运筹学单纯形法计算步骤
运筹学单纯形法
![运筹学单纯形法](https://img.taocdn.com/s3/m/03398cc42cc58bd63186bd57.png)
只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。
运筹学课件 单纯形法的计算步骤
![运筹学课件 单纯形法的计算步骤](https://img.taocdn.com/s3/m/3112202faf45b307e871978d.png)
例8 试用两阶段法求解线性规划问题
min z =-3x1+x2+x3
x1 2 x2 x3 11
s.t.
4 x1 2 x1
x2
2x3 3 x3 1
x1 , x2 , x3 0
0 0 -1 0 0
x2
3 5 11/5
Z0=0
Z1=15
x1
如果将x1换入基底,得 另一解,由可行域凸性 易知,有两个最优解必 有无穷多组最优解 当非基底变量的检验数 中有取零值,或检验数 中零的个数大于基变量 个数时,有无穷多解。
四、无(有)界解
max z=x1+x2 -2x1+x2 4 x1- x2 2 -3x1+x23 x1 ,x2 0
反之,若加了人工变量的问题解后最优解中仍含人工变量为 基变量,便说明原问题无可行解。例3的单纯形表格为:
Cj
3
-1
-1
0
0
-M
CB XB b
x1
x2
x3
x4
x5
x6
0 x4 1
1
-2
1
1
0
0
-M x6 13 -4
1
2
0
-1
1
-M x7 1 -2
0
[1] 0
0
0
j
3-6M M-1 3M-1 0
-M
x1 2 x2 x3 x4
11
4 2
x1 x1
x2
2
x3 x3
运筹学课件1-4单纯形法计算步骤
![运筹学课件1-4单纯形法计算步骤](https://img.taocdn.com/s3/m/22c699166c175f0e7cd13757.png)
b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题
第四节 单纯形法的计算步骤
![第四节 单纯形法的计算步骤](https://img.taocdn.com/s3/m/233acc3b580216fc700afdb8.png)
上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´
⋮
c j→ cB c1
⋮
… cm … xm …0 …⋮ 0 …1 …
⋮
…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0
单纯形法的计算步骤
![单纯形法的计算步骤](https://img.taocdn.com/s3/m/5bb35a11c5da50e2524d7ff1.png)
运筹学基础及应用
解:化标准型
max
z 2 x1 x2 0 x3 0 x4 0 x5 5 x2 x3 15 6 x 2 x x4 24 1 2 x5 5 x1 x2 x1 , , x5 0
运筹学基础及应用
表1:列初始单纯形表 (单位矩阵对应的变量为基变量)
运筹学基础及应用
单纯形表
- Z x1基变量 x 2 ... xm XB 0 1 1E 0 单位阵 ....... 0 1 1 c c 0... c 1 2 m xm xNn 非基变量 1 .... X a1m 1 ...a1n a 2 m 1N...a 2 n
非基阵 ......
在上一节单纯形法迭代原理中可 知,每一次迭代计算只要表示出当前的约 束方程组及目标函数即可。
a1m 1 xm 1 ..... a1n xn b1 x1 x a2 m 1 xm 1 ..... a2 n xn b2 2 .......... .......... .......... ..... xm amm 1 xm 1 ..... amn xn bm Z c1 x1 ... cm xm cm 1 xm 1 ... cn xn 0
3
0 1 5/4 -15/2 1*3/2 0 0 1/4 -1/2 +0*15/2 检验数<=0 1 0 -1/4 3/2
cj z j
8.5
0
0
-1/4
-1/2
最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5
cj
CB
0 0 0
2
1
0最小的值对应 0 0
运筹学单纯形法各个步骤详解
![运筹学单纯形法各个步骤详解](https://img.taocdn.com/s3/m/a069029a09a1284ac850ad02de80d4d8d05a014d.png)
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
运筹学02-单纯形法
![运筹学02-单纯形法](https://img.taocdn.com/s3/m/2d9495e6aeaad1f346933f55.png)
反之,若经过迭代,不能把人工变量都变
为非基变量,则表明原LP问题无可行解。
19
第2章
