武汉理工大学whut线性代数考试试题及其参考答案(七)

合集下载

线性代数试题线性代数试卷及答案大全(173页大合集)

线性代数试题线性代数试卷及答案大全(173页大合集)
由 ,得 的特征值 ,
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,

故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r

2017版 华工《线性代数与概率统计》(工程数学)随堂练习参考答案

2017版 华工《线性代数与概率统计》(工程数学)随堂练习参考答案

《线性代数与概率统计》随堂练习参考答案1.计算?()A.B.C.D.参考答案:A2.行列式?A.3B.4C.5D.6参考答案:B3.利用行列式定义计算n阶行列式:=?( ) A.B.C.D.参考答案:C4.用行列式的定义计算行列式中展开式,的系数。

A.1, 4B.1,-4C.-1,4D.-1,-4参考答案:B5.计算行列式=?()A.-8B.-7C.-6D.-5参考答案:B6.计算行列式=?()A.130B.140C.150D.160参考答案:D7.四阶行列式的值等于()A.B.C.D.参考答案:D8.行列式=?()A.B.C.D.参考答案:B9.已知,则?A.6mB.-6mC.12mD.-12m参考答案:A10.设=,则?A.15|A|B.16|A|C.17|A|D.18|A|参考答案:D21.(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2.参考答案:C11.设矩阵,求=?A.-1B.0C.1D.2参考答案:B12.计算行列式=?A.1500B.0C.1800D.1200参考答案:C13.齐次线性方程组有非零解,则=?()A.-1B.0C.1D.2参考答案:C14.齐次线性方程组有非零解的条件是=?()A.1或-3B.1或3C.-1或3D.-1或-3参考答案:A16.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?A.无解;B.唯一解;C.一个零解和一个非零解;D.无穷多个解参考答案:B17.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解.参考答案:A15.齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

A.零零B.零非零C.非零零D.非零非零参考答案:B16.设,,求=?()A.B.C.D.参考答案:D17.设矩阵,,为实数,且已知,则的取值分别为?()A.1,-1,3B.-1,1,3C.1,-1,-3D.-1,1,-3参考答案:A18.设, 满足, 求=?()A.B.C.D.参考答案:C19.设,,求=?()A.B.C.D.参考答案:D20.如果,则分别为?()A.0,3B.0,-3C.1, 3D.1,-3参考答案:B21.设,矩阵,定义,则=?()A.0B.C.D.参考答案:B26.(单选题) 设,n>1,且n为正整数,则=?A.0 ;B.-1 ;C.1 ;D..参考答案:D22.设,n为正整数,则=?()A.0B.-1C.1D.参考答案:A23.设为n阶对称矩阵,则下面结论中不正确的是()A.为对称矩阵B.对任意的为对称矩阵C.为对称矩阵D.若可换,则为对称矩阵参考答案:C24.设为m阶方阵,为n阶方阵,且,,,则=?()A.B.C.D.参考答案:D25.下列矩阵中,不是初等矩阵的是:()A. B.C. D.参考答案:C26.设,求=?()A.B.C.D.参考答案:D27.设,求矩阵=?()A. B.C. D.参考答案:B28.设均为n阶矩阵,则必有()A.B.C.D.参考答案:C29.设均为n阶矩阵,则下列结论中不正确的是()A.若,则都可逆B.若,且可逆,则C.若,且可逆,则D.若,且,则参考答案:D30.设均为n阶可逆矩阵,则下列结论中不正确的是()A.B.C.(k为正整数)D.(k为正整数)参考答案:B31.利用初等变化,求的逆=?()A. B.C. D.参考答案:D32.设,则=?( )A. B.C. D.参考答案:B33.设,是其伴随矩阵,则=?()A. B.C. D.参考答案:A34.设n阶矩阵可逆,且,则=?()A. B.C. D.参考答案:A35.阶行列式中元素的代数余子式与余子式之间的关系是。

武汉理工大学线性代数试卷期末考试卷子3

武汉理工大学线性代数试卷期末考试卷子3

武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠; 4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)110001111110010002001200020001001i in i n i n r r r r n nn n n D nnn n n n n ==+++---=-------…..…(4分)()(1)(2)(1)112200001(1)1(1)(1)()(1)1222000000n n n n n n nnn n n n n n n n n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分) 2、记 121624,1713A A ---⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以17600110000370012A --⎛⎫⎪ ⎪= ⎪-⎪-⎝⎭-。

………………………...(9分)3、由题意有010100001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫ ⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分)于是 010100100011001001A C ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以011100001X ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~1011012200220000-⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭~100001040011000⎛⎫⎪ ⎪⎪- ⎪⎝⎭………...(4分)则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+ 四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t t t t t t t t t ⎛⎫-⎪--+-- ⎪ ⎪+-++⎝⎭~22321101100(1)(2)1t t t t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分)当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭ ()(),32R A b R A =≠=,所以方程组无解。

武汉理工大学考试试题

武汉理工大学考试试题

武汉理工大学考试试题(A 卷)课程名称:高等数学A (下) 专业班级:2009级理工科专业题号 一 二 三 四 五 六 七 总分 题分151524161686100备注:学生不得在试题纸上答题(含填空题、选择题等客观题)应按顺序答在答题纸上。

