随机数的产生-课件
合集下载
(整数值)随机数(random numbers)的产生 课件
【例2】 种植某种树苗,成活率为0.9,现采用随机模拟 的方法估计该树苗种植5棵恰好4棵成活的概率,先由计算机产 生0到9之间取整数值的随机数,指定1至9的数字代表成活,0 代表不成活,再以每5个随机数为一组代表5次种植的结果.经 随机模拟产生如下30组随机数:
69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315 27120 21782 58555
随机数代表的含义弄错导致选A或D;由于符合条件的随机数
个数确定不准可能导致选C.
【正解】选 B.由题意知利用计算器模拟求三天都不下雨 的概率,产生的 20 组随机模拟数据中代表三天都不下雨的随机 数,应该由 4,5,6,7,8,9,0 中的三个组成,这样的随机数有: 907,966,458,569,556,488,989,共 7 组随机数,所以所求概率 为270=0.35,故选 B.
【警示】1.认真审题 解决此类问题首先要正确理解所求概率的含义,弄清其包 含的基本事件. 2.恰当设计 恰当设计随机数,弄清随机数代表的事件及代表所求事件 的随机数组.如本题由1,2,3表示下雨,由4,5,6,7,8,9,0表示不下 雨. 3.准确计算 要正确计算代表所求事件的随机数组的个数和总的随机数 组的个数.正确利用概率公式计算出所求概率.如本题找出代 表三天都不下雨的随机数个数,即可求出概率.
(2)研究等可能事件的概率时,用按比例分配的方法确定表 示各个结果的数字个数及范围.
1.(1)常用的随机数的产生方法主要有抽签法,利用计算 器或计算机.
(2)利用摸球或抽签得到的数是真正意义上的随机数,用计 算器或计算机得到的是伪随机数.
69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315 27120 21782 58555
随机数代表的含义弄错导致选A或D;由于符合条件的随机数
个数确定不准可能导致选C.
【正解】选 B.由题意知利用计算器模拟求三天都不下雨 的概率,产生的 20 组随机模拟数据中代表三天都不下雨的随机 数,应该由 4,5,6,7,8,9,0 中的三个组成,这样的随机数有: 907,966,458,569,556,488,989,共 7 组随机数,所以所求概率 为270=0.35,故选 B.
【警示】1.认真审题 解决此类问题首先要正确理解所求概率的含义,弄清其包 含的基本事件. 2.恰当设计 恰当设计随机数,弄清随机数代表的事件及代表所求事件 的随机数组.如本题由1,2,3表示下雨,由4,5,6,7,8,9,0表示不下 雨. 3.准确计算 要正确计算代表所求事件的随机数组的个数和总的随机数 组的个数.正确利用概率公式计算出所求概率.如本题找出代 表三天都不下雨的随机数个数,即可求出概率.
(2)研究等可能事件的概率时,用按比例分配的方法确定表 示各个结果的数字个数及范围.
1.(1)常用的随机数的产生方法主要有抽签法,利用计算 器或计算机.
(2)利用摸球或抽签得到的数是真正意义上的随机数,用计 算器或计算机得到的是伪随机数.
随机数的产生课件
均匀性
总结词
均匀性是指随机数生成器生成的数字在 预期范围内分布的均匀程度。
VS
详细描述
随机数序列的分布应该尽可能均匀,以确 保每个数字出现的概率接近预期的概率。 如果生成的随机数在某个范围内过于集中 ,或者某些数字出现的频率明显高于其他 数字,那么这种随机数生成器就不具备好 的均匀性。
独立性
总结词
独立性是指随机数生成器生成的数字之间相 互独立的程度。
详细描述
独立性意味着生成的每个随机数不应该依赖 于之前生成的数字。如果生成的随机数之间 存在依赖关系,那么这种随机数生成器就不 具备好的独立性。独立性是评估随机数生成 器性能的重要指标之一,因为在实际应用中 ,我们通常需要独立的随机数来进行各种计 算和模拟。
决策支持
在模拟和预测模型中,随 机数用于生成各种可能的 场景和结果,为决策提供 支持。
04
随机数生成器的性 能评估
周期性
总结词
周期性是指随机数生成器在经过一定数量的迭代后重复生成数字的特性。
详细描述
周期性是评估随机数生成器性能的重要指标之一。一个好的随机数生成器应该 有较长的周期,即能够持续生成新的随机数序列,而不是快速地重复之前的数 字。周期性越长,随机数生成器的可靠性越高。
素。
05
随机数生成器的选 择与使用
根据应用需求选择合适的随机数生成器
伪随机数生成器
适用于需要大量随机数但不需要高度随机性的场景,如模拟、游戏 、测试等。
真随机数生成器
适用于需要高度随机性和安全性的场景,如密码学、统计学、科学 计算等。
混合随机数生成器
结合伪随机数生成器和真随机数生成器的优点,适用于对随机性和安 全性都有一定要求但不需要达到最高标准的场景。
随机数的产生-课件
跟踪演练1 某校高一年级共20个班,1 200名学生,期中考试 时如何把学生分配到40个考场中去? 解 要把1 200人分到40个考场,每个考场30人,可用计算机 完成. (1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数按顺序给每个学生一个随机数(每人都不相同). (3)使用计算机的排序功能按随机数从小到大排列,可得到1 200名学生的考试号0001,0002,…,1200,然后0001~0030 为第一考场,0031~0060为第二考场,依次类推.