单纯形法
2.3 人工变量法
2.3.1 大M法
在原问题的目标函数中添上全部人工变量,并令其系数 都为-M,
而M是一个充分大的正数。即
max z = c1x1 + c2x2 + c3x3 + … + cnxn – M( xn+1 + xn+2 +…+ xn+m )
思路:由一个基本可行解转化为另一个基本可行解。 等价改写为 目标方程 max z max z = 3x1+5x2 z -3x1 -5x2 = 0 z -3x1 -5x2 x1 +x3 x1 +x3 = 8 2x2 +x4 2x2 +x4 = 12 s.t. s.t. 3x1+4x2 +x5 3x1 + 4x2 +x5 = 36 x1 , x2 ,x3,x4,x5 x1 , x2 ,x3,x4,x5 ≥ 0
以主列中正值元素为分母,同行右端常数为分子,求比值;
6
第2章
单纯形法
2.1 单纯形法的基本思想
(Ⅰ)
用换基运算 将X0 转化为 另一个基本 可行解 X1。
z- 3x1 -5x2 = 0 0 换基运算—— x1 +x3 = 8 ① 方程组的初等变换 目的是把主列变为 22x2 +x4 = 12 ② 单位向量:主元变 3x1 + 4x2 +x5 = 36 ③ 为1,其余变为0。 X0 = ( 0, 0, 8, 12, 36 )T z0 = 0
⑴ 当前基:m阶排列阵
运筹学第2章单纯形法
![运筹学第2章单纯形法](https://img.taocdn.com/s3/m/d045ece25ef7ba0d4a733be6.png)
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束
运筹学单纯形法例题求解过程
![运筹学单纯形法例题求解过程](https://img.taocdn.com/s3/m/9f055c5a2379168884868762caaedd3382c4b571.png)
运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。
单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。
二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。
通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。
2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。
3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。
如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。
如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。
如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。
然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。
接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。
最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。
三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。
运筹学一般单纯形法
![运筹学一般单纯形法](https://img.taocdn.com/s3/m/38cc077a02768e9951e738cf.png)
1
0 0 0 1
0
1 0 0 0
0
0 1 0 -2
3
6 2 →
Cj-Zj
0
2
0
4
x4
x2 →
8
15
3 P1
10 P2
0 P3
0 P4
θi
注
3
-1
4
5
1
0
0
1
段 1 cj-zj
cj ↓ 0 0
→
0
3
10
0
0
基
x3 x4 →
b
24 15
P1
3 -1 3
P2
4 5 10
P3
1 0 0
P4
0 1 0
θi
注
步骤4.2:判断
(1)若所有检验数均≤0时,即得到最优解和 最优值; (2)若检验数存在正值,继续下一步。
3
0 3 1 3
2
(1) 4 0 0
0
0 0 1 0
1
0 0 0 1
0
1 0 -2 -2
6
2 →
Cj-Zj
0 2 0
4
x2
→
2
0
1
0
0
1
Cj-Zj
Cj 段 ↓
→ 基
0 b
3 P1
4 P2
0 P3
0 P4
0 Qi P5 注
0
1 0 0
x3
x4 x5 → x3
6
12 2 0 2
1
3 0 3 1
2
2 (1) 4 0
用主元列对应的变量(入基变量/调入变量)代替之,进入 下一段。
运筹学单纯形法例题求解过程
