《一次函数》典型例题解析与点评剖析
一次函数的经典例题
一次函数的经典例题一次函数是数学中的基础概念之一,也是数学应用中常见的函数类型。
下面给出一些经典的一次函数例题,帮助读者更好地理解和掌握一次函数的相关概念和性质。
例题1:设直线L过点A(2,3)和B(5,7),求直线L的方程。
解析:根据直线上两点的坐标,我们可以先计算出直线的斜率k。
斜率的计算公式为k=(y2-y1)/(x2-x1)。
代入点A和B的坐标,得到斜率k=(7-3)/(5-2)=4/3。
接下来,我们可以使用点斜式的方程形式来求解,即y-y1=k(x-x1)。
代入点A的坐标和斜率,得到直线L的方程为y-3=(4/3)(x-2)。
例题2:已知直线L的方程为y=2x+1,求直线L与x轴和y轴的交点坐标。
解析:当直线与x轴相交时,y坐标为0;当直线与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入直线方程得到0=2x+1,解方程可得x=-1/2。
所以,直线L与x轴的交点坐标为(-1/2,0)。
接下来,令x=0,代入直线方程得到y=2(0)+1,解方程可得y=1。
所以,直线L与y 轴的交点坐标为(0,1)。
例题3:已知一次函数y=3x-2,求函数图像与x轴和y轴的交点坐标,并画出函数图像。
解析:当函数与x轴相交时,y坐标为0;当函数与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入函数方程得到0=3x-2,解方程可得x=2/3。
所以,函数图像与x轴的交点坐标为(2/3,0)。
接下来,令x=0,代入函数方程得到y=3(0)-2,解方程可得y=-2。
所以,函数图像与y轴的交点坐标为(0,-2)。
为了更好地理解该一次函数的特性,我们可以绘制其函数图像。
根据函数的斜率和截距,我们可以确定函数图像的走势。
斜率为正数3表示函数是一个上升的直线,而截距-2表示函数与y轴的交点坐标为(0,-2)。
通过这些信息,我们可以在坐标系中画出该一次函数的图像。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
中考《一次函数》经典例题及解析
一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。
初中数学一次函数题型详细解析
初中数学一次函数题型详细解析1.(2018·湖北省恩施·8分)如图.直线y=﹣2x+4交x轴于点A.交y轴于点B.与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称.且与y轴交于点B'.与双曲线y=交于D.E两点.求△CDE的面积.【分析】(1)令﹣2x+4=.则2x2﹣4x+k=0.依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C.即可得到k的值.进而得出点C的坐标;(2)依据D(3.2).可得CD=2.依据直线l与直线y=﹣2x+4关于x 轴对称.即可得到直线l为y=2x﹣4.再根据=2x﹣4.即可得到E(﹣1.﹣6).进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=.则2x2﹣4x+k=0.∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C.∴△=16﹣8k=0.解得k=2.∴2x2﹣4x+2=0.解得x=1.∴y=2.即C(1.2);(2)当y=2时.2=.即x=3.∴D(3.2).∴CD=3﹣1=2.∵直线l与直线y=﹣2x+4关于x轴对称.∴A(2.0).B'(0.﹣4).∴直线l为y=2x﹣4.令=2x﹣4.则x2﹣2x﹣3=0.解得x1=3.x2=﹣1.∴E(﹣1.﹣6).∴△CDE的面积=×2×(6+2)=8.【点评】此题属于反比例函数与一次函数的交点问题.主要考查了解一元二次方程.坐标与图形性质以及三角形面积公式的运用.求反比例函数与一次函数的交点坐标.把两个函数关系式联立成方程组求解.若方程组有解则两者有交点.方程组无解.则两者无交点.2.(2018•福建A卷•14分)已知抛物线y=ax2+bx+c过点A(0.2).(1)若点(﹣.0)也在该抛物线上.求a.b满足的关系式;(2)若该抛物线上任意不同两点M(x1.y1).N(x2.y2)都满足:当x1<x2<0时.(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时.(x1﹣x2)(y1﹣y2)<0.以原点O为心.OA为半径的圆与拋物线的另两个交点为B.C.且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称.且O.M.N三点共线.求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2.再代入(﹣.0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下.进而可得出b=0.由抛物线的对称性可得出△ABC为等腰三角形.结合其有一个60°的内角可得出△ABC为等边三角形.设线段BC与y 轴交于点D.根据等边三角形的性质可得出点C的坐标.再利用待定系数法可求出a值.此题得解;②由①的结论可得出点M的坐标为(x1.﹣+2)、点N的坐标为(x2.﹣+2).由O、M、N三点共线可得出x2=﹣.进而可得出点N及点N′的坐标.由点A.M的坐标利用待定系数法可求出直线AM的解析式.利用一次函数图象上点的坐标特征可得出点N′在直线PM上.进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0.2).∴c=2.又∵点(﹣.0)也在该抛物线上.∴a(﹣)2+b(﹣)+c=0.∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时.(x1﹣x2)(y1﹣y2)>0.∴x1﹣x2<0.y1﹣y2<0.∴当x<0时.y随x的增大而增大;同理:当x>0时.y随x的增大而减小.∴抛物线的对称轴为y轴.开口向下.∴b=0.∵OA为半径的圆与拋物线的另两个交点为B.C.∴△ABC为等腰三角形.又∵△ABC有一个内角为60°.∴△ABC为等边三角形.设线段BC与y轴交于点D.则BD=CD.且∠OCD=30°.又∵OB=OC=OA=2.∴CD=OC•cos30°=.OD=OC•sin30°=1.不妨设点C在y轴右侧.则点C的坐标为(.﹣1).∵点C在抛物线上.且c=2.b=0.∴3a+2=﹣1.∴a=﹣1.∴抛物线的解析式为y=﹣x2+2.②证明:由①可知.点M的坐标为(x1.﹣+2).点N的坐标为(x2.﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线.∴x1≠0.x2≠0.且=.∴﹣x1+=﹣x2+.∴x1﹣x2=﹣.∴x1x2=﹣2.即x2=﹣.∴点N的坐标为(﹣.﹣+2).设点N关于y轴的对称点为点N′.则点N′的坐标为(.﹣+2).∵点P是点O关于点A的对称点.∴OP=2OA=4.∴点P的坐标为(0.4).设直线PM的解析式为y=k2x+4.∵点M的坐标为(x.﹣+2).∴﹣+2=k2x1+4.∴k2=﹣.∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2.∴点N′在直线PM上.∴PA平分∠MPN.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征.解题的关键是:(1)利用二次函数图象上点的坐标特征求出A.b 满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点N′在直线PM上.3.(2018•广东•9分)如图.已知顶点为C(0.﹣3)的抛物线y=ax2+b (a≠0)与x轴交于A.B两点.直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M.使得∠MCB=15°?若存在.求出点M的坐标;若不存在.请说明理由.【分析】(1)把C(0.﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标.再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0.﹣3)代入y=x+m.可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3.所以点B的坐标为(3.0).将(0.﹣3)、(3.0)代入y=ax2+b中.可得:.解得:.所以二次函数的解析式为:y=x2﹣3;(3)存在.分以下两种情况:①若M在B上方.设MC交x轴于点D.则∠ODC=45°+15°=60°.∴OD=OC•tan30°=.设DC为y=kx﹣3.代入(.0).可得:k=.联立两个方程可得:.解得:.所以M1(3.6);②若M在B下方.设MC交x轴于点E.则∠OEC=45°﹣15°=30°. ∴OE=OC•tan60°=3.设EC为y=kx﹣3.代入(3.0)可得:k=.联立两个方程可得:.解得:.所以M2(.﹣2).综上所述M的坐标为(3.6)或(.﹣2).【点评】此题主要考查了二次函数的综合题.需要掌握待定系数法求二次函数解析式.待定系数法求一次函数解析式等知识是解题关键.4.(2018•广西贵港•6分)如图.已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6.n)两点.(1)求k和n的值;(2)若点C(x.y)也在反比例函数y=(x>0)的图象上.求当2≤x≤6时.函数值y的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n值.进而可得出点B的坐标.再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k=6>0结合反比例函数的性质.即可求出:当2≤x≤6时.1≤y≤3.【解答】解:(1)当x=6时.n=﹣×6+4=1.