一、单项选择题(35⨯=15分)1. 设线性无关的函数123(),(),()y x y x y x 均是二阶非齐次线性微分方程()()()y p x y q x y f x '''++=的解,12,c c 是任意常数,则该方程的通解是( ).A .1122123(1)y c y c y c c y =++--B .11223y c y c y y =++C .1122123(1)y c y c y c c y =+---D .1122123()y c y c y c c y =+-+ 2. 曲线23,,x t y t z t ===在点(1,1,1)处的法平面方程为( ).A .236x y z +-=B .236x y z ++=C .236x y z --=D .236x y z -+=3.设有三元方程ln 1xz xy z y e -+=,根据隐函数存在定理,存在点()0,1,1的一个邻域,在该邻域内该方程只能确定( ).A .一个具有连续偏导数的隐函数(,)z z x y =B .两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y =C .两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =D .两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y =4. 设(,)f x y 为连续函数,则二次积分140(cos ,sin )d f r r rdr πθθθ⎰⎰=( ).A .2212(,)x xdx f x y dy -⎰⎰B .2212(,)x dx f x y dy -⎰⎰C .2212(,)y dy f x y dx -⎰⎰D .2212(,)y ydy f x y dx -⎰⎰5. 级数31sin n n n α∞=∑的收敛情况是( ). A .绝对收敛 B .收敛性与α有关 C .发散 D .条件收敛二、填空题(35⨯=15分)1. 设向量2,m a b n ka b =+=+,其中1,2,a b a b ==⊥,则k =时,以,m n 为邻边的平行四边形面积为6。

武汉理工大学 2014-2015第一学期现代试卷A答案

武汉理工大学 2014-2015第一学期现代试卷A答案
方式二:
向量组1,2 ,3 线性相关,知 R(2 ,3,1) R(1,2,3) 3 -----------1 分 向量组2 ,3,4 线性无关,知 R(2 ,3,4 )=3.
由整体无关则部分无关,知2 ,3 也线性无关。---------------------2 分
而 R(2 ,3,1) R(2 ,3) 2 ,综上知
--------------6 分
A卷3
A卷4
1 1
1 2 1, 3 2 为特征值
1 1
当 1 1解方程组 (A E)x 0 ,得正交的的特征向量为 p1 1 , p2 1
0
2
1

3
2
解方程组 ( A
2E)x
0

p3
1
为对应特征向量
1
故所求正交矩阵 P 为
1
1
1
2
P(
p1
,
p2
,
p3
) 1
p1 p2 p3 2


31
11
… …
4 31 23 若 1,4 是最大无关组,则3 2 1 2 4 ,2 2 1 2 4

4. k=-2.


线
… … … …
A卷1
四、(本题 15 分)
(1)a=-8,b≠1,无解;--------------6 分
(2)a≠-8,唯一解;--------------8 分
,3
线性表示。-----------------6

第二部分还可以用反证法:假设即4 能由1,2 ,3 线性表示,由于1 能由2 ,3 线性表示,
且表示法唯一,故4 能由2 ,3 线性表示,------------5 分

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

线性代数试题(附参考答案)

线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。

二、 计算行列式的值。

(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。

(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。

(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。

六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。

(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。

(15分)《线性代数》课程试题参考答案一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。

武汉理工大学whut线性代数考试试题及其参考答案

武汉理工大学whut线性代数考试试题及其参考答案

标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n x n n D x x n n x x n n n n-+-++⎡⎤==+⎢⎥⎣⎦+-+--L L L L MMLM M M M L MM L L LL………………(4分)(1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)AE X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分)3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫==⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭…………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以121010*******031A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭。

…………………………………………………………………(8分)4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪- ⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~112032001300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。

华理线代答案7 khdaw

华理线代答案7 khdaw

再由
A
+
I
=
⎢ ⎢
5
−2
3
⎥ ⎥
~
⎢⎢0
⎢⎣−1 0 −1⎥⎦ ⎢⎣0
0 1⎤ 1 1⎥⎥ , 0 0⎥⎦
知方程组
( A + I )x = 0 只有一个线性无关的特征向量, 即三阶矩阵 A 没有三
个线性无关的特征向量, 故 A 不能相似于任何对角矩阵.
⎡ 4 6 0⎤ 3. 设矩阵 A = ⎢⎢− 3 − 5 0⎥⎥ . (1)证明 A 可对角化; (2)计算 An .
网 f (1) = −4 , f (−1) = −6 , f (2) = −12 .
案 ⎡1 2 3⎤
答 3.设矩阵
A
=
⎢ ⎢
x
y
z
⎥ ⎥
,
且 A 的特征值为1,2,3 ,
求 x, y, z .
后⎢⎣0 0 1⎥⎦ 课 1−λ 2
解: | A − λI |= x y − λ
3 z = (1 − λ)[(1 − λ)( y − λ) − 2x] = 0 ,
⎡1 0 0⎤ 特征向量, 从而 A 相似于对角阵 Λ = ⎢⎢0 2 0⎥⎥ .
⎢⎣0 0 3⎥⎦
⎡− 2 − λ
om (2)
A

λI
=
⎢ ⎢
1
c ⎢⎣ 1
0 2−λ
0
−4 ⎤
1
⎥ ⎥
,
3 − λ⎥⎦
w. 由 A − λI = −(2 − λ)2 (λ + 1) = 0 得 A 的特征值 λ1 = λ2 = 2, λ3 = −1.
所以得 a = −2 .
om ⎡2 1 1⎤ .c 5.设向量 α = [1, k,1]T 是矩阵 A = ⎢⎢1 2 1⎥⎥ 的逆矩阵 A−1 的特征向