![运筹学单纯形法例题求解过程](https://img.taocdn.com/s3/m/e07d4734a36925c52cc58bd63186bceb18e8ed5d.png)
运筹学单纯形法求解过程运筹学单纯形法是一种常用的线性规划问题求解方法,它通过迭代计算求解问题的最优解。
在本文中,我们将以一个例题来介绍单纯形法的求解过程。
问题描述假设有一个生产企业需要在两个工厂A和B中生产产品X和Y,企业的目标是以最小的成本满足产品的需求。
已知每个工厂每天的产量以及生产不同产品的成本如下表所示:工厂产量限制X产品成本Y产品成本A 6 5 4B 4 2 3同时,产品的需求量为:•X产品需求量为5•Y产品需求量为4现在,我们的目标是最小化生产成本。
构建线性规划模型首先,我们需要将问题转化为线性规划模型。
根据题目要求,我们可以定义以下变量:•x1:工厂A生产的X产品数量•x2:工厂A生产的Y产品数量•x3:工厂B生产的X产品数量•x4:工厂B生产的Y产品数量则我们的目标是最小化成本,即最小化目标函数:Z=5x1+4x2+2x3+3x4需要满足以下约束条件:•工厂A产量限制:x1+x2≤6•工厂B产量限制:x3+x4≤4•产品X需求量:x1+x3≥5•产品Y需求量:x2+x4≥4同时,对变量的取值有非负约束条件:x1,x2,x3,x4≥0单纯形表格接下来,我们将构建单纯形表格来进行求解。
首先,我们将目标函数和约束条件转化为等式形式,引入人工变量以使得所有约束条件均为“≤”形式。
转化后的模型如下:目标函数:Z=5x1+4x2+2x3+3x4+Mx5+Mx6约束条件:x1+x2+x5=6x3+x4+x6=4x1+x3−x7=5x2+x4−x8= 4其中,M为充分大的正数。
根据以上模型,构建初始单纯形表格如下:基变量x1x2x3x4x5x6x7x8基变量列解x5 1 1 0 0 1 0 0 0 x5 6x60 0 1 1 0 1 0 0 x6 4x7 1 0 1 0 0 0 -1 0 x7 5x80 1 0 1 0 0 0 -1 x8 4Z-5 -4 -2 -3 0 0 0 0 目标函数行0单纯形法的迭代过程根据初始单纯形表格,我们可以使用单纯形法进行迭代计算。
运筹学单纯形法ppt课件
![运筹学单纯形法ppt课件](https://img.taocdn.com/s3/m/043ec6d66294dd88d1d26b2f.png)
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
单纯形法基本原理及实例演示
![单纯形法基本原理及实例演示](https://img.taocdn.com/s3/m/36d75a54f68a6529647d27284b73f242336c31da.png)
③计算各非基变量xj的检验数j=Cj-CBPj ′,若所有j≤0,则问题已得
到最优解,停止计算,否则转入下步。
④在大于0的检验数中,若某个k所对应的系数列向量Pk≤0,则此问
题是无界解,停止计算,否则转入下步。
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基变量),再按 规则计算:=min{bi/aik| aik>0}=bl/ aik 确定xBl为换出变量。建 立新的单纯形表,此时基变量中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列向量,即 aik变为1,同列中其它元素为0,转第③ 步。
线性规划的例子
max z 4x1 3x2 2x1 2x2 1600 5x1 2.5x2 2500 x1 400 x1, x2 0
线性规划--标准化
● 引入变量:s1,s2,s3
检验系数区
Z=CBB-1b
初始单纯形表
迭代 基变 次数 量
CB
x1
x2
s1
s2
s3
50 100 0 0 0
比值
b bi ai 2
1 Zj=CBNj j cj zj
Z=CBB-1b
初始单纯形表
基
迭代 次数
变
CB
x1
X2
s1
s2 S3
量
50 100 0 0 0
比值
b bi ai 2
1 1 1 0 0 300
C向量
max z 50 100 0 0
CB
CN
x1
x2
0•
1 1 1
1 0 0
0 1 0
运筹学1-4单纯型法的计算步骤
![运筹学1-4单纯型法的计算步骤](https://img.taocdn.com/s3/m/60f58d1f336c1eb91a375de6.png)
2 X1 1 3 X2 2
Z8
1 0 -1 4/3 -1/3 0 1 2 -1/3 1/3 0 0 -1 -5/3 -1/3
从最优表可知: 该LP的
最优解是X*=(1, 2, 0, 0, 0)T 相应的目标函数最优值是Zmax=8
表格单纯形法求解步骤
第一步:将LP化为标准型,并加以整理。
引入适当的松驰变量、剩余变量和人工变量 ,使约束条件化为等式,并且约束方程组的系数 阵中有一个单位阵。
(这一步计算机可自动完成)
确定初始可行基,写出初始基本可行解
第二步:最优性检验
计算检验数,检查: 所有检验数是否≤ 0?