∴点B的坐标为(6.1).∵反比例函数y=过点B(6.1).∴k=6×1=6.(2)∵k=6>0.∴当x>0时.y随x值增大而减小.∴当2≤x≤6时.1≤y≤3.【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及反比例函数的性质.解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征.求出n、k的值;(2)利用一次函数的性质找出当x>0时.y随x值增大而减小.5.(2018•贵州铜仁•12分)学校准备购进一批甲、乙两种办公桌若干张.并且每买1张办公桌必须买2把椅子.椅子每把100元.若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张.且甲种办公桌数量不多于乙种办公桌数量的3倍.请你给出一种费用最少的方案.并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元.乙种办公桌每张y元.根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张.则购买乙种办公桌(40﹣a)张.购买的总费用为y.根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式.再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围.继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元.乙种办公桌每张y元. 根据题意.得:.解得:.答:甲种办公桌每张400元.乙种办公桌每张600元;(2)设甲种办公桌购买a张.则购买乙种办公桌(40﹣a)张.购买的总费用为y.则y=400a+600(40﹣a)+2×40×100=﹣200a+32000.∵a≤3(40﹣a).∴a≤30.∵﹣200<0.∴y随a的增大而减小.∴当a=30时.y取得最小值.最小值为26000元.6.(2018•贵州遵义•12分)在水果销售旺季.某水果店购进一优质水果.进价为20元/千克.售价不低于20元/千克.且不超过32元/千克.根据销售情况.发现该水果一天的销售量y(千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 ……22.6 24 25.2 26 …售价x(元/千克)(1)某天这种水果的售价为23.5元/千克.求当天该水果的销售量.(2)如果某天销售这种水果获利150元.那么该天水果的售价为多少元?【分析】(1)根据表格内的数据.利用待定系数法可求出y与x之间的函数关系式.再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量.即可得出关于x的一元二次方程.解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b.将(22.6.34.8)、(24.32)代入y=kx+b..解得:.∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时.y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150.解得:x1=35.x2=25.∵20≤x≤32.∴x=25.答:如果某天销售这种水果获利150元.那么该天水果的售价为25元.7.(2018年湖南省娄底市)“绿水青山.就是金山银山”.某旅游景区为了保护环境.需购买A.B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A.B两种设备的方案;(2)已知每台A型设备价格为3万元.每台B型设备价格为4.4万元.厂家为了促销产品.规定货款不低于40万元时.则按9折优惠;问:采用(1)设计的哪种方案.使购买费用最少.为什么?【分析】(1)设购买A种设备x台.则购买B种设备(10﹣x)台.根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140.求出解集.再根据x为正整数.得出x=1.2.3.进而求解即可;(2)分别求出各方案实际购买费用.比较即可求解.【解答】解:(1)设购买A种设备x台.则购买B种设备(10﹣x)台.根据题意.得12x+15(10﹣x)≥140.解得x≤3.∵x为正整数.∴x=1.2.3.∴该景区有三种设计方案:方案一:购买A种设备1台.B种设备9台;方案二:购买A种设备2台.B种设备8台;方案三:购买A种设备3台.B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40.实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40.实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40.实际付款:39.8(万元);∵37.08<38.04<39.8.∴采用(1)设计的第二种方案.使购买费用最少.【点评】本题考查了一次函数的应用.一元一次不等式的应用.分析题意.找到合适的不等关系是解决问题的关键.8.(2018湖南张家界6.00分)阅读理解题在平面直角坐标系xOy中.点P(x0.y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=.例如.求点P(1.3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4.B=3.C=﹣3所以P(1.3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料.解决下列问题:(1)求点P1(0.0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1.0)到直线x+y+C=0的距离为.求实数C的值.【分析】(1)根据点到直线的距离公式即可求解;(2)根据点到直线的距离公式.列出方程即可解决问题.【解答】解:(1)d==1;(2)=.∴|C+1|=2.∴C+1=±2.∴C1=﹣3.C2=1.【点评】本题考查一次函数图象上点的坐标特征.点到直线的距离公式的知识.解题的关键是理解题意.学会把直线的解析式转化为Ax+By+C=0的形式.学会构建方程解决问题.9.(2018湖南湘西州12.00分)某商店销售A型和B型两种电脑.其中A型电脑每台的利润为400元.B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台.其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台.这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台.才能使销售总利润最大.最大利润是多少?(3)实际进货时.厂家对A型电脑出厂价下调a(0<a<200)元.且限定商店最多购进A型电脑60台.若商店保持同种电脑的售价不变.请你根据以上信息.设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围.再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x).即y=(a﹣100)x+50000.分三种情况讨论.①当0<a<100时.y随x的增大而减小.②a=100时.y=50000.③当100<m<200时.a﹣100>0.y随x的增大而增大.分别进行求解.【解答】解:(1)根据题意.y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x.∴x≥.∵y=﹣100x+50000中k=﹣100<0.∴y随x的增大而减小.∵x为正数.∴x=34时.y取得最大值.最大值为46600.答:该商店购进A型34台、B型电脑66台.才能使销售总利润最大.最大利润是46600元;(3)据题意得.y=(400+a)x+500(100﹣x).即y=(a﹣100)x+50000. 33≤x≤60①当0<a<100时.y随x的增大而减小.∴当x=34时.y取最大值.即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时.a﹣100=0.y=50000.即商店购进A型电脑数量满足33≤x≤60的整数时.均获得最大利润;③当100<a<200时.a﹣100>0.y随x的增大而增大.∴当x=60时.y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考查了一次函数的应用及一元一次不等式的应用.解题的关键是根据一次函数x值的增大而确定y值的增减情况.10. (2018•上海•10分)一辆汽车在某次行驶过程中.油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系.其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时.该汽车会开始提示加油.在此次行驶过程中.行驶了500千米时.司机发现离前方最近的加油站有30千米的路程.在开往该加油站的途中.汽车开始提示加油.这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式.再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程.此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b.将(150.45)、(0.60)代入y=kx+b中..解得:.∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时.解得x=520.即行驶520千米时.油箱中的剩余油量为8升.530﹣520=10千米.油箱中的剩余油量为8升时.距离加油站10千米.∴在开往该加油站的途中.汽车开始提示加油.这时离加油站的路程是10千米.【点评】本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征.根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.。