【免费下载】第一学期线性代数试卷及标答

【免费下载】第一学期线性代数试卷及标答

武汉理工大学考试试题纸(A 卷)课程名称 线 性 代 数专业班级 全校07级本科题号一二三四五六七八九十总分题分151532141410100 备注: 学生不得在试题纸上答题(含填空题、选择题等客观题) 一、填空题(每小题3分,共15分)1、已知,B 均为三阶方阵,且=1,=-3,则=____________。

A AB 1T A B -2、设阶方阵的个列向量两两正交且均为单位向量,则= 。

n A n T A A 3、如果三阶方阵相似于对角矩阵,则行列式= 。

A )2,1,1(-=Λdiag 2A +E 4、设向量组,,,当满足 时,向量组1(1,1,1)T α=2(1,2,3)T α=3(1,3,)T t α=t 123,,ααα可以构成空间的一组基。

3R 5、已知实二次型,经过某个正交变换后,可以化成标222123121323()4()f a x x x x x x x x x =+++++准形,则= 。

216f y =a 二、单项选择题(每小题3分,共15分)1、设均为三维列向量,且,那么= 。

321,,ααα1321=ααα32122αααα-(A) 0 (B) 1 (C) (D) 不能确定1-2、设为阶方阵,且,则下列选项中错误的是___________。

A n 2A =0(A) 可逆 (B) 可逆 (C) 可逆 (D) 可逆 A A E +A E -2A E +3、设向量组的秩为2,则 ___________。

(,3,1),(1,2,1),(2,3,1)T T T a a =(A) 1 (B) 2 (C) 0 (D) -14、设是阶方阵,如果的秩,且的伴随矩阵,则齐次线性方程组A n (3)n ≥A ()R A n <A *0A ≠的基础解系中所含解向量的个数为___________。

0Ax =(A) (B) (C) 1 (D) 0n 1n -5、设阶方阵与相似,则下列说法中正确的是 ___________。

武汉理工大学第一学期期末考试线性代数与概率统计(新)

武汉理工大学第一学期期末考试线性代数与概率统计(新)

一、单选( 每题参考分值2.5分)1、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法错误的是()A. 是的无偏估计B. 是的矩估计C. 是的矩估计D. 是的矩估计错误:【D】2、设随机变量的分布函数为,则()A.B.C.D.错误:【B】3、A.-1B. 1C.D.错误:【B】4、在下列结果中,构成概率分布的是()A.B.C.D.错误:【B】5、A.B.C.D.错误:【D】6、设是的特征值且,则是()特征值A.B.C.D.错误:【D】7、已知,则为()A.B.C.D.错误:【C】8、设三阶方阵的特征值为,对应的特征向量为,若,则A.B.C.D.错误:【D】9、已知向量,若可由线性表出那么()A. ,B. ,C. ,D. ,错误:【A】10、实二次型,则负惯性指数为()A.B.C.D.错误:【B】11、与的相关系数,表示与()A. 相互独立B. 不线性相关C. 存在常数使D. 满足错误:【B】12、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A. 0.2B. 0.25C. 1D. 4错误:【B】13、设是来自正态总体的样本,则服从的分布为()A.B.C.D.错误:【A】14、若是矩阵,是的导出组,则()A. 若有无穷多个解,则仅有零解B. 仅有零解,则有唯一解C. 若有无穷多个解,则有非零解D. 有非零解,则有无穷多个解错误:【C】15、以下结论中不正确的是()A. 若存在可逆矩阵,使,则是正定矩阵B. 二次型是正定二次型C. 元实二次型正定的充分必要条件是的正惯性指数为D. 阶实对称矩阵正定的充分必要条件是的特征值全为正数错误:【B】16、设随机事件A与B相互独立,A发生B不发生的概率与B发生A不发生的概率相等,且,则()B.C.D.错误:【B】17、对于正态分布,抽取容量为10的样本,算得样本均值,样本方差,给定显著水平,检验假设.则正确的方法和结论是()A. 用检验法,查临界值表知,拒绝B. 用检验法,查临界值表知,拒绝C. 用检验法,查临界值表知,拒绝D. 用检验法,查临界值表知,拒绝错误:【C】18、设随机变量和的密度函数分别为若与相互独立,则()B.C.D.错误:【D】19、设二维随机变量,则()A.B. 3C. 18D. 36错误:【B】20、A.B.C.D.错误:【B】21、已知为阶方阵,以下说法错误的是()A.B. 的全部特征向量为的全部解C. 若有个互不相同的特征值,则必有个线性无关的特征向量D. 若可逆,而矩阵的属于特征值的特征向量也是矩阵属于特征值的特征向量错误:【B】22、设离散的随机变量X的分布为则()A.B. 任意正实数C.D.错误:【C】23、称是来自总体的一个简单随机样本(简称样本),即满足()A. 相互独立,不一定同分布B. 相互独立同分布,但与总体分布不一定相同C. 相互独立且均与总体同分布D. 与总体同分布,但不一定相互独立错误:【C】24、设是次重复试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意均有()A. =0B. =1C. >0D. 不存在错误:【A】25、设随机变量为独立同分布序列,且服从参数为的指数分布,则下面式子中正确的是()A.B.C.D.错误:【A】26、设4个3维列向量组成的矩阵经初等行变换后变为,则可表示为()A.B.C.D.错误:【A】27、A.B.C.D.错误:【C】28、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.错误:【D】29、已知线性无关则()A. 必线性无关B. 若为奇数,则必有线性无关C. 若为偶数,则线性无关D. 以上都不对错误:【C】30、设是一非齐次线性方程组,是其任意2个解,则下列结论错误的是()A. 是的一个解B. 是的一个解C. 是的一个解D. 是的一个解错误:【A】31、设总体的分布函数为,则总体均值和方差的矩估计分别为()A.B.C.D.错误:【B】32、设一批产品有1000件,其中有50件次品,从中随机地、有放回地抽取500件产品,表示抽到次品的件数,则()A.B.C.D.错误:【C】33、两个独立事件A和B发生的概率分别为和,则其中之一发生的概率为()A.B.C.D.错误:【D】34、设A、B、C是三个事件,且,,,则A、B、C至少有1个发生的概率为()A.B.C.D.错误:【C】35、A.B.C.D.错误:【D】36、设二维随机变量,且与相互独立,则()A.B.C.D.错误:【D】37、下列结论正确的是()A.正交向量组一定线性无关B.线性无关向量组一定是正交向量组C.正交向量组不含零向量D.线性无关向量组不含零向量错误:【D】38、向量空间的维数等于()A. 0B. 1C. 2D. 3错误:【C】39、下列说法正确的是()A.B.C.D.错误:【D】40、若阶可逆矩阵与相似,且则()A.B.C.D.错误:【C】41、设总体的分布中带有未知参数,为样本,和是参数的两个无偏估计,若对任意的样本容量,若为比有效的估计量,则必有()A.B.C.D.错误:【B 】42、若二次型 为正定二次型,则的取值范围为( )A.B.C.D.错误:【C 】43、已知方阵相似于对角阵,则常数( )A.B.C.D.错误:【A】44、实二次型为正定的充要条件是()A.的秩为B.的正惯性指数为C.的正惯性指数等于的秩D.的负惯性指数为错误:【B】45、A.B.C.D.错误:【C】46、A.B.C.D.以上都不对错误:【C】47、二次型的标准型为()A.B.C.D.错误:【D】48、若,则的特征值为()A.或B.或C.D.错误:【B】49、设与都是来自于总体的两独立样本,,与分别是两样本的均值和方差,,则有()A.对于任意的常数是的无偏估计,且,,达到最小B.对于任意的常数是的无偏估计,且,,达到最小C.对于任意常数,都是的无偏估计,并且当时,达到最小D.对于任意常数,都是的无偏估计错误:【D】50、已知是正定矩阵,则()A.B.C.D.错误:【B】。

