向运 到 ⊙ O 上的点 A 3,再向左沿着与射 A 34⋯⋯ 按此 律运 到点A 2017,O 角 60°的方向运 到 ⊙ O 上的点 A点 A 2017与点 A 之 的距离是 ()A .4B .2 3C .2D . 02-Y -3图 2-Y-47. [2017 ·扬州 ] 如图 2 - Y- 4 ,已知⊙ O 是△ ABC 的外接圆,连结AO. 若∠B = 40°,则∠ OAC =________° .8.[2016 ·南京 ] 如图 2 -Y- 5,扇形 OAB 的圆心角为122°,C 是 AB 上一点,则∠ ACB =________° .图 2-Y-5图 2-Y-69.[2017 ·镇江 ] 如图 2-Y-6,AB 是⊙O 的直径, AC 与⊙O 相切, CO 交⊙O 于点D. 若∠CAD =30°,则∠BOD =________°.10 .[2016 ·泰州 ] 如图 2- Y- 7,⊙O 的半径为2,点 A ,C 在⊙ O 上,线段 BD 经过圆心 O,∠ABD =∠CDB =90°, AB = 1 ,CD = 3,则图中暗影部分的面积为________ .图 2-Y-7图 2-Y-811︵︵.[2017 ·盐城 ] 如图 2-Y - 8,将⊙ O 沿弦 AB 折叠,点 C 在 AMB 上,点 D 在 AB 上.若∠ ACB= 70 °,则∠ ADB = ________ .°12.[2016 ·南通 ] 已知:如图 2- Y- 9, AM 为⊙ O 的切线, A 为切点,过⊙O 上一点 B 作 BD ⊥AM 于点 D,BD 交⊙O 于点 C,OC 均分∠AOB.(1)求∠AOB 的度数;(2)若⊙O 的半径为 2 cm ,求线段 CD 的长.图 2-Y-913 . [2017 ·淮安 ] 如图 2- Y- 10 ,在△ABC 中,∠ ACB = 90°, O 是边 AC 上一点,以O 为圆心, OA 长为半径的圆分别交AB ,AC 于点 E , D,在 BC 的延伸线上取点F,使得EF= BF,EF 与 AC 交于点 C.(1)试判断直线 EF 与⊙ O 的地点关系,并说明原因;(2)若 OA = 2 ,∠ A =30°,求图中暗影部分的面积.图 2-Y-1014.[2016·宿迁]如图2-Y-11①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ ADB =1∶2∶ 3,⊙O 是△ABD 的外接圆.(1)求证: AC 是⊙O 的切线;(2)当 BD 是⊙ O 的直径时 (如图② ),求∠ CAD 的度数.图 2-Y-1115 .[2017 ·盐城 ] 如图 2- Y - 12,在平面直角坐标系中, Rt △ ABC 的斜边 AB 在 y 轴上,边 AC 与 x 轴交于点 D,AE 均分∠BAC 交边 BC 于点 E ,经过点 A ,D ,E 的圆的圆心 F 恰幸亏 y 轴上,⊙F 与 y 轴订交于另一点 G.(1)求证: BC 是⊙F 的切线;(2)若点 A ,D 的坐标分别为 (0,- 1), (2,0),求⊙F 的半径;(3)尝试究线段 AG , AD ,CD 三者之间知足的等量关系,并证明你的结论.图 2-Y-12********** 精心制作仅供参照 鼎尚出品 *********解 析111 . D [分析 ] 依据同弧所 的 周角等于 心角的一半,得∠ ACB = 2∠ AOB = 2×72°= 36°.故 D.2 .D 3.B4 .C[分析 ]︵ ︵接 OD .∵ ∠ ACB = 90°,∠A = 56°,∴ ∠ B =34°.在⊙ O 中,∵ CE = CD ,∴∠ COE = ∠COD = 2∠B =68 °.又∵OE ⊥EF ,∠OCF =∠ ACB =90 °,∴∠F =112 °.故 C.5 .A[分析 ] 依据 意, 可知 段 AB 的垂直均分 直x = 4 ,所以 心的横坐4 ,而后 的半径r , 依据勾股定理可知r 2= 22+ (5 - 2- r)2,解得 r = 13,所以 心的6131717坐 5- 6 =6 ,所以 心的坐 (4 ,6 ).6 .A[分析 ] 如 所示,当 点运 到点A 6 ,与点 A 0 重合, 2017÷6= 336⋯⋯1,即点A2017与点 A 1 重合,点 A 2017 与点 A 0 之 的距离即 A 0 A 1 的 度, ⊙ O 的直径,故点A 2017 与点 A 0 之 的距离是 4,所以 A.7 .50 [分析 ] 依据 “同弧所 的 周角等于它所 心角的一半 ”, 接 OC ,便有 ∠ AOC= 2 ∠B = 80°,再由 OA = OC ,依据 “等 等角 ”及 “三角形内角和定理 ”能够求得 ∠ OAC = 50°.8.119 9. 120[分析 ] ∵AB是 ⊙O 的直径, AC与⊙O 相切, ∴AC ⊥AO ,即 ∠CAO =90°.∵ ∠ CAD = 30°,∴ ∠ DAO = 60°,∴ ∠ BOD = 2∠ DAO =120°.故答案 120.5π [分析 ] 如 , 接 AO ,CO , AO = CO = 2. ∵∠ ABD = ∠ CDB = 90°,AB =1, 10. 3CD = 3,∴ OD = 1,BO = 3,∴ S △ ABO = S △ODC ,∠ AOB = 30 °,∠ COD = 60 °,∴∠ AOC 25π150π×2 5π= 180°- 60°+ 30°=150°, ∴S 暗影部分 = S 扇形 OAC = 360 = 3 .故答案 3.11 .110 [ 分析 ] 如 , 点 D ′是点 D 折叠前的地点, 接 AD ′,BD ′, ∠ ADB = ∠ D ′.**********精心制作仅供参照鼎尚出品*********在圆内接四边形ACBD ′中,∠ ACB +∠ D′= 180°,所以∠D ′= 180°- 70°=110°,所以∠ ADB =110°.12 .解: (1) ∵ OC 均分∠AOB ,∴∠ AOC =∠COB .∵AM 切⊙O 于点 A,∴ OA⊥AM .又 BD⊥AM,∴OA ∥BD ,∴∠AOC =∠OCB .又∵ OC= OB,∴∠ OCB =∠B,∴∠ B=∠OCB =∠COB =60 °,∴∠ AOB =120 °.(2)过点 O 作 OE ⊥ BC 于点 E,由 (1) 得△ OBC 为等边三角形.