•
16、业余生活要有意义,不要越轨。2021/3/62021/3/6Marc h 6, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/62021/3/62021/3/62021/3/6
谢谢观赏
You made my day!
我们,还在路上……
69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315 27120 21782 58555 61017 45241 44134 92201 70362 83005 94976 56173 34783 16624 30344 01117 这就相当于做了 30 次试验,在这些数组中,如果恰有一个 0, 则表示恰有 4 棵成活,共有 9 组这样的数,于是我们得到种 植 5 棵这样的树苗恰有 4 棵成活的概率约为390=30%.
规律方法 整数随机数模拟试验估计概率时,首先要确定随机 数的范围和用哪些数代表不同的试验结果.我们可以从以下三 方面考虑: (1)当试验的基本事件等可能时,基本事件总数即为产生随机数 的范围,每个随机数代表一个基本事件; (2)研究等可能事件的概率时,用按比例分配的方法确定表示各 个结果的数字个数及总个数; (3)当每次试验结果需要n个随机数表示时,要把n个随机数作 为一组来处理,此时一定要注意每组中的随机数字能否重复.
(整数值)随机数(random numbers)的产生 课件
【思维·引】1.两次抛掷骰子,向上的点数构成一个两 位数. 2.利用随机数产生的步骤进行抽取.
【解析】1.选B.两枚骰子产生的随机数为2位随机数. 2.第一步,n=1; 第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整 数随机数x表示学生的座号;
第三步,执行第二步,再产生一个座号,若此座号与以前 产生的座号重复,则执行第二步,否则n=n+1; 第四步,如果n≤1 200,则重复执行第三步,否则执行第 五步; 第五步,按座号的大小排列,作为考号(不足四位的前面 添上“0”,补足位数),程序结束.
用整数随机数模拟试验估计概率时,首先要确定随机数 的范围和用哪些数代表不同的试验结果.我们可以从以 下三方面考虑:
(1)当试验的基本事件等可能时,基本事件总数即为产 生随机数的范围,每个随机数代表一个基本事件; (2)研究等可能事件的概率时,用按比例分配的方法确 定表示各个结果的数字个数及总个数;
【素养·探】 本题考查利用随机模拟估计概率,突出考查了数学抽象 的核心素养. 本例条件不变,求该运动员三次投篮均命中的概率.
【解析】由题意知模拟三次投篮的结果,经随机模拟产 生了20组随机数,在20组随机数中表示三次投篮均命中 的为431,113,共2组随机数,所以所求概率为 2 =0.1.
20
(整数值)随机数(random numbers) 的产生
1.随机数与伪随机数 (1)随机数的产生 ①标号:把n个大小、形状相同的小球分别标上 1,2,3,…,n; ②搅拌:放入一个袋中,把它们充分搅拌; ③摸取:从中摸出一个.
(2)伪随机数的产生 ①规则:用计算机或计算器依照确定算法; ②特点:具有周期性(周期很长); ③性质:它们具有类似随机数的性质.
(整数值)随机数的产生 课件
放回后重复以上过程,就得到一系列的100~124之间的
随机整数.
方法二:可以利用计算机产生随机数,以Excel为例: (1)选定A1格,键入“=RANDBETWEEN(100,124)”, 按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比 如A2至A25,点击粘贴,则在A2至A25的格中均为随机
【解析】用计算器或计算机产生1到5之间的整数随机
数,1,2表示能打开门,3,4,5表示打不开门.