武汉理工大学线性代数与概率统计(新)在线作业及期末考试复习题

武汉理工大学线性代数与概率统计(新)在线作业及期末考试复习题

线性代数与数理统计在线作业及期末考试复习题注:找到所考试题直接看该试题所有题目和答案即可。

查找按键:Ctrl+F 超越高度一、单选(每题参考分值2.5分)1、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】2、设,如果方程组无解,则()A.B.C. 或D. 任意实数正确答案:【A】3、设连续随机变量X的概率密度函数为则()A.B.C.D.正确答案:【D】4、设总体,则的矩估计和极大似然估计分别为()A. 矩估计极大似然估计B. 矩估计极大似然估计C. 矩估计极大似然估计D. 矩估计极大似然估计正确答案:【C】5、A.B.C.D.正确答案:【C】6、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】7、设随机变量相互独立,概率密度分别为则二维随机变量的联合密度函数为()A.B.C.D.正确答案:【A】6、设,则()A. A和B不相容B. A和B相互独立C. 或D.正确答案:【A】12、A. 2B. 3C. 4D. 1正确答案:【D】8、设同阶方阵与相似,即存在可逆矩阵使,已知为的对应与特征值的特征向量,则的对应于特征值的特征向量是()A.B.C.D.正确答案:【C】9、设4维向量组中的线性相关,则()A. 可由线性表出B. 是的线性组合C. 线性相关D. 线性无关正确答案:【C】10、设总体,未知,是来自的样本,为样本均值,为样本标准差。