∵ ⊙ O 的半径为 2 cm ,1∴BC = 2 cm ,∴CE =2BC = 1 cm.由已知易得四边形AOED 为矩形,∴ED = OA =2 cm ,则 CD = ED -CE = 1 cm.13 .解: (1) 直线 EF 与⊙O 相切.原因:如下图,连结OE .∵EF =BF ,∴∠B=∠BEF .∵OA =OE,∴∠A=∠AEO .∵∠ ACB =90 °,∴∠A+∠B=90 °.∴∠ AEO +∠BEF =90 °,∴∠ OEG =90 °,∴OE ⊥EF ,∴直线 EF 与⊙O 相切.(2)如下图,连结 ED .∵AD 是⊙ O 的直径,∴ ∠AED =90 °.∵∠ A= 30 °,∴ ∠ADE =60 °.又∵ OE = OD ,∴ △ ODE 是等边三角形.∴∠ DOE =60 °.由 (1) 知∠ OEG = 90°,∴∠ OGE =30 °.在 Rt △ OEG 中, OG =2OE = 2OA = 4 ,∴EG = OG 2- OE2=2 3,116022∴ S△OEG =2OE·EG=2×2×23= 23, SOED ==3π,扇形∴S 暗影=S△OEG-S 扇形OED=23-2π. 314 .解: (1) 证明:如图,连结AO ,延伸 AO 交⊙ O 于点 E ,则 AE 为⊙ O 的直径,连接 DE.∵∠ ABC ∶∠ACB ∶∠ADB =1∶2∶3,∠ADB =∠ ACB +∠CAD ,∴∠ ABC =∠CAD .∵AE 为⊙ O 的直径,∴∠ ADE =90 °,∴∠ EAD =90 °-∠AED .∵∠ AED =∠ABD ,∴∠ AED =∠ABC =∠CAD ,∴∠ EAD =90 °-∠CAD ,即∠ EAD +∠CAD =90°,∴EA ⊥AC ,∴AC 是⊙O 的切线.(2)∵BD 是⊙O 的直径,∴∠ BAD =90 °,∴∠ ABC +∠ADB =90 °.∵∠ ABC ∶∠ACB ∶∠ADB =1∶2∶3,∴4∠ABC =90 °,∴∠ ABC = 22.5 ,°由(1) 知∠ABC =∠CAD ,∴ ∠ CAD = 22.5 .°15 .解: (1) 证明:如图,连结EF .∵AE 均分∠BAC ,∴∠ FAE =∠ EAC .∵EF =AF ,∴∠FAE =∠FEA ,∴∠ EAC =∠FEA ,∴EF∥AC ,∴∠ BEF =∠C.∵ AB 是 Rt △ABC 的斜边,∴∠ C=90 °,∴∠ BEF =90 °,即 EF ⊥BC .又∵ EF 是⊙F 的半径,∴BC 是⊙F 的切线.(2)如图,连结 DF .∵A(0,- 1),D(2 ,0),∴OA =1,OD =2.设⊙ F 的半径是r,则 FD = r, OF = r- 1.∵OD ⊥OF,∴OF 2+ OD2=FD2,即 (r- 1) 2+ 2 2= r2,解得 r= 2.5 ,∴ ⊙ F 的半径是 2.5.(3)2 CD+AD =AG .证明:如图,过点 F 作 FH⊥AC 于点 H.∵ F 是圆心, FH ⊥ AC,1∴AH =DH =2AD,∠ FHD =90°.∵∠ BEF =∠C=90 °,∴∠CEF =90 °,∴四边形 CEFH 是矩形,∴ CH = EF .1∵AG 是⊙F 的直径,∴EF =2AG,1∴CH =2AG .∵AD +CD =AC =AH+ CH,1 1∴AD +CD =2AD+2AG,∴2CD +AD= AG .。

苏科版九年级数学上册 第二章 对称图形--圆 单元检测试题(有答案)

苏科版九年级数学上册 第二章 对称图形--圆 单元检测试题(有答案)

第二章对称图形-圆单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 下列说法正确的有()A.优弧的长一定大于劣弧的长B.以圆心为端点的线段是半径C.半径相等的两个半圆是等弧D.不同的圆中,就不可能有相等的弦长2. 圆的半径为4,圆心到直线l的距离为3,则直线l与⊙O位置关系是()A.相离B.相切C.相交D.相切或相交3. 在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定4. 下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧5. 如图,PA切⊙O点于A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是()A.3B.3√2C.3√3D.96. 如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=40∘,则∠B=()A.20∘B.25∘C.40∘D.50∘7. 半径为2的⊙O中,弦AB=2√3,弦AB所对的圆周角的度数为()A.60∘B.60∘或120∘C.45∘或135∘D.30∘或150∘8. 如图,⊙O阴影部分为残缺部分,现要在剩下部分裁去一个最大的正方形,若OP=2,⊙O半径为5,则裁去的最大正方形边长为多少?()A.7B.6C.5D.49. 某公园的两个花圃,面积相等,形状分别为正三角形和正六边形,已知正三角形花圃的周长为50米,则正六边形花圃的周长()A.大于50米B.等于50米C.小于50米D.无法确定二、填空题(本题共计10 小题,每题3 分,共计30分,)10 将一个圆分成1:2:3三部分,每一部分的圆心角的度数分别是________.11 在半径为2的圆中,弦AB的长为2,则弧AB̂长等于________.12 下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是________(填序号).13. 已知扇形的圆心角为120∘,所对的弧长为8π,则此扇形的面积是________.314. 如图,∠AOB=30∘,⊙M的圆心在OA上,半径为4cm,若圆心在射线OA上移动,则当OM=________cm时,⊙M与OB相切.15. 如图,已知圆O的半径为3,△ABC内接于圆O,∠ACB=135∘,则AB=________.16. 已知,如图,AC切⊙O于点A,∠BAC=60∘,则∠AOB=________度.17. 