(1)三个一组(每组数字不重复),统计总组数N及前两个 大于2,第三个是1或2的组数N1,则NN1 即为不能打开门 就扔掉,第三次才打开门的概率的近似值.
(2)三个一组(每组数字可重复),统计总组数M及前两个
2.除了1中的方法,还有其他方法吗?产生过程是怎样的?
提示:用计算器产生.过程如下: 以后反复按 键,就可以不断产生你需要的随机数.
结论:随机数和伪随机数的概念
(1)随机数:要产生1~n(n∈N*)之间的随机整数,把n个
_大__小__形__状__相同的小球分别标上1,2,3,…,n,放入一个 袋中,把它们_充__分__搅__拌__,然后从中摸出一个,这个球上 的数就称为随机数.
20
【方法总结】 1.随机模拟试验的步骤 (1)设计概率模型.(2)进行模拟试验.(3)统计试验结果.
2.计算器和计算机产生随机数的方法 用计算器的随机函数RANDI(a,b)或计算机的随机函数 RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数 值的随机数.
4
类型一 (整数值)随机数的产生方法
【典例1】要产生100~124之间的随机整数,你有哪些
方法?
【解题指南】方法一:应用随机模拟的方法,动手做试验. 方法二:利用计算器或计算机模拟试验产生随机数.
随机整数.
方法二:可以利用计算机产生随机数,以Excel为例: (1)选定A1格,键入“=RANDBETWEEN(100,124)”, 按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比 如A2至A25,点击粘贴,则在A2至A25的格中均为随机
【解析】用计算器或计算机产生1到5之间的整数随机
数,1,2表示能打开门,3,4,5表示打不开门.
(1)三个一组(每组数字不重复),统计总组数N及前两个 大于2,第三个是1或2的组数N1,则NN1 即为不能打开门 就扔掉,第三次才打开门的概率的近似值.
(2)三个一组(每组数字可重复),统计总组数M及前两个
2.除了1中的方法,还有其他方法吗?产生过程是怎样的?
提示:用计算器产生.过程如下: 以后反复按 键,就可以不断产生你需要的随机数.
结论:随机数和伪随机数的概念
(1)随机数:要产生1~n(n∈N*)之间的随机整数,把n个
_大__小__形__状__相同的小球分别标上1,2,3,…,n,放入一个 袋中,把它们_充__分__搅__拌__,然后从中摸出一个,这个球上 的数就称为随机数.
20
【方法总结】 1.随机模拟试验的步骤 (1)设计概率模型.(2)进行模拟试验.(3)统计试验结果.
2.计算器和计算机产生随机数的方法 用计算器的随机函数RANDI(a,b)或计算机的随机函数 RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数 值的随机数.
4
类型一 (整数值)随机数的产生方法
【典例1】要产生100~124之间的随机整数,你有哪些
方法?
【解题指南】方法一:应用随机模拟的方法,动手做试验. 方法二:利用计算器或计算机模拟试验产生随机数.
(整数值)随机数(random numbers)的产生 课件
(2)任取三球,恰有两个白球; 解 三个数一组(每组内不重复),统计总组数 M 及恰好有两个数小于 6 的 组数 M1,则MM1即为任取三个球,恰有两个白球的概率的近似值. (3)任取三球(分三次,每次放回再取),恰有3个白球. 解 三个数一组(每组内可重复),统计总组数 K 及三个数都小于 6 的组数 K1,则KK1即为任取三球(分三次,每次放回再取),恰有 3 个白球的概率的 近似值.
(整数值)随机数(random numbers)的产生
知识点一 基本事件
思考 掷一枚质地均匀的硬币两次,观察哪一面向上,结果有哪些? 答案 结果有4个,即正正、正反、反正、反反.
梳理 基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简 单的 随机 事件称为该次试验的基本事件. (2)特点:①任何两个基本事件是 互斥 的;②任何事件(除不可能事件) 都可以表示成基本事件的 和 .
2.伪随机数的产生 (1)规则:依照确定算法. (2)特点:具有周期性(周期很长). (3)性质:它们具有类似 随机数 的性质. 计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数 . 3.产生随机数的常用方法 (1) 用计算器产生 .(2) 用计算机产生 .(3) 抽签法 .
4. 随机模拟方法(蒙特卡罗方法) 利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到 的 频率 来估计 概率 ,这种用计算机或计算器模拟试验的方法称为随 机模拟方法或蒙特卡罗方法.