是检验问题为则检验的统计量为()A.B.C.D.正确答案:【C】11、设为随机变量,且则()A. 1B. 2C. 3D. 4正确答案:【A】12、设随机变量服从参数为0.5的指数分布,则下列各项中正确的是()A.B.C.D.正确答案:【B】13、在下列函数中,可以做某随机变量X的分布函数的是()A.B.C.D.正确答案:【C】14、设总体,其中已知,为来自总体的样本,为样本均值,为样本方差,则下列统计量中服从分布的是()A.B.C.D.正确答案:【D】15、在下列结论中,不正确的是()A. 若都服从正态分布,且与相互独立,则B. 若,且与相互独立,则C. 设与都是来自于总体的样本,并且相互独立,与分别是两样本均值,则D. 设与都是来自于总体的样本,并且相互独立,与分别是两样本均值,则正确答案:【C】16、设是连续型随机变量的分布函数,则下列结论中不正确的是()A. 不是不减函数B. 是不减函数C. 是右连续的D.正确答案:【A】17、设随机变量的,用切比雪夫不等式估计()A. 1B.C.D.正确答案:【D】18、二次型正定的一个充要条件是()A. 的主对角线元素都大于零B. 的行列式大于零C. 存在可逆矩阵,使D. 的特征值均非负正确答案:【C】19、阶实对称矩阵的个行向量是一组正交单位向量组,则是()A.对称矩阵B.正交矩阵C.反对称矩阵D.正确答案:【B】20、若方阵与等价,则()A.B.C.D. 存在可逆矩阵,使正确答案:【A】4、设三阶方阵的特征值为,对应的特征向量为,若,则A.B.C.D.正确答案:【D】9、下列命题正确的是()A.B.C.D.正确答案:【D】21、设、为同阶方阵,且,当()时,A.B.C.D. 且正确答案:【D】23、已知随机变量,则随机变量的概率密度()A.B.C.D.正确答案:【A】21、阶方阵与相似的充分必要条件是()A.B. 存在可逆矩阵与使得C. 存在可逆矩阵使得D. 存在可逆矩阵使得正确答案:【D】22、阶方阵与对角矩阵相似的充要条件是()A. 有个互不相同的特征值B. 有个互不相同的特征向量C. 有个线性无关的特征向量D. 有个两两正交的特征向量正确答案:【C】23、实二次型为正定的充要条件是()A.的秩为B.的正惯性指数为C.的正惯性指数等于的秩D.的负惯性指数为正确答案:【B】24、设总体则的矩估计为()A.B.C.D.正确答案:【D】25、设二维随机变量,则()A.1B.C.D.0正确答案:【B】26、矩阵,则基础解系所含向量个数为()A.B.C.D. 都不对正确答案:【A】27、设有向量,则向量空间的维数为()A.B.C.D.正确答案:【B】28、设A与B互为对立事件,且,,则下列各式中错误的是()A.B.C.D.正确答案:【A】29、设是一个阶阶方阵,下列陈述中正确的是()A. 如存在数和向量使,则是的属于特征值的特征向量B. 如存在数和非零向量,使,则是的特征值C. 的2个不同的特征值可以有同一个特征向量D. 是的3个互不相同的特征值,依次是的属于的特征向量,则有可能线性相关正确答案:【B】30、A.B.C.D.正确答案:【B】31、若、之积为不可能事件,则称与()A. 相互独立B. 互不相容C. 对立D. 构成完备事件组正确答案:【B】32、设为二维连续随机变量,则与不相关的充分必要条件是()A. 与相互独立B.C.D.正确答案:【C】33、,则()A.B.C.D.正确答案:【D】34、A.B.C.D.正确答案:【D】35、A.B.C.D.正确答案:【B】36、A.B.C.D.正确答案:【A】37、A. 全都非负B. 不全为零C. 全不为零D. 全为正数正确答案:【C】38、设是来自正态总体的样本,则统计量服从()A. 正态分布B. 分布C. 分布D. 分布正确答案:【D】39、对掷一粒骰子的试验,概率论中将“出现偶数”称为()A. 样本空间B. 必然事件C. 不可能事件D. 随机事件正确答案:【D】40、设为两个随机变量,且,则()A. 一定独立B. 一定不独立C. 不一定独立D. 以上结论都不对正确答案:【C】41、A. 0B. 1C. 2D. 3正确答案:【C】42、A.B.C.D.正确答案:【C】43、二次型的秩为2,则()A.B.C.D.正确答案:【D】44、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】45、若存在一可逆阵使得为对角阵,其中,则为()A.B.C.D.正确答案:【C】46、A.B.C.D.正确答案:【A】47、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】48、假设随机变量的分布未知.但已知则落在内的概率不小于()A.B.C.D.正确答案:【D】49、设矩阵其中均为4维列向量,且已知行列式,则行列式()A. 25B. 40C. 41D. 50正确答案:【B】50、设向量组可由向量组线性表示,则()A. 当时,必线性相关B. 当时,必线性相关C. 当时,必线性相关D. 当时,必线性相关正确答案:【D】一、单选(每题参考分值2.5分)1、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】2、设,如果方程组无解,则()A.B.C. 或D. 任意实数正确答案:【A】3、设连续随机变量X的概率密度函数为则()A.B.C.D.正确答案:【D】4、设总体,则的矩估计和极大似然估计分别为()A. 矩估计极大似然估计B. 矩估计极大似然估计C. 矩估计极大似然估计D. 矩估计极大似然估计正确答案:【C】5、A.B.C.D.正确答案:【C】6、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】7、设随机变量相互独立,概率密度分别为则二维随机变量的联合密度函数为()A.B.C.D.正确答案:【A】8、设同阶方阵与相似,即存在可逆矩阵使,已知为的对应与特征值的特征向量,则的对应于特征值的特征向量是()A.B.C.D.正确答案:【C】9、设4维向量组中的线性相关,则()A. 可由线性表出B. 是的线性组合C. 线性相关D. 线性无关正确答案:【C】10、设总体,未知,是来自的样本,为样本均值,为样本标准差。