是——结束,写出最优解和目标函数最优值; 还有正检验数——检查相应系数列≤ 0?
是——结束,该LP无“有限最优解”! 不属于上述两种情况,转入下一步—基变换。
确定是停止迭代还是转入基变换?
0 1 0
0
0
1
0
0
0
1 c1 c2
0 a1,m1 a1,m2 0 a2,m1 a2,m2
1 a a m,m1 m,m2 cm cm1 cm2
a1,n b1
a2,n
b2
am,n bm
cn 0
-Z,x1,…,xm所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵,这时
c1, c2 , , cm 变成0,相应的增广矩
第四步:判断检验数、入基、出基变量。 …….
三、表格单纯形法:
1、 初始单纯形表的建立 (1)表格结构:
Cj 2 3 3 0 0
CB
XB
b xj
x1 x2 x3 x4 x5
j
0 X4
3
《管理运筹学》求解线性规划的单纯形法
![《管理运筹学》求解线性规划的单纯形法](https://img.taocdn.com/s3/m/86d2780848d7c1c709a14520.png)
– 基变量在目标函数中的系数为0
– 非基变量在目标函数中的系数<=0.
(注意:目标函数形式 z = 2x1 + 3x2)
– 若目标函数为方程形式:
检验数
z - 2x1 - 3x2=0,则需非基变量的系数>=0
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤1:确定移动的方向
确定进基变量
例:z = 2x1 + 3x2 – 选择 x1 ?Z的增长率=2 – 选择 x2 ?Z的增长率=3 – 3>2,选择x2!
• 进基变量的选择:
检验数的 绝对值哦
~~~
– 选择非基变量的系数最大的!
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤2:确定在何处停下 – 增加x2 的值, x1 =0
• 选择单元阵作为初始基:
1 1 1 0
A 1
2
0
1
(a1
,
a2
,
a3
,
a4
)
1 0
B
0
1
(a3
,
a4
)
令非基变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
求解线性规划的单纯形法
Q2:最优性检验
• 非最优:增加非基变量的值,可以使 得目标函数Z值增加
x1,
x2,
x3,
=1 +x4 =2 x4 ≥0
然后确定初始基本可行解
X0 = (0, 0, 1, 2)T z0 = 0
最优性检验:一切σj ≥ 0 ?
当前解 X0 非优; 须由X0 转化为另一个基本可行解 X1。 思路:让X0 中的一个非基变量进基,去替换原来的一个基变量(离基)。
运筹学单纯形法讲解
![运筹学单纯形法讲解](https://img.taocdn.com/s3/m/3497e1254b7302768e9951e79b89680203d86bd9.png)
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知 b x1 x2
b '1
A
bm'
c0m 0cn
xm xn min
— 24/6 5/1
z0
检验数
单纯形表
单纯形表结构
c j
2
CX
B
B
b
x1
c1 x1 b '1
cm xm bm'
c j
z j
z0
基可行解:
X (b1,, bm ,0,,0)
1
0C 0 0
Z c1x1 ... cm xm cm1xm1 ... cn xn 0
单纯形表
- Z x1 基x变2量..X.B xm
0 1
0 1B
基矩....阵...
0
1
1 c1 c20... cm
xm非1基.变..量.XxN n
a1m1 ...a1n
30
xx
2
3
21
00
40
30
0
xx
4
5
0
1
0
0
X 0 (0, 0,8,16,12)T
表1:列初始单纯形表
(单位矩阵对应的变量为基变量)
c j
CX
B
B
b
x x x x x 2
0 1
3
2
00
最小的值对应的行
为主行
3
4
5 min
0
x 3
8
1 21 0
4
0
x 4
16 0 4
0
0
1
—
0
x 5
12
xn min
c1 x1 b '1 Z Z0 j x j
A jm1
cm xm bm'
— 24/6 5/1
z c z
j
求j 0
有时不写
此项
检验数
m
m
令:Z0 cibi' 单纯形表 i1
Z j ciai'j
i 1
n
Z 单Z纯0 形j表m1(结c j 构 Z j )x j
00
4
0
0
3
c z
j
j
12
3 0主元化0为1
0
主列单位向量
正检验数中最大者对应的列 为主列
x5 换出
x2 换入
表2:基变换
(初等行变换,主列化为单位向量,主元为1)
c j
CX
B
B
b
x x x x x 2
0 1
3
2
0 0 最小的值对应的行 为主行
3
45 min0 Nhomakorabeax 3
2
1 0 1 0 -2
0
x 4
16 1/24
3 x2 3 0 0
c z
j
j
1/42
z 33 9
00 1
4
1主元化0为1 0
—
主列单位向量
0 x30换出
-
0 x1 换入 3/4
正检验数中最大者对应的列
X 1 (为0,主3列, 2,16, 0)T
表3:基变换
(初等行变换,主列化为单位向量,主元为1)
c j
CX
x1
x2
a1m1xm1 ..... a1n xn b1 a2m1xm1 ..... a2n xn b2 ...................................