一次函数实际应用(带解析)
一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
(完整word版)《一次函数》经典例题解析
类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m—2)x+(m—4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函数y=—(m—2)x+(m—4)是一次函数,∴∴m=-2.∴当m=—2时,函数y=-(m—2)x+(m-4)是一次函数.举一反三:【变式1】如果函数是正比例函数,那么()。
A.m=2或m=0 B.m=2 C.m=0D.m=1【答案】:考虑到x的指数为1,正比例系数k≠0,即|m—1|=1;m—2≠0,求得m=0,选C【变式2】已知y—3与x成正比例,且x=2时,y=7。
(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.解析:(1)由于y-3与x成正比例,所以设y—3=kx.把x=2,y=7代入y-3=kx中,得7-3=2k,∴ k=2.∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=。
类型二:待定系数法求函数解析式2、求图象经过点(2,—1),且与直线y=2x+1平行的一次函数的表达式.思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2,-1),∴—l=2×2+b.∴ b=-5,∴所求一次函数的表达式为y=2x-5.总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。
举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7。
2cm,求这个一次函数的表达式.分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.解:设这个一次函数的表达式为y=kx+b.由题意可知,当x=0时,y=6;当x=4时,y=7.2。
《一次函数》经典例题剖析附练习及答案最新最全面(完整版)
第六章《一次函数》复习课一次函数和正比例函数的概念知识点1若两个变量x,y 间的关系式可以表示成y=kx+b(k,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0 时,称y 是x 的正比例函数. 例如:y=2x+3,y=-x+2 ,y= 1 x 等都是一次函数,y= 1 x,y=-x 都是22正比例函数.【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数, b 可为任意常数.(3)当b=0,k≠0 时,y= kx 仍是一次函数.(4)当b=0,k=0 时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3 一次函数的图象由于一次函数y=kx+b(k,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-b ,0). 但也不必一定选取这两个特殊点k. 画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k)即可.知识点4 一次函数y=kx+b(k,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k>0 时,y 的值随x 值的增大而增大;②k﹤O时,y 的值随x 值的增大而减(2)|k| 大小决定直线的倾斜程度,即|k| 越大,直线与x 轴相交的锐角度数越大(直线陡),|k| 越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当②当③当b>0 时,直线与y 轴交于正半轴上;b<0 时,直线与y 轴交于负半轴上;b=0 时,直线经过原点,是正比例函数.(4)由于k,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当(直线不经过第四象限);②如图11-18(2)所示,当(直线不经过第二象限);③如图11-18(3)所示,当(直线不经过第三象限);k>0,b>0 时,直线经过第一、二、三象限k>0,b﹥O 时,直线经过第一、三、四象限k﹤O,b>0 时,直线经过第一、二、四象限④如图11-18(4)所示,当(直线不经过第一象限).k﹤O,b﹤O 时,直线经过第二、三、四象限(5)由于|k| 决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线到的.y=x+1 可以看作是正比例函数y=x 向上平移一个单位得知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k>0 时,图象经过第一、三象限(3)当k<0 时,图象经过第二、四象限,y 随x 的增大而增大;,y 随x 的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b 的图象的关系(1)如果点P(x0,y0 )在直线y=kx+b 的图象上,那么析式y=kx+b;(2)如果x0,y0 是满足函数解析式的一对对应值,那么以点P(1,2)必在函数的图象上.x0,y 0 的值必满足解x0,y0 为坐标的例如:点P(1,2)满足直线y=x+1,即x=1 时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P′(2,1)不满足解析式所以点P′(2,1)不在直线y=x+l 的图象上.y=x+1,因为当x=2 时,y=3,知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得(2)由于一次函数y=kx+b(k≠0)两个待定系数k,b,需要两个独立的确定两个关于k,b 的方程,求得k,b 值,这两个条件通常是两个点或两对的值.知识点6 待定系数法先设待求函数关系式(其中含有未数系数),再根据条件列出方程(或方组),求出未知系数,从而得到所求结方法,叫做待定系数法.其中未知系k 的值.中有条件的x,y知常程果的数也k,b叫待定系数.例如:函数就是待定系数.y=kx+b 中,知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(系式.2,1)和(-1 ,-3 )求此一次函数的关解:设一次函数的关系式为由题意可知,y=kx+b(k≠0),4 k , 35 3 1 2k b,k 4 3 5 3 解 ∴此函数的关系式为 y= .x 3 b, b . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一 步,设(根据题中要求的函数“设”关系式 y=kx+b ,其中 k ,b 是未知的常量, 且 k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解 这个方程(或方程组),求出待定系数 k , b );第三步,求(把求得的 k ,b 的 .值代回到“设”的关系式 y=kx+b 中);第四步,写(写出函数关系式) 思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对 应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 ( 1)常数 k , b 对直线 y=kx+b(k ≠0)位置的影响.①当 b >0 时,直线与 y 轴的正半轴相交;当 b=0 时,直线经过原点;当 b ﹤ 0 时,直线与 y 轴的负半轴相交.②当 k ,b 异号时,即 - b > 0 时,直线与 x 轴正半轴相交;k当 b=0 时,即 - b =0 时,直线经过原点;k当 k , b 同号时,即 - b ﹤0 时,直线与 x 轴负半轴相交.k③当 k >O , b > O 时,图象经过第一、二、三象限; 当 k > 0,b=0 时,图象经过第一、三象限;当 b > O ,b <O 时,图象经过第一、三、四象限; 当 k ﹤ O ,b >0 时,图象经过第一、二、四象限; 当 k ﹤ O ,b=0 时,图象经过第二、四象限;当 b < O ,b <O 时,图象经过第二、三、四象限.(2)直线 y=kx+b (k ≠0)与直线 y=kx(k ≠0) 的位置关系. 直线 y=kx+b(k ≠0) 平行于直线 y=kx(k ≠0)当 b ﹤ O 时,把直线 y=kx 向下平移 |b| 个单位,可得直线 y=kx+b .(3)直线 ①k 1≠ k 2 b 1=k 1x+b 1 与直线 y 2=k 2x+b 2( k 1≠0 , k 2 ≠0)的位置关系.y 1 与 y 2 相交;k 1 b 1 k 2b 2② 1 与 y 2 相交于 y 轴上同一点( 0, b 1 )或( 0, b 2);y k 1 b 1 k 2 ,b 2③ y 1 与 y 2 平行;k1 b1k2 , b2④ 1 与y2 重合.y典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=- 1 x;2(4)y=-5x ;2 ;x(2)y=- (3)y=-3-5x ;1222(5)y=6x- (6)y=x(x-4)-x .2当m为何值时,函数y=- (m-2)x m 3 +(m-4)是一次函数?例2基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg 的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg )之间的函数关系式,写出自变量的一次函数.x 的取值范围,并判断y 是否是x 例4 某物体从上午7 时至下午 4 时的温度M(℃)是时间t (时)的函数:2M=t -5t+100(其中体的温度为t=0 表示中午12 时,t=1 表示下午1 时),则上午10 时此物℃.