如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠ACE+∠BDE=________.18 如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm.19 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45∘,则劣弧AC的长为________.三、解答题(本题共计6 小题,共计63分,)20. 已知AB是⊙O的直径,弦CD交AB于点E,AB=6,BEOE =12.(1)当∠AEC=90∘时,求CD的长;(2)当∠AEC=30∘时,求CD的长.21. 已知⊙O半径为R(1)如图1,过⊙O内一点P作弦AB,连接OP.求证:PA⋅PB=R2−OP2.(2)如图2,过⊙O外一点P,作割线PAB,求证:PA⋅PB=R2−OP2.22 如图,已知梯形ABCD中,AD // BC,∠C=90∘,AD+BC=AB,以AB为直径作⊙O.(1)求证:CD为⊙O的切线;(2)试探索以CD为直径的圆与AB有怎样的位置关系?证明你的结论.23 如图,在Rt△ABC中,∠C=90∘,AC=3,BC=4.(1)求△ABC内切圆的半径;(2)若移动圆心O的位置,使⊙O保持与△ABC的边AC、BC都相切.①求半径r的取值范围;时,求圆心O的位置.②当⊙O的半径为12724. 如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⨀O与BC 相切于点E,与AC相交于点D,与AB相交于点F,连接AE、DE、FE、OE.求证:EF=ED.25 如图△ABC内接于⊙O,∠B=60∘,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=√5,求⊙O的直径.。

2021年苏科版九年级数学上册第2章 对称图形——圆 单元检测题含答案

2021年苏科版九年级数学上册第2章 对称图形——圆 单元检测题含答案

九年级上册数学《第2章对称图形——圆》单元测试卷一.选择题1.下列语句中,正确的是()A.长度相等的弧是等弧B.在同一平面上的三点确定一个圆C.三角形的内心是三角形三边垂直平分线的交点D.三角形的外心到三角形三个顶点的距离相等2.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°3.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,AB=8,OC=5,则MD的长为()A.4B.2C.D.14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米5.对于以下图形有下列结论,其中正确的是()A.如图①,AC是弦B.如图①,直径AB与组成半圆C.如图②,线段CD是△ABC边AB上的高D.如图②,线段AE是△ABC边AC上的高6.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定7.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能8.下列说法正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.经过圆内一点有且仅有一条直径D.半圆是弧9.如图,⊙O的直径CD为10,弦AB的长为8,且AB⊥CD,垂足为M,则CM的长为()A.1B.2C.3D.410.在数轴上,点A所表示的实数为2,点B所表示的实数为a,⊙A的半径为3,若点B 在⊙A外,则a的值可能是()A.﹣1B.0C.5D.6二.填空题11.如图,⊙O的直径C D垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=cm.12.如图所示,三圆同心于O,AB=4cm,CD⊥AB于O,则图中阴影部分的面积为cm2.13.如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为cm.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是.15.⊙O的直径为10cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离是cm.16.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.17.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB =1尺(1尺=10寸).问这根圆形木材的直径是寸.18.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.19.如图,在⊙O中,,AB=3,则AC=.20.正方形的四个顶点和它的中心共5个点能确定个不同的圆.三.解答题21.如图,在⊙O中,直径AB=10,弦CD⊥AB,垂足为E,BE=2.求:弦CD的长.22.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?23.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.24.已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求的度数.25.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.26.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.27.已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.参考答案与试题解析一.选择题1.解:A、能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、三角形的内心到三边的距离相等,是三条角平分线的交点,故错误;D、三角形的外心是外接圆的圆心,到三顶点的距离相等,故正确;故选:D.2.解:∵AD∥OC,∴∠AOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.故选:D.3.解:连接OA,∵CD是直径,AB是弦,AB⊥CD于M,AB=8,∴AM=BM=4,∵OC=5,∴OA=OD=5,∴OM===3.