xm amm1xm1 ..... amn xn bm
x2 xmxn min
—
A
24/6 5/1
检验数
单纯形表令:Z0
m
cibi'
i 1
m
Z j ciai'j i 1
n
单纯形表结构Z Z0 (c j Z j )x j
c j
CX
B
B
j m1
b
2令x1:1xj 2
(c
n
j0CZ
j
)
0
xm
0 检验 数
单纯形表结构 i
a
bi'
' imk
a' imk
0
bl' a'
lmk
c j
2
CX
B
B
b
x1
c1 x1 b '1
cm xm bm'
z c z
j
j0
1 0C
x2
A
0 0
xm xn min
a1,mk 主行 —
am ,mk
25求4/1l/6
检验数 mk
B
B
230 0
b
0x x x x
1
2
3
4
x5 min
2 x1
0 3
xx 42
21 8 1/20 3 20
01 0 -4 10
0-—
1
4
0
12
c z
j
j
1/40 0 -2
0
z* 2 2 313/4 13
X 2 (2,3, 0,8, 0)T
表4:最终单纯形表
c j
2
x b C X
...
......
amm1
...
m
cm1 ciai,m1 i 1
xn
a1n a2n
amn
m
cn ciain i 1
b
b1
b2
bm
m i 1
cibi
单纯形表
单纯形表结构
c j
CX
B
B
c1 x1
cm xm
c z
j
j
C 2c1 c1 2 0
令:c j j
(c j
Z
j2)
x n
b ZCB Z0XB j x j 1
c1
x1j m
1
b
'
1
cm xm bm'
1 检验 0C数 0 c j0
x2 xmxn min
a1 j
—
A
24/6
am j
5/1
z c z
j
j0
检验数 求j
单纯形表
min
a2mN1 ...a2n ...非... 基阵
a mm 1 ...a mn cm1 N cn
b
b1
b2
bm 0
单纯形表
-Z x1 x2... xm
0
1
0 1
.......
0
1
1 0 0 ... 0
xm1
....
a1m1
...
a2m1
第四节 单纯形法的计算步骤
单纯 为书写规范和便于计算,对单纯形法的计算设计了 形表。每一次迭代对应一张单纯形表,含初始基可行解的单纯 形表称为初始单纯形表,含最优解的单纯形表称为最 终单纯形表。本节介绍用单纯形表计算线性规划问题的
步骤。
在上一单节纯单纯形形表法迭代原理中可知,每一
次迭代计算只要表示出当前的约束方程组 及目标函数即可。
B
B
x1 2x2 x3
8
s.t.
4
x1
4 x2
x4
16
x5 12
x1, x2 , x3, x4 , x5 0
表1:列初始单纯形表
(单位矩阵对应的变量为基变量)
c j
CX
B
B
b
0
x 3
8
0
x 4
16
0 x 12 5
c z
j
j
z0
2
0x 1
1 04 00 12 0
不妨设此为
主列
单纯形表
单纯形表结构
c j
2
CX
B
B
b
x1
c1 x1 b '1
cm xm bm'
z c z
j
j0
主元
1 0C
x2
A
0 0
xm xn min
a1,mk
—
a l,m k
am ,mk
254/1l/6
检验数 mk
用单纯形表求解例1
max z 2x1 3x2 0x3 0x4 0x5