例5 已知y-3 与x 成正比例,且x=2 时,y=7. (1)写出y 与x 之间的函数关系式;(2)当x=4 时,求y 的值;(3)当y=4 时,求x 的值.例6 若正比例函数y=(1-2m)x 的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2 时,y1>y2,则A.m﹤OC.m﹤12m的取值范围是(B.m>0D.m>M)例7 已知一次函数y=kx+b 的图象如图11-22 所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1 平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a 与x+b(a,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50 元月租费,然后每通话 1 分,再付电话费0.4 元;“神州行”使用者不交月租费,每通话 1 分,付话费0.6 元(均指市内通话)若 1 个月内通话x 分,两种通讯方式的费用分别为y1 元和y2 元.(1)写出y1,y2 与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200 元,则选择哪种通讯方式较合算?例11 已知y+2 与x 成正比例,且x=-2 时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A,B 两点,且S△ABP=4,求P 点的坐标.2例12 已知一次函数y=(3-k )x-2k +18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2 )?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1 ),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0 开始逐渐增大时,y=2x+8 和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6 的位置关系如何?甲生说:“ y=6x 的函数值先达到30,说明y=6x 比y=2x+8 的值增长得快.”乙生说:“直线y=-x 与y=-x+6 是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的优惠.”已知全票价为240 元.6 折(1)设学生人数为x,甲旅行社的收费为y 甲元,乙旅行社的收费为分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.y 乙元,学生做一做基地对购买量在某公司到果园基地购买某种优质水果,慰问医务工作者. 果园3000 千克以上(含3000 千克)的有两种销售方案.甲方案:每千克9 元,由基地送货上门;乙方案:每千克8 元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000 元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b 的自变量x 的取值范围是-3 ≤x≤6,相应函数值的取值范围是-5 ≤y≤-2 ,则这个函数的解析式为.基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当 x=20 时 y=160O ;当 x=3O 时, y=200O .(1)求 y 与 x 之间的函数关系式;(2)动果有 50 名运动员参加比赛,且全部费用由运动员分摊,那么每名运 动员需要支付多少元?2.已知一次函数 y=kx+b ,当 x=-4 时, y 的值为 9 ; 当 x=2 时, y 的值为 -3 .(1)求这个函数的解析式。
一次函数典型例题及习题解析
一次函数的图像及应用典型例题及习题一次函数 经典题型题型考点一: 理解一次函数和正比例函数的概念与定义例1 已知函数y=(2-m)x+2m-3.求当m 为何值时, (1)此函数为正比例函数(2)此函数为一次函数学生自测1。
下列函数关系式中,哪些是一次函数,哪些是正比例函数? ( 1)y=-x-4 (2)y=5x2+6 (3)y=2πx (4)y=-8x 2.若是正比例函数,则b 的值是 ( )A.0B.C.D.3.若y =(m -1)x是正比例函数,则m 的值为( ) A.1B.-1C.1或-1D.或-4.若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A.m >B.m <C.m =D.m =5.若5y +2与x -3成正比例,则y 是x 的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确 6.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .7、已知函数y =(m 2-4)x 4+n +(m -2),当m 且 时,它是一次函数;当m 且n 时它是正比例函数. 8.若关于x 的函数是一次函数,则m = ,n .设函数y =(m -3)x 3-︳m ︳+m +2(1) 当m 为何值时,它是一次函数?(2)当m 为何值时,它是正比例函数?题型考点二:根据实际情况,确定一次函数解析式,求出相应的值例1 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km 处,每升高1 km,气温下降6℃.高于11km 时,气温几乎不再变化,设地面的气温为38℃,高空中xkm 的气温为y ℃. (1)当0≤x ≤11时,求y 与x 之间的关系式? (2)求当x=2、5、8、11时,y 的值。
(3)求在离地面13 km的高空处、气温是多少度?(4)当气温是一16℃时,问在离地面多高的地方?学生自测1.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).求出y与x的函数关系式2.13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.一次函数图像二经典题型题型考点一:函数图象的概念例 1.列表:2.3.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象:学生自测:1、(10分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.(3)当鞋码是40码时,鞋长是多长?题型考点二:通过图像确定函数的解析式例1.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=0学生自测1、函数y=kx-5,k取不同的值,它的图象是()A、一条经过点(0,-5)的直线B、一组互相平行的直线C、一组相交于点(0,-5)的直线D、一条与y轴的交点在x轴上方的直线2、一次函数y=ax+b,ab<0,则其大致图象正确的是()3.(2009年安徽)8.已知函数的图象如图,则的图象可能是【】4.(2009年重庆市江津区)已知一次函数的大致图像为()5.(2010陕西西安)一个正比例函数的图象经过点(2,-3),它的表达式为A.B.C. D.6、直线y=kx经过点(3,-2),那么这条直线还通过点()A、(-2,3)B、(-3,2)C、(2,3)D、(3,2)7、如果正比例函数y=kx(k≠0)的自变量取值增加1,函数y的值相应减少4,则k的值为()A、4B、-4C、D、8、一次函数y=kx+b(k≠0)图象与x轴交点坐标是,与y轴交点坐标是(4)如图,直线L是一次函数y=kx+b的图象,则k= ,b= .9. 如图,把直线向上平移后得到直线AB,直线AB经过点,且,则直线AB的解析式是( )A.B.C.D.9.(2009年桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为.10把直线向下平移2个单位得到的图像解析式为___________。
《一次函数》典型例题解析与点评剖析
《一次函数》典型例题解析与点评一次函数是初中数学中应用广泛、内容丰富的课题之一,通过学习一次函数,可有助于构造方程、深入理解函数的变化,使以后的学习、研究更加方便.本专题的基本要求是会根据已知条件,利用待定系数法确定一次函数的解析式;能用一次函数解决实际问题;会画一次函数的图像,并掌握其性质,所以我们从一些基础问题、最值问题、一次函数的应用、动点问题和定点问题这几个方面来阐述.例题1已知直线l 1:y =-3x +4与直线l 2:y =13x +4相交于点A ,其中直线l 1与x 轴交于点C ,现沿着x 轴将直线l 1在x 轴以下的部分向上翻折到x 轴的上半部,翻折后与直线l 2交于点B .(1)求射线l CB (不含端点)对应的函数解析式及定义域;(2)求点B 的坐标;(3)求△ABC 的面积.【解答】(1)由y =-3x +4知,C (43,0).【技巧】题中所求交点坐标是利用两个函数的解析式联立方程组求解,这种情况在“正反比例”中已做强调.而求面积的题目一般是通过构造特殊的图形,或者利用割补法来求解. 另外,以下知识点在一些教材需等高中才能讲授,作为本书阅读者可提前了解. 已知两直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.(1)若l 1∥l 2,则k 1=k 2,或l 1、l 2两直线同时平行y 轴;反之亦然.(2)若l 1⊥l 2,则k 1×k 2=-1,或l 1、l 2中一条直线斜率为0,一条直线斜率不存在(两直线分别为平行于x 轴,y 轴);反之亦然.在本题中,l1、l2为互相垂直.例题2已知abc <0,a+b+c<0,且一次函数y=b cxa a的图像经过第一、二、三象限.求证:(1)a>0,b>0,c<0;(2)当x>0时,y>1.