∴DM=OD﹣OM=5﹣3=2.故选:B.4.解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.5.解:A、AC不是弦,故错误;B、半圆是弧,不包括弧所对的弦,故错误;C、线段CD是△ABC边AB上的高,正确;D、线段AE不是△ABC边AC上的高,故错误,故选:C.6.解:连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.7.解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.8.解:A、不在同一直线上的三点确定一个圆,故错误;B、能够完全重合的两条弧是等弧,故错误;C、经过圆内除圆心外的一点有且只有一条直线,故错误;D、半圆是弧,正确,故选:D.9.解:连接OA.∵直径CD⊥AB,AB=8,∴AM=BM=AB=4,在Rt△AOM中,OA=5,AM=4,根据勾股定理得:OM==3,则CM=OC﹣OM=5﹣3=2,故选:B.10.解:由题意,观察图形可知a<﹣1,a>5,故选:D.二.填空题11.解:连接OA,如图,∵CE=3cm,DE=7cm,∴CD=10cm,∴OC=OA=5cm,OE=2cm,∵AB⊥CD,∴AE=BE,在Rt△AOE中,AE==(cm),∴AB=2AE=2(cm).故答案为2.12.解:阴影部分的面积应等于=圆=π(4÷2)2=πc m2.13.解:∵OA=OB,而∠AOB=60°,∴△OAB为等边三角形,∴AB=OA=4cm.故答案为4.14.解:∵CA==5>4,∴点,C在⊙A外,∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内,故答案为:C.15.解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OF⊥AB,交AB于点F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∴F、E分别为AB、CD的中点,∴AF=BF=AB=4,CE=DE=CD=3,在Rt△COE中,∵OC=5,CE=3,∴OE==4,在Rt△AOF中,OA=5,AF=4,∴OF==3,∴EF=OE﹣OF=4﹣3=1;当两条弦位于圆心O两侧时,如图2所示,同理可得EF=4+3=7,综上,弦AB与CD的距离为7或1.故答案为:7或1.16.解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)17.解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r寸,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.18.解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.19.解:∵在⊙O中,,∴AC=AB=3,故答案为:320.解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.三.解答题21.解:如图,连接OC;∵直径AB=10,BE=2,∴OE=5﹣2=3,OC=5;∵弦CD⊥AB,∴CE=DE;由勾股定理得:CE==4,∴CD=2CE=8.22.解:AC与BD相等.理由如下:连接OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴=,∴AC=BD.23.解:∵AB、CD为⊙O中两条直径,∴OA=OB,OC=OD,∵CE=DF,∴OE=OF,在△AOF和△BOE中,,∴△AOF≌△BOE(SAS),∴AF=BE.24.解:∵在△ABC中,∠ACB=90°,∠B=25°∴∠A=90°﹣∠B=65度.∵CA=CD∴∠CDA=∠CAD=65°∴∠ACD=50°即弧AD的度数是50度.25.解:设OA交⊙O于C,连接B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.26.解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得x=13.∴⊙O的半径为13.27.证明:连接CB,∵A B为⊙O的直径,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD过O,∴点D平分.1、三人行,必有我师。

2022-2023学年苏科版九年级数学上册 第二章对称图形——圆单元测试卷含答案

2022-2023学年苏科版九年级数学上册 第二章对称图形——圆单元测试卷含答案

圆测试卷姓名: 成绩:(满分:100分 时间:90分钟)一、选择题(每小题3分,共30分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( ) A .2b a + B .2b a - C .22ba b a -+或 D .b a b a -+或 2.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A .4 B .6 C .7 D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26mB .26m πC .212mD .212m π9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.如图,长为4 cm ,宽为3 cm 的长方体木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2共走过的路径为( ) A .3.5π B .4.5π C .5π D .10π二、填空题(每小题3分,共30分)11.如图8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《圆》单元测试一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A .R B .R C .R D .6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A.20°B.50°C.110°D.80°7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.