反思与感悟 (1)做整数随机模拟试验时应注意的相关事项 做整数随机模拟试验时,首先要确定随机数的范围,明确哪个数字代表哪个试 验结果. ①当试验的基本结果的可能性相等时,基本事件总数即为产生随机数的范围, 每个随机数代表一个基本事件; ②当研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字 个数及范围. (2)抽签法、利用计算器或计算机产生随机数方法的比较:抽签法、利用计算器 或计算机均可产生随机数、但抽签法能保证机会均等,而计算器或计算机产生 的随机数为伪随机数,不能保证等可能性,当总体容量非常大时,常用这种方 式近似代替随机数,但结果有一定误差.
(整数值)随机数(random numbers)的产生 课件
94976 56173 34783 16624 30344 01117
这就相当于做了30次试验,在这些数组中,若恰有一个0,则表示恰
有4棵成活,其中有9组这样的数,于是我们得到种植5棵这样的树苗,
9
恰有4棵成活的概率近似为 30 = 30%.
度快,操作简单、省时、省力.
2.用产生随机数的方法抽取样本要注意以下两点:(1)进行正确的
编号,并且编号要连续;(2)正确把握抽取的范围和容量.
估计古典概型的概率
【例2】 盒中有除颜色外其他均相同的5个白球和2个黑球,用随
机模拟法求下列事件的概率.
(1)任取一球,得到白球;
(2)任取三球,都是白球.
数随机数的范围和用哪些数代表不同的试验结果.可以从以下方面
考虑:
(1)试验的基本事件是等可能时,基本事件总数就是产生随机数的
范围,每个随机数字代表一个基本事件.
(2)按比例确定表示各个结果的数字个数及总个数.
(3)产生的整数随机数的组数n越大,估计的概率准确性越高.
n次重复试验恰好发生k次的概率
【例3】 种植某种树苗,成活率为0.9,若种植这种树苗5棵,求恰好
机数近似地看成随机数.
(2)利用计算器产生随机数的操作方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数
RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随
机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:
以后反复按ENTER键,就可以不断产生(1,25)之间的随机数.
归纳总结用频率估计概率时,需要做大量的重复试验,费时费力,
并且有些试验还无法进行,因而常用随机模拟试验来代替试验.产
生整数随机数的方法不仅是用计算器或计算机,还可以用试验产生
这就相当于做了30次试验,在这些数组中,若恰有一个0,则表示恰
有4棵成活,其中有9组这样的数,于是我们得到种植5棵这样的树苗,
9
恰有4棵成活的概率近似为 30 = 30%.
度快,操作简单、省时、省力.
2.用产生随机数的方法抽取样本要注意以下两点:(1)进行正确的
编号,并且编号要连续;(2)正确把握抽取的范围和容量.
估计古典概型的概率
【例2】 盒中有除颜色外其他均相同的5个白球和2个黑球,用随
机模拟法求下列事件的概率.
(1)任取一球,得到白球;
(2)任取三球,都是白球.
数随机数的范围和用哪些数代表不同的试验结果.可以从以下方面
考虑:
(1)试验的基本事件是等可能时,基本事件总数就是产生随机数的
范围,每个随机数字代表一个基本事件.
(2)按比例确定表示各个结果的数字个数及总个数.
(3)产生的整数随机数的组数n越大,估计的概率准确性越高.
n次重复试验恰好发生k次的概率
【例3】 种植某种树苗,成活率为0.9,若种植这种树苗5棵,求恰好
机数近似地看成随机数.
(2)利用计算器产生随机数的操作方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数
RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随
机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:
以后反复按ENTER键,就可以不断产生(1,25)之间的随机数.
归纳总结用频率估计概率时,需要做大量的重复试验,费时费力,
并且有些试验还无法进行,因而常用随机模拟试验来代替试验.产
生整数随机数的方法不仅是用计算器或计算机,还可以用试验产生
(整数值)随机数的产生 课件
下面是用Excel软件模拟的结果:
其中A,B,C三列是模拟三天的试验结果,例如第 一行前三列为888,表示三天均不下雨. 统计试验的结果.D,E,F列为统计结果.其中D 列表示如果三天中恰有两天下雨,则D为1,否则D 为0,其公式为“=IF(OR(AND(A1<4,B1<4,C1 >3),AND(A1<4,B1>3,C1<4),AND(A1>3, B1<4,C1<4,1,0)))”. E1表示30次试验中恰两天下雨的次数,其公式为 “=SUM(D 1∶D 30)”,F1表示30次试验中恰有 两天下雨的频率,其公式为“=E1/30”.