【解答】【技巧】本题考查的是一次函数的图像,根据图像所经过的象限判断出斜率和截距的情况,即b ÷a>0,(-c)÷a>0;再结合不等式的性质,推出a、b、c的大小,从而得证.反过来根据x的取值范围,再利用函数图像也能求出y的取值范围.例题3如图所示,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图像分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD的面积是10,若点A的横坐标是-0.5,求这个一次函数的解析式.【解答】【技巧】本题利用待定系数法和面积法构造二元一次方程组求解.要求一次函数的解析式,必须已知两个点,而本题只给出一个点的坐标,因此要从面积着手找出k与b之间的另一个关系.通过本题,可知解题还须熟记以下基本公式.(1)l :y =kx +b 与x 轴的交点为(-b k,0),与y 轴的交点为(0,b); (2)l 与x 轴、y 轴所围成的三角形面积为22b k. 例题4如图所示,在直角坐标平面内,函数y =m x(x>0,m 是常数)的图像经过点A(1,4),B(a ,b),其 中,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连接AD 、DC 、CB .(1)若△ABD 的面积为4,求点B 的坐标;(2)求证:DC 平行于AB ;(3)当AD =BC 时,求直线AB 的函数解析式.【解答】(1)将点A 代入y =m x得:m =4,所以y =4x . 由△ABD 的面积为4,点B(a ,b)代入函数解析式得方程组:【技巧】注意斜率公式:k 1212y y x x -=-;两点间距离公式:d用待定系数法求出反比例函数关系式,然后通过已知条件的面积以及关于点B 的函数关系式找到两个等量关系,再构造方程组从而解出点B 的坐标,求证DC 与AB 的平行,由于在直角坐标系中本题完全可撇除通过平行的判定来证明,这里我们从直线的斜率上判断,原因在题1的技巧贴士中已经给出.第(3)问求函数关系式,选择待定系数法,通过AD =BC ,在直角坐标系中构造直角三角形,通过求边的长度找到等量关系.【点评】几何问题是一次函数中常见的题型,它经常以一次函数的翻折旋转、一次函数的性质定义、由面积求一次函数解析式等形式出现.在解题之前要熟记一次函数的定义、性质、特点等基本知识,特别是类似一次函数斜率k ≠0等问题.对于翻折旋转问题,还请了解以下内容.正因为如此,题1中l 1:y =-3x +4关于x 轴对称可直接表达为-y =-3x +4,当然也可以取l 1上一点(2,-2),则该点关于x 轴的对称点为(2,2),求出经点C (43,0)与(2,2)的解析式即l BC .这种“取点”方法间接解决了函数y =f(x)关于某点对称的函数y =g(x)的求法,即取y =f(x)上的一些点,这些点的对称点比较容易求出,并且这些点都在y =g(x)上,有了这些点,利用“待定系数法”等技巧可以表达出y =g(x).对于面积问题,通过题1、题3、题4的讲解我们知道,在一次函数中,要么用割补法,如题1,要么数形结合,直接用公式,如题4,以BD 为底,△ABD 的高为4-b .例题5已知f(x)是一次函数.(1)若f[f(x +1)]=4x +7,求函数f(x)的表达式;(2)若f(1)=1,且f[(2)]=2×4b k,求函数f(x)的表达式. 【解答】【技巧】首先设一次函数表达式为f(x)=kx +b(k ≠0),比较左右两边的系数构造方程组求解,先设出一次函数的表达式,通过两次代换得到一个新的函数,再利用两边对应项系数相等构造出方程组,从而解出k 和b 的值,如对于f(f(x)),现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x).例题6在直角坐标系xOy ,x 轴上的动点M(x ,0)到定点P(5,5),Q(2,1)的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,求点M 的横坐标.【解答】如图所示,作点Q 关于x 轴的对称点Q'(2,-1).设直线PQ'的解析式为y =kx +b ,将点P(5,5),Q'(2,-1)代入解析式得5512k b k b =+⎧⎨-=+⎩,解得k =2,b =-5,则直线 PQ'的解析式为y =2x -5.令y =0,则x =2.5即为所求.下面证明点M(2.5,0)使MP +MQ 取最小值.在x 轴上任取点M ,连接MP 、MQ 、PQ'.因为点Q 关于x 轴的对称点为Q',所以x 轴为线段QQ'的垂直平分线.由此可得MQ =MQ',因为MP +MQ'≥PQ',两点间距离线段最短,所以MP +MQ 的最小值即MP +MQ'的最小值为PQ'.则PQ'与x 轴的交点即为所求点M .【技巧】本题关键在于将问题转换为求两定点距离之和的最小值,即利用“两点之间线段最短”,由于点P 、点Q 分布在x 轴的同侧,所以利用对称的知识首先将其中一点Q 找到它的对称点Q',因为M 点在x 轴上,那么我们可以理解其为直线PQ'与x 轴的交点.还请注意,找到了M 点,还需证明M 使MP +MQ 取最小值,因此本题分两步:首先找出M ,接着证明M 即为所求.例题7设f(x)=mx +1m(1-x ),其中m>0,记f(x)在0≤x ≤1的最小值为g(m),求g(m)及其最大值,并作y =g(m)的图像.【解答】所以g(m)在0<m≤1上为递增函数,g(m)在m≥1上为递减函数.故g(x)max=g(1)=1.【技巧】本题主要运用分类讨论的思想.先将f(x)整理成一次函数的常规形式,因x的系数是字母,不知道它的正负情况,因此要进行分类讨论.例题8某汽车出租公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由.(2)如每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,应选择以上哪种购买方案?【解答】(1)设要购买x辆轿车,那么面包车要购买(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.因为x≥3,则x=3,4,5.所以购买方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)方案①的日租金为:3×200+7×110=1370(元);方案②的日租金为:4×200+6×110=1460(元);方案③的日租金为:5×200+5×110=1550(元).为保证日租金不低于1500元,应选方案③,【技巧】解决本题的关键是要抓住题目中的关键词语“不超过”,“有几种方案”.首先根据已知条件列出不等式7x+4(10-x)≤55,并且要注意的是,本题为应用题,所以x的取值应该是正整数.结合实际意义找出相对应的解,确定出三种方案,再对各种方案求出各种租金进行比较.例题9已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套.已知做M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装x套,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂获利润最大?最大利润是多少?【解答】(1)由题意得:y=50x+45(80-x)=5x+3600.因为两种型号的时装共用A 种布料70米,B 种布料52米,则有()()70 1.10.680,520.40.980,x x x x ⎧≥+-⎪⎨≥+-⎪⎩解得40≤x ≤44, 因x 为整数,所以x =40,41,42,43,44.所以y 与x 的函数关系式是y =5x +3600(x =40,41,42,43,44).(2)因为5>0,所以y 随x 的增大而增大,所以当x =44时,y max =3820,即生产M 型号的时装44套时,该厂利润最大,最大利润是3820元.【技巧】(1)求解自变量的取值范围的时候,我们要运用到题设中所给的条件“两种型号的时装共用A 种布料70米,B 种布料52米”,确定出两个不等关系,找出相应的范围,注意不等式是可以取得等号的.(2)通过5种方案分别计算求出利润并比较找出最大值,我们发现利润y 与x 的函数关系为y =5x +3600(x =40,41,42,43,44),y 随x 的增大而增大,因此x 取最大值的时候可以得到y max =3820.【点评】以上5题主要涉及函数的迭代问题、最值问题和实际应用问题.迭代问题,就是将里面的函数看成一个整体代入外面的函数中,从内到外,逐层推算.这就要考同学们对函数定义的理解了,将外面函数中的x 用里面函数的函数值代替再运算就可以了.再次强调对于f(f(x))的计算,现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x),同理,f 1(f 2(f 3(x)))也是如此,从内到外,先算f 3,再将f 3作为整体代入计算f 2,最后将f 2作为整体代人f 1.最值问题分为两个方面,一个是两点间线段最短.另一个是分段函数,需要进行分类讨论,分析函数增减性,画出函数图像,得到在定义域中函数值取到的最大值或最小值. 题6的做法在专题6中还会出现,至于题7的最值则要在确定g(m)的基础上才能确定.对于题6,请千万牢记,本题要有两个步骤:首先找出M ,接着证明M 即为所求,第一个步骤是确定存在性,到底有没有满足条件的M 点,第二步则是证明唯一性.而实际应用问题,如题8和题9,这两题是一次函数与不等式相结合的应用问题.首先根据题目中的条件确定出不等关系,找出相应的自变量的范围,确定出几种方案,再对各种方案求出因变量进行比较,得出最佳方案.例题10 如图所示,在平面直角坐标系中,已知OA =12cm ,OB =6cm .点P 从点O 开始沿OA 边向点A 以1cm/s 的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动.