武汉理工大学线性代数试卷期末考试卷子4

武汉理工大学线性代数试卷期末考试卷子4
2 2 2
(B) α 1 + α 2 , α 2 + α 3 , α 3 + α 1 (D) α 1 + α 2 , 2α 1 + α 2 + α 3 , α 3 + α 1 ) 。
4、二次型 f = x1 + 4 x 2 +4 x3 + 2tx1 x2 − 2 x1 x3 + 4 x2 x3 是正定二次型,则 t 应满足( (A) − 2 < t < 2 (B) − 2 < t < 0 (C) 0 < t < 1 (D) − 2 < t < 1 ) 。 5、设 A 为 n 阶方阵, A∗ 为 A 的伴随矩阵,且 R ( A) = n − 2 ,则 A∗ 的秩为( (A) n − 1 (B) n − 2 (C) 1 (D) 0
三、计算题(每小题 8 分,共 32 分) 计算题( 3 −5 1 、 已 知 Aij 是 行 列 式 D = 2 2 A13 − 3 A23 + A33 ; 1 1 0 −5 −1 − 2 3 2 的 元 素 a ij (i, j = 1,2,3,4) 的 代 数 余 子 式 , 计 算 1 −1 3 −1
组的通解为____________。
4、已知向量组 α 1 = (1,0,0) T , α 2 = (1,0,1) T , α 3 = (1,2,0) T , α 4 = (1,3,1) T ,则 R (α 1 , α 2 , α 3 , α 4 ) =____________。 5、设三阶方阵 A 与对角阵 Λ = diag (1,−1,3) 相似,则 A − 2 E = 二、单项选择题(每小题 3 分,共 15 分) 单项选择题( 1、设 α 1, α 2 , L, α n 是 n 维列向量,且 α1 , α 2 , L , α n = 1 ,则 2α 1, α 2 , L, α n =( (A) 1 (B) 0 (C) 2 (D) 2 n ) 。 (D) 4 ) 。 ) 。 。

经济数学—线性代数_武汉理工大学中国大学mooc课后章节答案期末考试题库2023年

经济数学—线性代数_武汉理工大学中国大学mooc课后章节答案期末考试题库2023年

经济数学—线性代数_武汉理工大学中国大学mooc课后章节答案期末考试题库2023年1.设A为n阶方阵,且【图片】. 则下列选项中错误的是答案:A可逆2.【图片】则X=______________答案:3.设3阶方阵A的秩为2,则与A等价的矩阵为答案:4.设A为5阶方阵,齐次线性方程组Ax=0的基础解系中有2个解向量,则其伴随矩阵【图片】的秩为答案:5.当a取何值时,线性方程组【图片】有唯一解.答案:6.已知三阶方阵A的特征值为1,-1,2, 则矩阵【图片】的特征值为答案:4,2,117.以下命题正确的是:答案:8.设A为【图片】矩阵,则答案:当A有n阶子式不为零,则线性方程组Ax=0仅有零解9.如下两个方程哪个是线性方程?(1)【图片】(2)【图片】答案:(1)10.将矩阵【图片】化为行最简行矩阵,正确的是:答案:11.设A为n阶可逆矩阵,则以下说法正确的是:答案:A总可以通过有限次初等变换化为单位矩阵E12.设方阵【图片】,其特征值为答案:0,0,0,1013.使用初等行变换化矩阵【图片】为行最简行,其结果为答案:14.行列式【图片】=_________________答案:15.n阶矩阵A有n个不同的特征值,是A可对角化的()条件答案:充分非必要16.若方阵A满足【图片】,则其特征值为答案:0或117.行列式【图片】=答案:18.关于行列式和矩阵,下列说法错误的是答案:行列式和矩阵一样,只是写法有区别19.【图片】=______________________答案:20.设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是答案:-2E-A21.下列命题中正确的是:答案:n阶方阵A的n个特征值互不相等,则A与对角阵相似.22.已知三阶方阵A的特征值为1,-1,2,则方阵【图片】的行列式为答案:8823.设方阵【图片】,属于特征值10的特征向量为答案:24.矩阵【图片】的等价标准形为答案:25.设n阶方阵A与B相似。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

