单片机的太阳跟踪系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:基于MSP430的太阳跟踪系统
摘要(中英文)
基于MSP430的太阳跟踪系统
本设计基于MSP430f149芯片,制作了一个用于精确跟踪太阳收集能量的系统。系统由430单片核心、光信号采集转换、追踪太阳部分、电压采集、无线数据发送、PC机交互界面六部分组成。光信号采集转换卡感知太阳位置实现跟踪,由AD实时采集各部分电压并发送到PC上实现实时监控。
关键词:太阳跟踪、msp430
Sun tracking system based on the M SP430
T his design based on the MSP430f149 chip, made a used to accurately track the sun collect energy system. By 430 single chip system core, light signal acquisition conversion, track the sun part, voltage collection, wireless data transmission, the PC interface six parts. The light signal acquisition conversion card perception the sun position track, and the real-time data acquisition by AD each part to achieve the PC voltage and real-time monitoring.
Key words: the sun tracking 、msp430
1.引言
随着现在社会太阳能利用的普及,太阳能利用率成了一个大家普遍关注的问题。基于此,我们设计了这个可以精确跟踪太阳并可实时监控电池板电压的系统,此外为了便于分析能量利用情况,我们同时通过软件的方式将电池的数据实时的保存在文件中便于以后查看。
在设计过程中所要解决的首要问题便是使电池板实时精准对准太阳的同时尽可能地降低功耗,其次是能够将数据通过无线方式发送到PC上,并显示出相应的数据。MSP430单片机是一款超低功耗的单片机,并且内部多个AD为我们提供了极大地方便。在这个设计中我们选择了430f149这款单片机,及降低了功耗,又节约了成本。
2.系统方案
2.1总体介绍
本设计是以外部电路尽量简单,充分使用MSP430的内部设备资源的前提完成的。信号处理和AD采样部分均以430单片机内部资源为核心处理的。
其它部分分为:光信号采集转换、追踪太阳部分、无线数据发送、PC 交互显示四部分组成。总体框图如图2.1所示
2.2 AD 采样
通过430单片机内部的A0和A1两路12位的AD 实现对所要测量的电压的精确采样,以其内部2.5v 作为参考电压。其中由于电池板和电池的电压均高于2.5伏,因此采用在电池上并联电阻降低电压的方法达到所需的采样电压。
在单片机内部,将采集到的电压按公式:4095*in R ADC R R V V N V V -+--=-将其转
换为所采集到的实际的电压值。由于电池板的电压不稳定,而AD 采样速度有很快,这会导致采集的数据会产生波动,跳变很大。因此我们将连续采集的三十二个数据放进一个数组中求平均值,将平均值显示传送给PC ,乘以相应的系数便得到电池和电池板上的真正电压。
由于实行的是多通道多次转换,因此是单片机每采集两路数据共64组数据,才求平均值。
2.3 光信号采集转换
光传感器是有4路光敏电阻组成的光敏阵列,光敏电阻由于光照不同阻值不同,因此可将光信号转换成电信号,送到由一个电压比较器作为主体的模数转换卡中,将由电信号产生的模拟量转换为由十六进制组成的数字量,当转换卡输出0x0100时,既是前方光强,0x1000时,既是后方光强,0x0001时,既是左方光强,0x0010时,既是右方光强,单片机根据相应的数字量控制相应的舵机转动。
2.4 追踪太阳部分
该部分主要由两个舵机组成的二自由度云台控制太阳能电池板所对的位置。一个舵机控制电池板的左右转动,另一个电池板控制舵机的前后转动,因此两个舵机可以控制太阳能电池板实现在整个空间转动,达到精确跟踪太阳的目的。
2.5 无线数据发送
无线数据发送由430单片机内部的UART 模块和一个无线数据发送器组成。当单片机检测到光信号采集卡中发送的信号一直是0x0f0f 时,证明此时太阳能电池板是正对着太阳,因此启动单片机的AD 采样部分,当单片机判断采集够三十二个数,求平均值后,变将其付给TXBUF0,即发送缓冲器,将其发送出去。
由于单片机内部采用的是多通道多次,当共采集64个数据后,单片机发送一次。在PC 上需要分辨不同电池的数据和太阳能板的数据,因此在每次发送时,430单片机首先向电脑发送一个字符作为识别码,’a ’代表电池一的数据,’d ’代表电池二的数据,’g ’代表太阳能电池板的数据。PC 做相应的处理后便显示出对应的曲线。
AD每次转换后的数据超过了8bit,因此单片机无法一次发送完所有的数据,因此需要多次发送。将数据按如下方式:
待发送变量1=%256
V;
in
待发送变量2=/256
V;
in
经过两次数学运算:取模和取余运算后,便可将数据发送到PC上。
通过把一个数据转换成三等份将数据发送出去,既保证了数据的简洁准确性,又保证了数据的可分辨性。
2.6PC交互显示
PC上的交互显示界面是用labview做的一个较直观的观察窗口。难点一就是在于将430单片机发送的字符型数据转换成相应的十进制数据,并用图标曲线的方式表现出来,难点二在于识别不同的数据,以显示在不同的电池以及太阳能电池板对应的曲线上。
由于在单片机内部发送数据之前发送了一个识别码,因此PC机可以较轻松的识别出相应的数据,每次取三个数据,第一个数据用于分辨数据类型,通过一下方式:
(数据1*256+数据2)
便可得到一个完整的电压数据,最后再将数据发送到Labview内部自带的曲线图上就可可以满足显示不同曲线的要求。
3.系统硬件设计
系统硬件主要由光信号采集转换、二自由度云台、电池转换电路、太阳能充电管理、无线数据传送、5V稳压电源六部分组成。
3.1光信号采集转换
光信号采集转换部分主要部分是光敏电阻组成的光敏阵列和以芯片LM339组成的电压比较器。
光敏阵列共四路,分别感知前后左右的光强,并将光强转变为为电压的模拟量。光敏电阻的另一个优点是在通常情况下的电阻是10K左右,因此所消耗的功率极少,满足低功耗的要求。
将微弱的光信号转变为电信号的数字量需要极高的灵敏度,并且在这个过程中消耗的电能也不能过高,而LM339是一款高精度、低失调、低功耗、拥有四路独立比较功能的集成专用电压比较器芯片,与我们的要求非常符合。在如下电路图3.1中,我们又巧妙地的分别将前、后、左、右两路的反相输入端与后、前、右、左的同相输入段比较,与传统的电压比较器的连接方法相比,具有更加准确。灵敏度更高不、易于调节、电路简单、功耗低等优点,并且充分利用了一个电压比较器的四路比较单元,因此最后的比较效果更加出色。