如果点P 、点Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),则:(1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C 是否落在直线AB 上,并说明理由.【解答】(1)由题意得,BQ =t =OP ,CQ=6-t,所以y=-12t2+3t(0≤t≤6).(2)已知坐标A(12,0),B(0,6),所以直线AB为y=-12x+6.由(1)得,当y取最大值时,t=3,所以CQ=3,OP=3,即△POQ是等腰直角三角形.将△POQ沿直线PQ翻折,可得到边长为3的正方形OPCQ,得点C坐标(3,3),代入y=-12x+6不成立,即点C没有落在直线AB上,【技巧】本题是一个动点问题.(1)要求y关于t的函数解析式,只要求出OQ、OP的长度(包含未知数t)即可;(2)先求出当△POQ的面积最大时t的值,从而求得OQ=3和OP=3,然后不难求出C点的坐标是(3,3),代入一次函数y=-12x+6即可.例题11已知函数f(x)=(m-2)x+2m-3.(1)求证:无论m取何实数,这些函数的图像恒过某一定点.(2)当x在[1,2]内变化时,y在[4,5]内变化,求实数m的值.【解答】(1)令y=f(x)=(m-2)x+2m-3,则有(x+2)m-2x-3-y=0.【技巧】本题是一个定点问题.(1)由“无论m取何实数时,这些函数的图像恒过某一定点”可知,这个定点与m的取值无关.所以只需变换一次函数解析式,把含有m的项合并,转换成a.m=b,其中a=0,b=0即可.(2)对f(x)=(m-2)x+2m-3,还需讨论m-2的取值范围,确定一次函数是增函数还是减函数后,方可利用题设所给出的x、y范围的端点值代入一次函数的解析式,最终求得m.【点评】动点问题与定点问题是一次函数实际运用中最多也是最实用的两类问题,动点问题就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.其中数形结合是解决动点问题最主要的方法,在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.例如题10,其特点是有两个动点P 、Q ,而且它们分别在两条不同的射线上运动,解答问题的关键是认为点P 、Q 是“静止”的,不要被“运动”二字所迷惑,只要将△POQ 的面积表达出来即可. 要求面积最大,可利用配方法,即()2211933222y t t t =-+=--+,确定了点P 、Q 的坐标后进一步求出点C 的坐标.对于题10,再做以下几点说明,这些规律对于解题很有帮助,所以请牢记!(1)求最值问题,可能会涉及一元二次方程中的“配方法”(专题2中已作说明)以及函数的性质问题(如题7的分段函数).(2)在最值的情况下,题中所形成的图形往往是“特殊”的(如题11中等腰直角三角形POQ ,专题3题8技巧贴士中所提及的正方形).(3)本题也属于翻折情况.将本问题引申:若三角形POQ 是任意三角形(不一定是直角三角形),那经翻折后,C 点何时在直线AB 上呢?翻折的详细情况可见专题7中的“思维点评”.至于“定点问题”,这是在运动变化中寻找不变量的另外一个类型,这类问题常常会用到特殊与一般的数学思想,定点问题是数学思想与数学知识紧密结合的一类综合性试题,是中考考查能力的热点题型之一,定点问题一般分为两类:一类是直线过定点问题.如题11的第一个问题,具体解法技巧贴士中已给出;另一类是函数图像过定点问题,这类问题目前所学知识还未涉及,将在9年级“二次函数”专题中涉及.。
八年级数学下册 一次函数题型归纳解析 北师大版
一次函数题型归纳解析1.判断k 、b 的符号在不作出函数图象的情况下,根据函数图象经过的象限,可判断出k 、b 的符号,反之亦然.例2(2006年广东非课改卷) 正比例函数或一次函数(y=kx+b)的图象如图所示,则k 、b 的符号 ( )A 、k <0,b >0.B 、k >0,b >0.C 、k <0,b <0.D 、k >0,b <0.【分析】 看图象自左向右是上升还是下降来决定k 的正负由图象与y 轴的交点在x 轴的上方还是下方来决定b 的正负. 解 k <0,b >0.【评析】 注意到图象自左向右上升,函数值y 随着x 的增大而增大,图象自左向右下降,函数值y 随着x 的增大而减小;直线与y 轴正方向相交,k 为正,直线与y 轴的负方向相交,k 为负.反之亦然. 2.判断直线经过的象限例2(2006年广州)下列图象中,表示直线y=x-1的是 ( )(A)11Oyx(B)-11O yx(C)-1-1Oyx(D)1-1Oyx分析:直线经过的象限是由k 、b 的符号确定的。
当k >0,b >0时,直线经过第1,2,3象限;当k >0,b <0时,直线经过第1、3、4象限等。
反之亦然。
解:在y=x-1中,k =1>0,b =-1<0,故直线经过第1、3、4象限,故选择D 。
3.确定函数的解析式此类问题主要是考查考生利用待定系数法来求出有关函数一般解析式中的未知系数,从而确定该函数解析式的能力.例3 (2006年陕西)某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);(2)如果出版社投入成本48000元,那么能印该读物多少册? 分析 (1)设所求一次函数的解析式为y =kx +b , 则500028500,800036000.k b k b +=⎧⎨+=⎩解得k =52,b =16000。
一次函数的图像(详细解析考点分析名师点评)
一次函数的性质答案与评分标准一、选择题(共20小题)1、根据以下表格中所给出的x与23.04x﹣810的对应值(精确到0.001),判断方程23.04x﹣810=0的解x所在的范围是()x的值35.154 35.155 35.156 35.157 35.15823.04x﹣810的值﹣0.052 ﹣0.029 ﹣0.006 ﹣0.017 0.040A、35.154<x<35.155B、35.155<x<35.156C、35.156<x<35.157D、35.157<x<35.158考点:估算一元二次方程的近似解;一次函数的性质。
分析:根据图表信息得到y=23.04x﹣810的图象过(35.157,﹣0.017)、(35.158,0.040);则当35.157<x<35.158时,图象必与x轴有交点,由此确定方程23.04x﹣810=0(a≠0)的一个解x的范围是35.157<x<35.158.解答:解:当x=35.157时,y=23.04x﹣810=﹣0.017,则y=23.04x﹣810的图象过(35.157,﹣0.017);当x=35.158,y=23.04x﹣810=0.040,则y=23.04x﹣810的图象过(35.158,0.040);而y=23.04x﹣810的图象是连续的,当35.157<x<35.158时,图象必与x轴有交点,∴方程23.04x﹣810=0(a≠0)的一个解x的范围是35.157<x<35.158.故选D.点评:本题考查了利用图象法求一元二次方程的近似根:先根据已知条件得到y=23.04x﹣810的图象的大致位置,然后确定与x轴交点的自变量的范围,即可得到方程23.04x﹣810=0(a≠0)的一个解x的范围.2、下列图象中,与关系式y=﹣x﹣1表示的是同一个一次函数的图象是()A、B、C、D、考点:一次函数的图象;一次函数的性质。
分析:一次函数y=﹣x﹣1的图象是一条直线,它与x轴的交点坐标是(﹣1,0),与y轴的交点坐标是(0,﹣1),由两点确定一条直线可画出这条直线.解答:解:函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D.点评:一次函数的图象是一条直线,找两个点连接就能得到它的图象.3、已知一次函数y=kx+b,其中kb>0.则所有符合条件的一次函数的图象一定通过()A、第一、二象限B、第二、三象限C、第三、四象限D、第一、四象限考点:一次函数的图象;一次函数的性质。
初一数学一次函数试题答案及解析
初一数学一次函数试题答案及解析1.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()A.B.C.D.【答案】C.【解析】公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选C.【考点】函数的图象.2.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?(2)小明共用多长时间到学校的?(3)小明修车前的速度和修车后的速度分别是多少?(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【答案】(1)3千米;5分钟;(2 小明用30分钟到学校;(3)小明修车前的速度:千米/分钟,修车后的速度:千米/分钟;(4)早到分钟.【解析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)通过图象上即可看出小明用30分钟到学校;(3)对应路程除以时间即可求出速度;(4)先算出先前速度需要分钟,做差30﹣=即可求解.试题解析:(1)3千米;5分钟;(2)通过图象上即可看出小明用30分钟到学校;(3)小明修车前的速度:千米/分钟,修车后的速度:千米/分钟;(4)先前速度需要分钟,30﹣=,即早到分钟.【考点】一次函数的应用.3.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?【答案】(1)分配到甲店的A款22件,B款8件;分配到乙店的A款14件,B款16件。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
初一数学一次函数试题答案及解析