~二学期线性代数历年考试及标答A

~二学期线性代数历年考试及标答A

AA A A123001nnββαααα(8分)四、当a 、b 为何值时,线性方程组()12342342341234022132321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩ 有唯一解,无解,有无穷多组解,并求出有无穷多组解时地通解.(10分)五、设矩阵A 与B 相似,其中200200001,01001001A B x ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,①求x ; ②求正交阵P ,使得T P AP B =.(10分)六、证明题.(每题5分,共10分)1、设A 是n 阶矩阵,如果存在正整数k ,使得A O k =(O 为n 阶零矩阵), 则矩阵A 地特征值全为0.2、设向量组12,,,r ααα是齐次方程组0AX =地一个基础解系,向量β不是方程组0AX =地解,求证:1,,,r ββαβα++线性无关.武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数A(A 卷)一、选择题(每题3分,共15分)1、A2、B3、B4、A5、D二、填空题(每题3分,共15分)1、1,1,-12、33、24、15、4λ三、解答题(每题8分,共40分)1.1122112233...123111000100001000100001000100001000100000(8)n n nr r r rnn nn i iini iiαααββββββββαααααβαβ----==−−−−−−−→-=-∑∑分(5分)123100123100321010088310111001034101123100123100313101100110(3)888803410113011881191203881101012213001188⎛⎫⎛⎫⎪ ⎪-→--- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎛⎫⎪⎛⎫⎪⎪ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪--⎝⎭⎛⎫- ⎪ ⎪ ⎪→- ⎪ ⎪ ⎪-- ⎝⎭2.解:分31100188110101(5)2213001188⎛⎫- ⎪⎪⎪→- ⎪⎪⎪--⎪⎪⎝⎭分131188123113211(6)2211113188-⎛⎫- ⎪⎛⎫ ⎪⎪⎪∴-=-⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪-- ⎪⎝⎭分 故1X A B -==131881112231188⎛⎫- ⎪⎪ ⎪-- ⎪⎪ ⎪-- ⎪⎝⎭(8分)123001123001321010088013111100034101123001123001131301100110(3)8888034101310011889111203881101012231001188⎛⎫⎛⎫⎪⎪-→--- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎛⎫⎪⎛⎫⎪ ⎪ ⎪⎪→-→- ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪--⎝⎭⎛⎫- ⎪ ⎪ ⎪→- ⎪ -- ⎝⎭(解法2):分13100188110101(6)2231001188⎛⎫-⎪⎪⎪→- ⎪⎪⎪⎪ ⎪--⎪ ⎪⎝⎭分 故X =131881112231188⎛⎫- ⎪⎪ ⎪-⎪⎪ ⎪-- ⎪⎝⎭(8分)3.2222311101111110(1)1110032k k k k k k k k k k k k k k k k ⎛⎫⎛+⎫+⎪ ⎪+→-- ⎪ ⎪ ⎪ ⎪+----⎝⎭⎝⎭221110(1)00(3)(12)k k k k k k k k k k k ⎛⎫+ ⎪→-- ⎪ ⎪-+--⎝⎭,(4分)当0k ≠且3k ≠-时α可由123,,ααα线性表出,并且表示法唯一.(8分) 4.解:221102(1)(2)413I A λλλλλλ+---=-=+---解得特征值1231,2λλλ=-==. (3分)解齐次线性方程组()0E A X --=得基础解系为1101ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭故对应于11λ=-地特征值为:1111100c c c c ξ⎛⎫ ⎪=≠ ⎪ ⎪⎝⎭其中 (5分)解齐次线性方程组(2)0E A X -=得基础解系为:2311441,001ξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(7分)故对应于232λλ==地特征值向量为:23223322331()4,0c c c c c c c c ξξ⎛⎫+ ⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭其中不全. (8分)5.解:因为*||11A A A =-, (2分)所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A (5分)=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.(8分)四、解: 将方程组地增广矩阵A 用初等行变换化为阶梯矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=01000101001221001111112323101221001111a b a a b a A (3分) 所以,⑴ 当1≠a 时,()()4==A A r r ,此时线性方程组有唯一解.⑵ 当1=a ,1-≠b 时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当1=a ,1-=b 时,()()2==A A r r ,此时线性方程组有无穷多组解.(6分) 此时,原线性方程组化为12342340221x x x x x x x +++=⎧⎨++=⎩因此,原线性方程组地通解为⎪⎪⎩⎪⎪⎨⎧==+--=-+=44334324311221x x x x x x x x x x 或者写为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡001110210121213321k k x x x x (10分) 五、解:因A 与B 相似,故有21(1)20x ++-=++解得0x =.(2分)A 地特征根为1231,1,2λλλ=-==.(3分) 解齐次线性方程组()0E A X λ-=,得对应于11λ=-地特征向量为*1011P ⎛⎫⎪= ⎪⎪-⎝⎭,将它单位化得10P ⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎝.(5分)对应于21λ=地特征向量为*2011P ⎛⎫⎪= ⎪ ⎪⎝⎭,将它单位化得20P ⎛⎫ ⎪ ⎪=.(7分) 对应于32λ=地特征向量为*33100P P ⎛⎫ ⎪== ⎪ ⎪⎝⎭.(9分)令()321,,P P P P =,则()321,,P P P P =即为所求正交矩阵.(10分)六.1、设λ是矩阵A 地特征值,0α≠是矩阵A 地属于λ地特征向量,则有αA αλ=.所以,()ααA A αAαA k k k kλλ====-- 11, (3分)但是O A =k,所以0α=kλ,但0α≠,所以0=λ. (5分) 2、假设1,,,r ββαβα++线性有关,则存在不全为零地01,,,r λλλ使得011()()0r r λβλβαλβα++++=,于是01()r λλλβ-+++=11r r λαλα+, (2分)又由于12,,,r ααα地线性无关性知01()0r λλλ-+++≠,于是 (4分)011rβλλλ=-+++(11r r λαλα+),这与已知向量β不是方程组0AX =地解矛盾.(5分)版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有 This article includes some parts, including text, pictures, and design.Copyright is personal ownership.5PCzV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

121
2
1
x n n x n n
+-+-;
1-,试证明
标准答案及评分标准用纸
课程名称:线性代数 ( A 卷)
一、填空题(每小题3分,共15分)
1、2
3
-
; 2、E ; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)
1、C
2、A
3、B
4、C 5 、D 三、解答题(每小题8分,共32分)
1、 1210001
2
1000
(1)212100012
1
12
1n n n x x n x n x
n n D x x
n n x
x n n
n n
-+-++⎡⎤=
=+
⎢⎥⎣⎦
+-+-- ………………(4分)
(1)1
2
(1)(1)
2n n n n n x x --+⎡⎤=-+⎢⎥⎣
⎦ ………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)
又BX A =,即(1,2)A E X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分) 3、 记1
200
A A A ⎛⎫=
⎪⎝⎭,则11
11200
A A A ---⎛⎫
= ⎪⎝⎭
, ……………………………………………………………(2分) 又*
11211,10A A ⎛⎫==
⎪-⎝⎭,故1
12110A -⎛⎫= ⎪-⎝⎭
…………………………………………………………(4分)
*
21
211,31A A -⎛⎫=-= ⎪-⎝⎭,故1
22131A --⎛⎫= ⎪-⎝⎭
………………………………………………………
(6分) 所以121001
00000210031A -⎛⎫