如图,四边形ABCD是⊙O 的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB =CD B.AB=CD C.AB=CD D.AB =CD9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA 的度数为()A.15°B.20°C.18°D.22°题号一二三四五总分第分11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a 的值为()A.4cm B.2cm C.2cm D .cm12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B 经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B 经过的路径为,则图中阴影部分的面积是()A .B .C .D .二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD 于点E,则EO+EB=.(用数字表示)15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,A,B,C,D是⊙O上的四点,且点B 是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC 与BD相等吗?为什么?22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.26.如图,AB为⊙O直径,OE⊥BC垂足为E,AB⊥CD垂足为F.(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.27.如图,AB是⊙O的直径,点C 为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.参考答案与试题解析一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.12【分析】根据圆中最长的弦为直径求解.【解答】解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.【点评】考查了圆的认识,在本题中,圆的弦长的取值范围0<L≤10.2.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【点评】本题主要考查圆的认识,解题的关键是掌握圆的对称性.3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°【分析】根据圆的半径相等,可得等腰三角形;根据三角形的外角的性质,可得关于∠E 的方程,根据解方程,可得答案.【解答】解:如图:CE=OB=CO,得∠E=∠1.由∠2是△EOC的外角,得∠2=∠E+∠1=2∠E.由OC=OD,得∠D=∠2=2∠E.由∠3是三角形△ODE的外角,得∠3=E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:D.【点评】本题考查了圆的认识,利用圆的半径相等得出等腰三角形是解题关键,又利用了三角形外角的性质.4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.【点评】注意理解直径和弦之间的关系.5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.【分析】根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质即可得到结论BC=OB=R,【解答】解:∵∠A=45°,∴∠BOC=90°,∵半径为R,∴OB=OC=R,∴BC=OB=R,故选:A.【点评】此题考查了三角形的外接圆与外心,圆周角定理、勾股定理,等腰直角三角形的性质,熟练正确圆周角定理是解决本题的关键.6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°【分析】求出∠BCD即可解决问题.【解答】解:∵∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵CB=CD,∴∠B=∠CDB=65°,∴∠BCD=180°﹣65°﹣65°=50°,∴∠DCE=90°﹣50°=40°,故选:C.【点评】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,四边形ABCD是⊙O的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB=CD B.AB=CD C.AB=CD D.AB=CD 【分析】如图设AC交BD于K.首先证明△CBK的Rt△,∠BCK=30°,推出KC=BK,再利用相似三角形的性质解决问题即可.【解答】解:如图设AC交BD于K.∵=,∴∠ACD=∠BDC=∠BAC=45°,∴∠DKC=90°,∵∠BAC=∠DCK=45°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=105°,∴∠DCB=75°,∠ACB=30°,∵∠CKB=90°,∴CK=BK,∵∠KAB=∠KDC,∠AKB=∠DKC,∴△AKB∽△DKC,∴=,∴AB=AB,故选:B.【点评】本题考查圆内接四边形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.【分析】由垂径定理可得出CD=2CE,∠CEO=90°,由∠A=22.5°,利用圆周角定理可求出∠COE=45°,进而可得出△CEO为等腰直角三角形,再利用等腰直角三角形的性质及OC=3可求出CE的长(或通过解直角三角形求出CE的长),结合CD=2CE 可求出CD的长.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CD=2CE,∠CEO=90°,又∵∠COE=2∠A=45°,∴△CEO为等腰直角三角形,∴CE=OC=,∴CD=2CE=3.