初一数学一次函数试题答案及解析1.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息回答下列问题:(1)甲乙两地的距离是.(2)到达乙地后卸货用的时间是.(3)这辆汽车返回的速度是【答案】(1)120km;(2)0.5h;(3)48km/h.【解析】(1)根据函数图象可直接得到答案;(2)到达乙地后卸货时,距离不变,时间增加,图象中与x轴平行的部分就是卸货时间;(3)利用距离除以时间可得速度.试题解析:(1)根据图象可得甲乙两地的距离是120km;(2)到达乙地后卸货用的时间是:2.5-2=0.5(小时);(3)这辆汽车返回的速度是:120÷(5-2.5)=48(km/h)【考点】函数的图象.2.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线表达式.【答案】y=x+1【解析】由一次函数y=kx+b(k≠0)与y轴交于点(0,1)得到b=1,再根据一次函数的性质由一次函数y=kx+b(k≠0)经过第一、三象限,则k>0,可取k=1,然后写出满足条件的一次函数解析式即可.【考点】一次函数的性质3.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(1,0),与y轴交于点B(0,2),求一次函数y=kx+b的解析式及线段AB的长.【答案】直线的解析式为y=﹣2x+2,AB=【解析】利用待定系数法即可求得一次函数的解析式,然后利用勾股定理即可求得AB的长.试题解析:由题意可知,点A (1,0),B(0,2)在直线y=kx+b上,∴,解得∴直线的解析式为y=﹣2x+2∵OA=1,OB=2,∠AOB=90°,∴AB=.【考点】1.待定系数法求一次函数解析式;2.勾股定理4.校园里栽下一棵小树高1.8m,以后每年长0.3m,则n年后的树高L与年数n之间的关系式为.【答案】L=0.3n+1.8.【解析】根据树的高度的不同表示方法,可得答案.试题解析:n年后的树高L与年数n之间的关系式为 L=0.3n+1.8.【考点】函数关系式.5.如图①,在矩形 ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图象,求b、图②中c及d的值;(2)连接PQ,当PQ平分矩形ABCD的面积时,运动时间x的值为;(3)当两点改变速度后,设点P、Q在运动线路上相距的路程为y(cm),求y(cm)与运动时间x(秒)之间的函数关系式,并写出自变量x的取值范围;(4)若点P、点Q在运动路线上相距的路程为25cm,求x的值.【答案】(1)b=2(厘米/秒),c=17(秒),d=1(厘米/秒);(2)或;(3)当6<x≤时,y=―3x+28;当<x≤17时,y=3x―28;当17<x≤22时,y=x+6;(4)1或19.【解析】(1)观察图1和2,得(平方厘米)∴(秒)b=(厘米/秒)c=8+=17(秒)依题意得(22-6)d=28-12解得d=1(厘米/秒);(2)由题意可得,当0<x≤5时,假设(x+2x)×8×=〔(10-2x)+(10-x)〕×8×则x=(符合题意)当5<x≤13时,由图可知,没有符合的解当13<x≤22时, +13=(符合题意);(3)当6<x≤时,y=―3x+28;当<x≤17时,y=3x―28;当17<x≤22时,y=x+6;(4)当点Q出发17秒时,点P到达点D停止运动,点Q还需运动2秒,即共运动19秒时,可使P、Q这两点在运动路线上相距的路程为25cm.点Q出发1s,则点P,Q相距25cm,设点Q出发x秒,点P、点Q相距25cm,则2x+x=28-25,解得x=1.∴当点Q出发1或19秒时,点P、点Q在运动路线上相距的路程为25cm.本题涉及了直角坐标系的意义和动点构成的几何意义,该题在分析上较为复杂,要求学生在原来图形中找出不变的元素,结合直角坐标系所表示的几何意义加以分析,找出规律。
一次函数解析式典型例题解析及部分题答案
一次函数解析式典型例题解析及部分题答案(总8页)-本页仅作为预览文档封面,使用时请删除本页-一次函数解析式典型题型一. 定义型(一次函数即X 和Y 的次数为1) 例1. 已知函数y m x m=-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30 二. 点斜型(已知斜率和经过的一点)例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数y kx =-3的图像过点(2,-1) ∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。
三. 两点型(已知图像经过的两点)已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为 解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24 四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为y=-2x+2。
y2O 1 x解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k bb ∴=-=⎧⎨⎩k b 22故这个一次函数的解析式为y x =-+22 五. 斜截型(已知斜率k 和截距b )两直线平行,则k1=k2;两直线垂直,则k1=-1/k2例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》典型例题解析与点评一次函数是初中数学中应用广泛、内容丰富的课题之一,通过学习一次函数,可有助于构造方程、深入理解函数的变化,使以后的学习、研究更加方便.本专题的基本要求是会根据已知条件,利用待定系数法确定一次函数的解析式;能用一次函数解决实际问题;会画一次函数的图像,并掌握其性质,所以我们从一些基础问题、最值问题、一次函数的应用、动点问题和定点问题这几个方面来阐述.例题1已知直线l 1:y =-3x +4与直线l 2:y =13x +4相交于点A ,其中直线l 1与x 轴交于点C ,现沿着x 轴将直线l 1在x 轴以下的部分向上翻折到x 轴的上半部,翻折后与直线l 2交于点B .(1)求射线l CB (不含端点)对应的函数解析式及定义域;(2)求点B 的坐标;(3)求△ABC 的面积.【解答】(1)由y =-3x +4知,C (43,0).【技巧】题中所求交点坐标是利用两个函数的解析式联立方程组求解,这种情况在“正反比例”中已做强调.而求面积的题目一般是通过构造特殊的图形,或者利用割补法来求解. 另外,以下知识点在一些教材需等高中才能讲授,作为本书阅读者可提前了解. 已知两直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.(1)若l 1∥l 2,则k 1=k 2,或l 1、l 2两直线同时平行y 轴;反之亦然.(2)若l 1⊥l 2,则k 1×k 2=-1,或l 1、l 2中一条直线斜率为0,一条直线斜率不存在(两直线分别为平行于x 轴,y 轴);反之亦然.在本题中,l1、l2为互相垂直.例题2已知abc <0,a+b+c<0,且一次函数y=b cxa a的图像经过第一、二、三象限.求证:(1)a>0,b>0,c<0;(2)当x>0时,y>1.【解答】【技巧】本题考查的是一次函数的图像,根据图像所经过的象限判断出斜率和截距的情况,即b ÷a>0,(-c)÷a>0;再结合不等式的性质,推出a、b、c的大小,从而得证.反过来根据x的取值范围,再利用函数图像也能求出y的取值范围.例题3如图所示,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图像分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD的面积是10,若点A的横坐标是-0.5,求这个一次函数的解析式.【解答】【技巧】本题利用待定系数法和面积法构造二元一次方程组求解.要求一次函数的解析式,必须已知两个点,而本题只给出一个点的坐标,因此要从面积着手找出k与b之间的另一个关系.通过本题,可知解题还须熟记以下基本公式.(1)l :y =kx +b 与x 轴的交点为(-b k,0),与y 轴的交点为(0,b); (2)l 与x 轴、y 轴所围成的三角形面积为22b k. 例题4如图所示,在直角坐标平面内,函数y =m x(x>0,m 是常数)的图像经过点A(1,4),B(a ,b),其 中,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连接AD 、DC 、CB .(1)若△ABD 的面积为4,求点B 的坐标;(2)求证:DC 平行于AB ;(3)当AD =BC 时,求直线AB 的函数解析式.【解答】(1)将点A 代入y =m x得:m =4,所以y =4x . 由△ABD 的面积为4,点B(a ,b)代入函数解析式得方程组:【技巧】注意斜率公式:k 1212y y x x -=-;两点间距离公式:d用待定系数法求出反比例函数关系式,然后通过已知条件的面积以及关于点B 的函数关系式找到两个等量关系,再构造方程组从而解出点B 的坐标,求证DC 与AB 的平行,由于在直角坐标系中本题完全可撇除通过平行的判定来证明,这里我们从直线的斜率上判断,原因在题1的技巧贴士中已经给出.第(3)问求函数关系式,选择待定系数法,通过AD =BC ,在直角坐标系中构造直角三角形,通过求边的长度找到等量关系.【点评】几何问题是一次函数中常见的题型,它经常以一次函数的翻折旋转、一次函数的性质定义、由面积求一次函数解析式等形式出现.在解题之前要熟记一次函数的定义、性质、特点等基本知识,特别是类似一次函数斜率k ≠0等问题.对于翻折旋转问题,还请了解以下内容.正因为如此,题1中l 1:y =-3x +4关于x 轴对称可直接表达为-y =-3x +4,当然也可以取l 1上一点(2,-2),则该点关于x 轴的对称点为(2,2),求出经点C (43,0)与(2,2)的解析式即l BC .这种“取点”方法间接解决了函数y =f(x)关于某点对称的函数y =g(x)的求法,即取y =f(x)上的一些点,这些点的对称点比较容易求出,并且这些点都在y =g(x)上,有了这些点,利用“待定系数法”等技巧可以表达出y =g(x).对于面积问题,通过题1、题3、题4的讲解我们知道,在一次函数中,要么用割补法,如题1,要么数形结合,直接用公式,如题4,以BD 为底,△ABD 的高为4-b .例题5已知f(x)是一次函数.(1)若f[f(x +1)]=4x +7,求函数f(x)的表达式;(2)若f(1)=1,且f[(2)]=2×4b k,求函数f(x)的表达式. 