-

= ⎪
- ⎪
-⎝⎭。

…………………………………………………………………(8分)
4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:
1211241012213631A -⎛⎫ ⎪-
⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~
1
2110
0320
0000
00-⎛⎫
⎪- ⎪ ⎪
⎪⎝⎭~11
20320
01300000000⎛⎫
-



-
⎪ ⎪
⎪ ⎪⎝⎭
…………………(4分)
()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)
且212αα=,4131
233
ααα=--。

………………………………………………………………………………(8分)
或取13,αα为原向量组的一个最大无关组;且212αα=,3131
32
2
ααα=--。

取23,αα为原向量组的一个最大无关组;且1212αα=,42312
63ααα=--。

取24,αα为原向量组的一个最大无关组;且1212αα=,32413
42
ααα=--。

四(14分)、解 先将方程组的增广矩阵通过初等行变换化成行阶梯形
11113213001265
431
2a B b ⎛⎫ ⎪-
⎪= ⎪ ⎪-⎝⎭~1111012630126012625a a b a ⎛⎫ ⎪ ⎪ ⎪ ⎪----⎝⎭~101520126300003000022a a b a a ---⎛⎫


⎪- ⎪
-⎝⎭
…………………(4分) 可见当1a =且3b =时,()()2R B R A ==,方程组有解,否则方程组无解; ……………………(7分) 在方程组组有解时,同解方程组为
1342
3452263x x x x x x =+-⎧⎨=--+⎩,取34
0x x ==,得原方程组一特解()*
2,3,0,0T η=-; ……………………(9分) 取
()()()34,1,0,0,1T T T x x =,得原方程组导出组的基础解系为()11,2,1,0T
ξ=-,
()25,6,0,1T
ξ=-;…………………………………………………………………………………………(12分)
所以原方程组的同解为*1122c c ηξξη=++,12,c c 为任意常数。

…………………………………(14分)
注:此题基础解系有很多种表示形式,改卷时需注意。

五(14分)、矩阵A 的特征多项式2220
82(6)(2)0
6A E a λ
λλ
λλλ
--=
-=--+-, 故A 的特征值为126λλ==,32λ=-。

…………………………………………………………………(4分) 由于A 相似于对角矩阵Λ,故对应于126λλ==应有两个线性无关的特征向量,即齐次线性方程组
(6)0A E x -=的基础解系中应含两个解,所以(6)1R A E -=,…………………………………………………(6分)
而420684000A E a -⎛⎫ ⎪-=- ⎪ ⎪⎝⎭~42000000a -⎛⎫

⎪ ⎪⎝⎭
,故0a = …………………………………………………(8分)
对126λλ==,解(6)0A E x -=,6A E -~210000000-⎛⎫ ⎪
⎪ ⎪
⎝⎭,得基础解系12102,001p p ⎛⎫⎛⎫
⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……………(10分)
对32λ=-,解(2)0A E x +=,2A E +~210001000⎛⎫ ⎪ ⎪ ⎪⎝⎭,得基础解系3120p ⎛⎫

=- ⎪ ⎪⎝⎭
………………………(12分)
记矩阵600060002⎛⎫ ⎪Λ= ⎪ ⎪-⎝⎭,则矩阵101202010P ⎛⎫
⎪=- ⎪ ⎪⎝⎭
即满足1
P AP -=Λ。

………………………(14分)
注:此题基础解系有很多种表示形式,故可逆矩阵P 有多种形式都可以,改卷时需注意。

六、证明题(每题5分,共10分) 1、证法一 设存在一组数01,,
,n r k k k -,使得*011220n r n r k k k k ηξξξ--+++=
以矩阵A 左乘上式,因为*η是Ax b =的一个解,12,,,n r ξξξ-是0Ax =解,故
*A b η=,0i A ξ=,1,
,i n r =-,所以00k b =,又0b ≠,则必有00k =。

……………………(3分)
又因为12,,
,n r ξξξ-是 0Ax =的一个基础解系,故它们线性无关,所以,120n r k k k -==
==,即证得
*12,,,,n r ηξξξ-线性无关;………………………………………………………………………………(5分) 证法二 假设*12,,,,n r ηξξξ-线性相关,
因为12,,
,n r ξξξ-是 0Ax =的一个基础解系,故它们线性无关,
则 *
η可以由12,,
,n r ξξξ-线性表示,………………………………………………………………………(3分)
由其次线性方程组解的性质知*η是0Ax =的解,这与已知*η是Ax b =的一个解矛盾,故假设不成立,所以*12,,,,n r ηξξξ-线性无关。

………………………………………………………………………………(5分)
2、证 因为A 是正交矩阵,故1
T A A -=; …………………………………………………………………………(2分)
又1A =-,则有T T
A E A A E A E A E +=-+=-+=-+,所以0A E +=,
即证得1λ=-是A 的特征值。

………………………………………………………………………………(5分)。

相关文档
最新文档