1
的组数
N1,则频率NN1即
为投掷两枚骰子都是 1 点的概率的近似值
点评:1.常见产生随机数的方法比较:
2.利用计算机或计算器产生随机数时,需切实保证 操作步骤与顺序的正确性,并且注意不同型号的计 算器产生随机数的方法可能会不同,具体操作可参 照其说明书. 利用抽签法产生随机数时需保证任何一个数被抽到 的机会均等.
例如,我们可以产生 0~9 之间的整数值随机数,用 0~3 表示下 雨,用 4~9 表示不下雨,这样就体现了下雨的概率为 40%,让计算 机连续产生三个这样的随机数作为一组模拟三天的下雨情况,如 021 表示三天都下雨,109 表示前两天下雨,第三天不下雨,产生一组这 样的随机数就表示做了一次试验,然后用 N 统计试验次数,用 N1 统 计数组中恰有两个在 0~3 之间的次数,则NN1为频率,由此可估计概 率.
②“从一等品零件中,随机抽取的 2 个零件直径相等”(记为事 件 B)的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3}, {A2,A5},{A3,A5},共有 6 种.所以 概型概率的计算步骤是: (1)算出基本事件的总数 n; (2)算出事件 A 包含的基本事件的个数 m; (3)算出事件 A 的概率 P(A)=mn.
人教A版高中数学必修三第三章3.2.2(整数值)随机数(randomnumbers)的产生教学课件
【例2】天气预报说,在今后的三天中,每一天下 雨的概率均为40%.这三天中恰有两天下雨的概率 大概是多少? 用三天中恰有两天下雨的频率估计概率
分析:
大量的实验
每次的实验的结果中同时含有三天是否下雨的情况(三 个数据)
每天是否下雨的情况 (满足40%条件)
用三天中恰有两天下雨的频率估计概率
以其中表示恰有两天下雨的随机数(0,1,2,3,)的 频率,作为这三天中恰有两天下雨的概率的近似值.
么表示一次投篮命中的数可以指定为( C ).
A.0,2,4,6,8 B.1,3,5,7,8,9 C.0,1,2,3,4,8,9 D.1,2,3,4,5,7,8,9
目标检测设计
2.请你用TI-nspire CAS图形计算器产生区间 [0,1]上的均匀随机数.
则需应用的函数是:____r_a_n_d_(__) _____
3.对于古典概型,任何事件A产生的概率为:
【问题1】将一个骰子掷1次,
1
(1)“向上一面出现1点”的概率是多少? 6
(2)如果将一个骰子掷1000次,
1000
“向上一面出现1点”的次数大约是多少? 6
167
(3)如果用实验的方法估计掷1次骰子“向上
一面出现1点”的概率,怎么做?
方法:通过大量重复掷骰子的实验,反复计算
【例2】天气预报说,在今后的三天中,每一天下雨的概
率均为40%.这三天中恰有两天下雨的概率大概是多少?
(1) 设计 利用计算器产生0~9之间的(整数值)随机数 概率模型 约定用0、1、2、3表示下雨,4、5、6、7、8、
9表示不下雨以体现下雨的概率是40%.
模拟三天的下雨情况:连续产生三个随机数为
便签本:→菜单 →5:概率 →4:随机
分析:
大量的实验
每次的实验的结果中同时含有三天是否下雨的情况(三 个数据)
每天是否下雨的情况 (满足40%条件)
用三天中恰有两天下雨的频率估计概率
以其中表示恰有两天下雨的随机数(0,1,2,3,)的 频率,作为这三天中恰有两天下雨的概率的近似值.
么表示一次投篮命中的数可以指定为( C ).
A.0,2,4,6,8 B.1,3,5,7,8,9 C.0,1,2,3,4,8,9 D.1,2,3,4,5,7,8,9
目标检测设计
2.请你用TI-nspire CAS图形计算器产生区间 [0,1]上的均匀随机数.
则需应用的函数是:____r_a_n_d_(__) _____
3.对于古典概型,任何事件A产生的概率为:
【问题1】将一个骰子掷1次,
1
(1)“向上一面出现1点”的概率是多少? 6
(2)如果将一个骰子掷1000次,
1000
“向上一面出现1点”的次数大约是多少? 6
167
(3)如果用实验的方法估计掷1次骰子“向上
一面出现1点”的概率,怎么做?
方法:通过大量重复掷骰子的实验,反复计算
【例2】天气预报说,在今后的三天中,每一天下雨的概
率均为40%.这三天中恰有两天下雨的概率大概是多少?