故选:B.【点评】本题考查了圆周角定理、垂径定理以及等腰直角三角形,利用等腰直角三角形的性质求出CE的长是解题的关键.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA的度数为()A.15°B.20°C.18°D.22°【分析】连接OA.根据等腰三角形的性质得到∠OBA=∠OAB,由三角形的外角的性质得到∠DOA=2∠B,设∠DBA=α,根据三角形的没机会即可得到结论.【解答】解:连接OA.∵OB=OA,∴∠OBA=∠OAB,∴∠DOA=2∠B,∵∠BDA=3∠DBA,∴设∠DBA=α,∴∠DOA=2α,∠ADB=3α,∵AD是⊙的切线,∴∠OAD=90°.∴2α+3α=90°,∴α=18°.∴∠DBA=18°,故选:C.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOC和∠OCD的度数是解题的关键.11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a的值为()A.4cm B.2cm C.2cm D.cm【分析】由题意可知△ABC是等腰直角三角形,AB=4,AC=BC=a.利用勾股定理列出方程,解方程即可得出结果.【解答】解:如图,由题意可知:△ABC是等腰直角三角形,AB=4,AC=BC=a.则有:a2+a2=42,解得:a=2或﹣2(舍去),故选:C.【点评】本题考查正多边形与圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B经过的路径为,则图中阴影部分的面积是()A.B.C.D.【分析】根据S阴=S△ACB+S扇形CBE﹣S扇形ABF计算即可.【解答】解:S阴=S△ACB+S扇形CBE﹣S扇形ABF=•1•+﹣=+,故选:A.【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=70°.【分析】由∠AOB=40°,OA=OB知∠OAB=∠OBA=,代入计算可得.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.【点评】本题主要考查圆的基本性质,解题的关键是掌握圆的所有半径都相等及等腰三角形的性质.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=2.(用数字表示)【分析】根据圆的周长公式得到OD=2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O的周长为4π,∴OD=2,∵OC=OD,∴∠C=∠D,∵BE∥OC,∴∠EBD=∠C,∴∠EBD=∠D,∴BE=DE,∴EO+EB=OD=2,故答案为:2.【点评】本题考查了圆的认识,圆周长公式,平行线的性质,等腰三角形的性质,熟练掌握等边三角形的性质是解题的关键.15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为6.【分析】根据垂径定理得出AD=CD,再证△ADO≌△OFE,推出OF=AD=1,即可求出答案.【解答】解:AB是半圆O的直径,AB=12,∴OB=OA=6,∵BF=3,∴OF=OB﹣BF=3,∵OD⊥AC,∴AD=CD,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴AD=OF=1,∴AC=2AD=6;故答案为:6.【点评】本题考查了垂径定理、全等三角形的性质和判定、平行线的性质等知识;熟练掌握垂径定理,证明三角形全等是解题的关键.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=6cm.【分析】连接OA,根据已知条件得到CD是⊙O的直径,根据垂径定理得到AE=BE,OE=3,OA=6,由勾股定理得到AE==3,于是得到结论.【解答】解:连接OA,∵⊙O的半径为6cm,CE+DE=12cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE==3,∴AB=2AE=6,故答案为:6cm.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.18.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是2﹣.【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【解答】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【点评】本题考查了正多边形和圆、垂径定理、正八边形的性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正八边形的性质,证明△ONF和△ENM 是等腰直角三角形是解题的关键.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.【分析】连接OA,作OD⊥AB于点D,利用三角函数即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=6,∠OAD=∠BAC=30°,则AD=OA•cos30°=3.则AB=2AD=6,则扇形的弧长是:=2π,设底面圆的半径是r,则2π×1=2π,解得:r=.故答案为:.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.【分析】连接AO,交BC于点D,连接BO,由垂径可求AO⊥BC,BD=CD,即可求BD=2,由勾股定理可求AD的长,圆的半径.【解答】解:如图,连接AO,交BC于点D,连接BO∵AB=AC,∴又AO是半径,∴AO⊥BC,BD=CD∵,∴∴在Rt△ABD中,∠ADB=90°,∴BD2+AD2=AB2又∵AB=4,∴AD=2设半径为r.在Rt△BDO中,∵BD2+DO2=BO2∴∴r=4∴⊙O的半径为4.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,勾股定理,熟练运用勾股定理求线段的长是本题的关键.