空气动力学复习资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气动力学复习

一、基本概念

1 粘性

施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。

以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。

2 压缩性

流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。其物理意义是:单位体积流体的体积对压强的变化率。

气体流速变化时,会引起气体的压强和密度发生变化。在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。一般0.3Ma作为气体是否可压的分界点。

3 理想气体

忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。这种气体称为理想气体。

严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。

4 焓

热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。

5理想流体

不可压缩、不计粘性(粘度为零)的流体。欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。

6 音速

音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。在温度T不为常数的流场中,各点的声速是不一样的,与某一点的温度相当的声速称为该点的“当

地声速”。

7 雷诺数

雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数。表示流体的粘性力和惯性力之比。Re=ρvd/μ,其中v、ρ、μ分别为流体的流速、密度与黏性系数,d为一特征长度。雷诺数较小时,粘滞力对流场的影响大于惯性,流场中流速的扰动会因粘滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性对流场的影响大于粘滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的紊流流场。

8 马赫数

流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为Ma,定义为流场中某点的速度v同该点的当地声速c之比,即Ma=v/c。

从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。依照马赫数的不同,流体大概可以分为几种类型:

不可压缩流,亚声速不可压缩流:M<0.3

可压缩流,亚声速可压缩流:0.3≤M≤0.8

跨声速流:0.8≤M≤1.2

超声速流:1.2≤M≤5

高超声速流:M≥5

9 流线

在流场中每一点上都与速度矢量相切的曲线称为流线。流线是同一时刻不同流体质点所组成的曲线,它给出该时刻不同流体质点的速度方向。

流线和迹线是两个具有不同内容和意义的曲线。迹线是同一流体质点在不同时刻形成的曲线,它和拉格朗日观点相联系;而流线则是同一时刻不同流体质点所组成的曲线,它和欧拉观点相联系。这两种具有不同内容的曲线在一般的非定常运动情形下是不重合的,只有在定常运动时,两者才形式上重合在一起。

10迹线

迹线是流体质点在空间运动时所描绘出来的曲线。它的切线给出同一流体质点在不同时刻的速度方向。迹线是单个质点在连续时间过程内的流动轨迹线。迹线是拉格朗日法描述流动的一种方法。

11 层流

层流(laminar flow)是流体的一种流动状态,它作层状的流动。流体在管内低速流动时呈现为层流,其质点沿着与管轴平行的方向作平滑直线运动。

在低雷诺数的情况下,细致地调节细管中红水的流速,当它与主流管内水流

速度相近时,可以看到清水中有稳定而清晰的红色水平流线,主流管中各水层互不干扰,是层流的典型例子(如实验可以观察到的现象)。

经常遇见的层流现象还有毛细管或多孔介质中的流动、轴承润滑膜中的流动、微小颗粒在粘性流体中运动时引起的流动、液体或气体流经物体表面附近形成的边界层中的流动等。

层流一般比湍流的摩擦阻力小,因而在飞行器或船舶设计中,为了减小摩擦阻力,应尽量使边界层流动保持层流状态。

12 湍流

湍流是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生,这种运动称为湍流,又称为乱流、扰流或紊流。

湍流是在大雷诺数下发生的,雷诺数较小时,粘性力对流场的影响大于惯性力,流场中流速的扰动会因粘性力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于粘性力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。一方面它强化传递和反应过程,另一方面极大地增加摩擦阻力和能量损耗。

13 激波

气体介质中压强、密度和温度在波阵面上发生突跃变化的压缩波。如在超声速流动中,气体的强压缩波就是激波。

飞行器以亚音速飞行时,扰动传播速度比飞行器飞行速度大,所以扰动集中不起来,这时整个流场上流动参数(包括流速、压强等)的分布是连续的。

而当飞行器以超音速飞行时,扰动来不及传到飞行器的前面去,结果前面的气体受到飞行器突跃式剧烈的压缩,形成集中的强扰动,这时出现一个压缩过程的界面,称为激波。

经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。压强的跃升产生可闻的爆响。如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。

在实际气体中,激波是有厚度的。在只考虑气体粘性和热传导作用的条件下,由理论计算可知,激波的厚度很小,与气体分子的平均自由程同数量级。对于标准状况下的空气,激波厚度约为10-5毫米。

对于作超声速运动的飞行器,激波的出现会引起很大的阻力;对于超声速风洞(见风洞)、进气道和压气机等内流设备,在气流由超声速降为亚声速时出现的激波,会降低风洞和发动机的效率。所以,减弱激波强度以减小激波损失是实

相关文档
最新文档