【解答】【技巧】首先设一次函数表达式为f(x)=kx +b(k ≠0),比较左右两边的系数构造方程组求解,先设出一次函数的表达式,通过两次代换得到一个新的函数,再利用两边对应项系数相等构造出方程组,从而解出k 和b 的值,如对于f(f(x)),现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x).例题6在直角坐标系xOy ,x 轴上的动点M(x ,0)到定点P(5,5),Q(2,1)的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,求点M 的横坐标.【解答】如图所示,作点Q 关于x 轴的对称点Q'(2,-1).设直线PQ'的解析式为y =kx +b ,将点P(5,5),Q'(2,-1)代入解析式得5512k b k b =+⎧⎨-=+⎩,解得k =2,b =-5,则直线 PQ'的解析式为y =2x -5.令y =0,则x =2.5即为所求.下面证明点M(2.5,0)使MP +MQ 取最小值.在x 轴上任取点M ,连接MP 、MQ 、PQ'.因为点Q 关于x 轴的对称点为Q',所以x 轴为线段QQ'的垂直平分线.由此可得MQ =MQ',因为MP +MQ'≥PQ',两点间距离线段最短,所以MP +MQ 的最小值即MP +MQ'的最小值为PQ'.则PQ'与x 轴的交点即为所求点M .【技巧】本题关键在于将问题转换为求两定点距离之和的最小值,即利用“两点之间线段最短”,由于点P 、点Q 分布在x 轴的同侧,所以利用对称的知识首先将其中一点Q 找到它的对称点Q',因为M 点在x 轴上,那么我们可以理解其为直线PQ'与x 轴的交点.还请注意,找到了M 点,还需证明M 使MP +MQ 取最小值,因此本题分两步:首先找出M ,接着证明M 即为所求.例题7设f(x)=mx +1m(1-x ),其中m>0,记f(x)在0≤x ≤1的最小值为g(m),求g(m)及其最大值,并作y =g(m)的图像.【解答】所以g(m)在0<m≤1上为递增函数,g(m)在m≥1上为递减函数.故g(x)max=g(1)=1.【技巧】本题主要运用分类讨论的思想.先将f(x)整理成一次函数的常规形式,因x的系数是字母,不知道它的正负情况,因此要进行分类讨论.例题8某汽车出租公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由.(2)如每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,应选择以上哪种购买方案?【解答】(1)设要购买x辆轿车,那么面包车要购买(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.因为x≥3,则x=3,4,5.所以购买方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)方案①的日租金为:3×200+7×110=1370(元);方案②的日租金为:4×200+6×110=1460(元);方案③的日租金为:5×200+5×110=1550(元).为保证日租金不低于1500元,应选方案③,【技巧】解决本题的关键是要抓住题目中的关键词语“不超过”,“有几种方案”.首先根据已知条件列出不等式7x+4(10-x)≤55,并且要注意的是,本题为应用题,所以x的取值应该是正整数.结合实际意义找出相对应的解,确定出三种方案,再对各种方案求出各种租金进行比较.例题9已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套.已知做M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装x套,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂获利润最大?最大利润是多少?【解答】(1)由题意得:y=50x+45(80-x)=5x+3600.因为两种型号的时装共用A 种布料70米,B 种布料52米,则有()()70 1.10.680,520.40.980,x x x x ⎧≥+-⎪⎨≥+-⎪⎩解得40≤x ≤44, 因x 为整数,所以x =40,41,42,43,44.所以y 与x 的函数关系式是y =5x +3600(x =40,41,42,43,44).(2)因为5>0,所以y 随x 的增大而增大,所以当x =44时,y max =3820,即生产M 型号的时装44套时,该厂利润最大,最大利润是3820元.【技巧】(1)求解自变量的取值范围的时候,我们要运用到题设中所给的条件“两种型号的时装共用A 种布料70米,B 种布料52米”,确定出两个不等关系,找出相应的范围,注意不等式是可以取得等号的.(2)通过5种方案分别计算求出利润并比较找出最大值,我们发现利润y 与x 的函数关系为y =5x +3600(x =40,41,42,43,44),y 随x 的增大而增大,因此x 取最大值的时候可以得到y max =3820.【点评】以上5题主要涉及函数的迭代问题、最值问题和实际应用问题.迭代问题,就是将里面的函数看成一个整体代入外面的函数中,从内到外,逐层推算.这就要考同学们对函数定义的理解了,将外面函数中的x 用里面函数的函数值代替再运算就可以了.再次强调对于f(f(x))的计算,现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x),同理,f 1(f 2(f 3(x)))也是如此,从内到外,先算f 3,再将f 3作为整体代入计算f 2,最后将f 2作为整体代人f 1.最值问题分为两个方面,一个是两点间线段最短.另一个是分段函数,需要进行分类讨论,分析函数增减性,画出函数图像,得到在定义域中函数值取到的最大值或最小值. 题6的做法在专题6中还会出现,至于题7的最值则要在确定g(m)的基础上才能确定.对于题6,请千万牢记,本题要有两个步骤:首先找出M ,接着证明M 即为所求,第一个步骤是确定存在性,到底有没有满足条件的M 点,第二步则是证明唯一性.而实际应用问题,如题8和题9,这两题是一次函数与不等式相结合的应用问题.首先根据题目中的条件确定出不等关系,找出相应的自变量的范围,确定出几种方案,再对各种方案求出因变量进行比较,得出最佳方案.例题10 如图所示,在平面直角坐标系中,已知OA =12cm ,OB =6cm .点P 从点O 开始沿OA 边向点A 以1cm/s 的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动.如果点P 、点Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),则:(1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C 是否落在直线AB 上,并说明理由.【解答】(1)由题意得,BQ =t =OP ,CQ=6-t,所以y=-12t2+3t(0≤t≤6).(2)已知坐标A(12,0),B(0,6),所以直线AB为y=-12x+6.由(1)得,当y取最大值时,t=3,所以CQ=3,OP=3,即△POQ是等腰直角三角形.将△POQ沿直线PQ翻折,可得到边长为3的正方形OPCQ,得点C坐标(3,3),代入y=-12x+6不成立,即点C没有落在直线AB上,【技巧】本题是一个动点问题.(1)要求y关于t的函数解析式,只要求出OQ、OP的长度(包含未知数t)即可;(2)先求出当△POQ的面积最大时t的值,从而求得OQ=3和OP=3,然后不难求出C点的坐标是(3,3),代入一次函数y=-12x+6即可.例题11已知函数f(x)=(m-2)x+2m-3.(1)求证:无论m取何实数,这些函数的图像恒过某一定点.(2)当x在[1,2]内变化时,y在[4,5]内变化,求实数m的值.【解答】(1)令y=f(x)=(m-2)x+2m-3,则有(x+2)m-2x-3-y=0.【技巧】本题是一个定点问题.(1)由“无论m取何实数时,这些函数的图像恒过某一定点”可知,这个定点与m的取值无关.所以只需变换一次函数解析式,把含有m的项合并,转换成a.m=b,其中a=0,b=0即可.(2)对f(x)=(m-2)x+2m-3,还需讨论m-2的取值范围,确定一次函数是增函数还是减函数后,方可利用题设所给出的x、y范围的端点值代入一次函数的解析式,最终求得m.【点评】动点问题与定点问题是一次函数实际运用中最多也是最实用的两类问题,动点问题就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.其中数形结合是解决动点问题最主要的方法,在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.例如题10,其特点是有两个动点P 、Q ,而且它们分别在两条不同的射线上运动,解答问题的关键是认为点P 、Q 是“静止”的,不要被“运动”二字所迷惑,只要将△POQ 的面积表达出来即可. 要求面积最大,可利用配方法,即()2211933222y t t t =-+=--+,确定了点P 、Q 的坐标后进一步求出点C 的坐标.对于题10,再做以下几点说明,这些规律对于解题很有帮助,所以请牢记!(1)求最值问题,可能会涉及一元二次方程中的“配方法”(专题2中已作说明)以及函数的性质问题(如题7的分段函数).(2)在最值的情况下,题中所形成的图形往往是“特殊”的(如题11中等腰直角三角形POQ ,专题3题8技巧贴士中所提及的正方形).(3)本题也属于翻折情况.将本问题引申:若三角形POQ 是任意三角形(不一定是直角三角形),那经翻折后,C 点何时在直线AB 上呢?翻折的详细情况可见专题7中的“思维点评”.至于“定点问题”,这是在运动变化中寻找不变量的另外一个类型,这类问题常常会用到特殊与一般的数学思想,定点问题是数学思想与数学知识紧密结合的一类综合性试题,是中考考查能力的热点题型之一,定点问题一般分为两类:一类是直线过定点问题.如题11的第一个问题,具体解法技巧贴士中已给出;另一类是函数图像过定点问题,这类问题目前所学知识还未涉及,将在9年级“二次函数”专题中涉及.。