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为50°,∠A的度数为25°;(2)求证:∠ADC=2∠DAB.【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【解答】(1)解:连接OD.∵=,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A =∠C =∠ADO =∠CDO ,∵∠ADC =∠AOC =50°,∴∠A =∠ADO =∠ADC =25°,故答案为50°,25°.(2)证明:∵△AOD ≌△COD (SSS ),∴∠A =∠C ,∵∠A =∠ODA ,∠C =∠ODC ,∴∠A =∠C =∠ADO =∠CDO ,∴∠ADC =2∠DAB .【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.如图,AB 为⊙O 直径,OE ⊥BC 垂足为E ,AB ⊥CD 垂足为F .(1)求证:AD =2OE ;(2)若∠ABC =30°,⊙O 的半径为2,求两阴影部分面积的和.【分析】(1)证明:连接AC ,因为AB ⊥CD ,所以,AC =BD ,又OE ⊥BC ,则E 为BC 的中点,OE =AC ,OE =AD ,即AD =2OE ;(2)S 半圆=π•OB 2==2π,S △ABC =AC •BC ==2,S 阴影=S 半圆﹣S △ABC =2π﹣2.【解答】解:(1)证明:连接AC ,∵AB ⊥CD ,∴,∴AC =BD ,∵OE⊥BC,∴E为BC的中点,∵O为AB的中点,∴OE为△ABC的中位线,∴OE=AC,∴OE=AD,即AD=2OE;(2)S半圆=π•OB2==2π,∵AB为⊙O直径,∴∠ACB=90°,∵∠ABC=30°,AB=4,∴AC=AB=,BC=,S△ABC=AC•BC==2,∵AB⊥CD,∴拱形AD的面积=弓形AC的面积,∴S阴影=S半圆﹣S△ABC=2π﹣2.【点评】本题是圆的综合题,熟练运用垂径定理、特殊直角三角形的性质以及扇形面积公式是解题的关键.27.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。

新苏科版九年级数学上册第2章 对称图形—圆 自测卷

新苏科版九年级数学上册第2章 对称图形—圆 自测卷

y x OPCBA (第7题)新苏科版九年级数学上册第2章 对称图形—圆 自测卷班级 姓名一、选择题(本题共40分,每题4分)1、⊙O 的半径为5,圆心O 的坐标为( 0,0 ) ,点P 的坐标为 ( 4 , 2 ) 则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .点P 在⊙O 上或⊙O 外 2.下列命题正确的个数有( )①等弧所对的圆周角相等; ②相等的圆周角所对的弧相等; ③圆中两条平行弦所夹的弧相等; ④三点确定一个圆; ⑤在同圆或等圆中,同弦或等弦所对的圆周角相等. A .2B .3C .4D .53.如图,C 是以AB 为直径的⊙O 上一点,已知AB =10,BC =6,则圆心O 到弦BC 的距离是 ( ) A .3 B .4 C .5 D .2.5第5题图4.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为 ( )A .36°B .46°C .27°D .63°5.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是 ( )A .30°B .35°C .45°D .60°6.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 绕AC 所在的直线旋转一周得到一个旋转体,则该旋转体的侧面积为 ( )A .12πB .15πC .30πD .60πBA第3题图 Ol 2l 1NOMBA(第9题)7.如图,经过原点的⊙P 与两坐标轴分别交于点A (23,0)和点B (0,2), C 是优弧OAB ⌒ 上的任意一点(不与点O 、B 重合),则∠BCO 的值为( ) A .45° B .60° C .25°D .30°8.若将直尺的0cm 刻度线与半径为5cm 的量角器的0º线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图),则直尺上的10cm 刻度线对应量角器上的度数约为( ) A .90ºB .115ºC .125ºD .180º9如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B . 点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移. 若⊙O 的半径为1,∠AMN =60°,则下列结论不正确...的是( ) A. MN =433B. 当MN 与⊙O 相切时,AM =3C. l 1和l 2的距离为2D. 当∠MON =90°时,MN 与⊙O 相切 10.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为( ) A .32B .1C .3D .332二、填空题(本题共40分,每题5分)11.如图,半圆O 是一个量角器,AOB ∆为一纸片,AB 交半圆于点D ,OB 交半圆于点C ,若点C 、D 、A 在量角器上对应读数分别为︒︒︒160,70,45,则A ∠的度数为 .12.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =2,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好 与⊙O 相切于点C ,则OC = .13、正六边形的边长为10 cm ,它的边心距等于________cm .14.用半径为30cm ,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为 cm .15如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为DCB AO(第11题)NM CBA(第16题)16.一副量角器与一块含30°锐角的三角板如图所示放置,三角板的顶点C 恰好落在量角器的直径MN 上,顶点A ,B 恰好落在量角器的圆弧上,且AB ∥MN . 若AB =8,则量角器的直径MN = .17.如图将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD =5,DB =7,则BC 的长是 . 18.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为三、解答题:19.如图,四边形ABCD 内接于⊙O ,并且AD 是⊙O 的直径,C 是弧BD 的中点,AB 和DC 的延长线交于⊙O 外一点E .求证:BC =EC .20、在直径为20cm 的圆中,有一弦长为16cm ,求它所对的弓形的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章对称图形-圆单元检测试题
(满分120分;时间:120分钟)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
题号一二三总分
得分
一、选择题(本题共计10 小题,每题3 分,共计30分,)
1. 下列命题:(1)半圆是中心对称图形;(2)相等的圆心角所对的弧相等;(3)平分弦的直径垂直于弦;(4)圆内两条非直径的相交弦不能互相平分,其中正确的有()
A.3个
B.2个
C.1个
D.0个
2. 如图,已知PA,PB分别切⊙O于点A、B,∠P=60∘,PA=8,那么弦AB的长是
()
A.4
B.8
C.4√3
D.8√3
3. 在Rt△ABC中,∠C=Rt∠,AC=6,BC=8,以点C为圆心,以5为半径画圆,则线
段AB的中点D与⊙C的位置关系为()
A.点D在⊙C内
B.点D在⊙C上
C.点D在⊙C外
D.不能确定
4. 如图,ABCD是⊙O的内接四边形,且∠ABC=115∘,那么∠AOC等于()
A.115∘
B.120∘
C.130∘
D.135∘
5. 如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于()
A.3
B.4
C.6
D.8
6. 如图,AB是⊙O的直径,CD是弦,CD⊥AB,垂足为E,则下列结论不一定成立的是
()
A.CE=DE
B.OE=BE
C.BĈ=BD̂
D.AĈ=AD̂
7. 1996年版人民币一角硬币正面图案中有一个正九边形,如果这个正九边形的半径是R,那么它的边长是()
A.R sin20∘
B.R sin40∘
C.2R sin20∘
D.2R sin40∘
8. 如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()
A.3π
B.3
C.6π
D.6
9. 一根水平放置的圆柱形输水管道的横截面如图所示,其中有水部分水面宽0.4米,最
深处水深0.1米,则此输水管道的直径等于()
A.0.2米
B.0.25米
C.0.4米
D.0.5米
10. 如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15厘米,则线段GH的长为()
A.√5厘米
B.5√3厘米
C.3√5厘米
D.10√3厘米
二、填空题(本题共计10 小题,每题3 分,共计30分,)
11. 将一个圆分成1:2:3三部分,每一部分的圆心角的度数分别是________.
12. 下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是________(填序号).
13. 如图,已知正五边形的边长为2cm,以它的两个顶点为圆心,边长为半径画弧,则所得到的两条弧的长度之和为________cm(结果保留π).
14. 如图,边长为1的正六边形ABCDEF内接于⊙O,则图中阴影部分图形的面积是
________(结果保留π)
15. 如图是4×4正方形网格,每个小正方形的边长为1,请在网格中确定BĈ所在外接圆
̂所对的圆心角度是________.
的圆心P的位置,那么BC
16. 如图所示,AB,AC与⊙O相切于点B,C,∠A=50∘,点P是圆上异于B,C的一动点,则∠BPC的度数是________.
17. 如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40∘,直径CD // AB,连接AC,则∠BAC=________度.
18. 如图,点A、B、C在⊙O上,∠C=115∘,则
∠AOB=________.
19. 如图,将一块含30∘角的直角三角形和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的周长为________.(结果保留π)
20. 如图,AB是⊙O的直径,CD切O于D,AC⊥D,垂足为C,已知,AB=4,BAC=110∘,则劣弧AD的长为________.
三、解答题(本题共计6 小题,共计60分,)
21. 在△ABC中,∠BCA=90∘,∠B=30∘,AB=5cm,CD为斜边AB的中线,以点D为
圆心,DC长为半径画⊙D,试说明点A、B、C与⊙D的位置关系.
22. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC
平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=4,⊙O的直径为10,求BD的长度.
23. 已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE与⊙O的位置关系,并证明你的结论.
24. 如图,等腰△ABC的顶角∠A=36∘.⊙O和底边BC相切于BC的中点D,并与两腰相交于E、F、G、H四点,其中点G、F分别是两腰AB、AC的中点.求证:五边形DEFGH
是正五边形.
25. 如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥
CD.
(1)求证:CD是⊙O的切线;
(2)若AD=1,OA=2,求CD的值.
26. 已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC= 30∘.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.。

相关文档
最新文档