(1) 设计 利用计算器产生0~9之间的(整数值)随机数 概率模型 约定用0、1、2、3表示下雨,4、5、6、7、8、
9表示不下雨以体现下雨的概率是40%.
模拟三天的下雨情况:连续产生三个随机数为
便签本:→菜单 →5:概率 →4:随机
(整数值)随机数(random numbers)的产生 课件
二 随机模拟法估计概率
【例2】 同时抛掷两枚骰子,计算都是1点的概率. 【分析】 抛掷两枚骰子,相当于产生两个1到6的随机 数,因而可以产生随机数,然后两个一组进行分组,每组第一 个数表示第一个骰子的点数,第二个数表示第二个骰子的点 数.
【解】 利用计算机(或计算器)产生1到6之间的取整数值
的随机数,两个随机数作为一组,统计随机数总数n及其中两
个随机数都是1的组数m,,则频率
m n
即为抛掷两枚骰子都是1
点的概率的近似值.
三 用随机数模拟复杂事件的概率
【例3】 种植某种树苗,成活率为0.9,若种植这种树苗5 棵,求恰好成活4棵的概率.
【分析】 这里试验的可能结果虽然很多,但有有限个, 然而每个结果的出现不是等可能的,故不能应用古典概型概率 公式,可采用随机模拟的方法.
【解】 利用计算器或计算机产生0到9之间取整数值的随 机数,我们用0代表不成活,1至9的数字代表成活,这样可以 体现成活率是0.9.因为是种植5棵,所以每5个随机数为一组, 可产生30组随机数.
69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315
(整数值)随机数(random number s)的产生
1.随机数 要产生 1~n(n∈N*)之间的随机整数,把 n 个________相同 的小球分别标上 1,2,3,…,n,放入一个袋中,把它们充分 ________ , 然 后 从 袋 中 摸 出 一 个 , 这 个 球 上 的 数 就 称 为 ________.这样不放回地抽取 n 次,就可以得到 n 个随机整数, 并且每个球大小形状完全相同,摸出一个球后搅拌均匀再摸出 一个球,保证了每个球被摸出的概率是相同的,即每个随机数 的产生是等可能的.这种方法叫做抽签法.
(整数值)随机数(random numbers)的产生 课件
0.3
据此估计,该树苗种植 5 棵恰好 4 棵成活的概率为________.
(1)估计非古典概型的概率要设计恰当的试验方法,并且使试验 次数尽可能多,这样才与实际概率更接近. (2)本题易错点有两处:一是错误的理解数字的代表意义,将 1 至 9 的数字代表不成活,0 代表成活;二是理解随机数的意义 出错或数据统计错误,都会导致最后结果出错.
们为伪随机数. 3.随机数产生的方法 (1)用__计__算__器___产生;(2)用__计__算__机___产生;(3)_抽__签__法____产生.
探究点一 随机数的产生方法 某校高一全年级共 25 个班 1 200 人,期末考试时,如 何把学生分配到 40 个考场中去?
(1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数 RANDBETWEEN(1,1 200)按顺序给每个学生 一个随机数(每个人的都不同). (3)使用计算机排序功能按随机数从小到大排列,即可得到考试 号从 1 到 1 200 人的考试序号(注:1 号应为 0001,2 号应为 0002, 用 0 补足位数.前面再加上有关信息号码即可).
1.用随机模拟方法估计概率时,其准确程度决定于( B ) A.产生的随机数的大小 B.产生的随机数的个数 C.随机数对应的结果 D.产生随机数的方法 解析:用随机模拟方法估计概率时,其准确程度决定于产生的 随机数的个数.故选 B.
2.抛掷一枚骰子两次,用随机模拟方法估计点数和为 7 的概率,
共进行了两次试验,第 1 次产生了 60 组随机数,第 2 次产生了
(1)解决此题的关键是用随机函数给每个学生一个随机数作为序
号.
(2)常见产生随机数的方法比较
方法
抽签法
用计算器或计算机产生
随机数的产生PPT.
【练一练】1.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这
10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小
明忘记了密码的最后一个数字,如果小明登录QQ时密客字户 随意选取,则恰好能登录的概率是( )
小提示79: 尽量维护应聘者的自尊。
n
其正确步骤顺序是 ______(只需写出步骤的序号即可).
一、选择题(每题5分,共15分)
1.从含有3个元素的集合的所有子集中任取一个,所取的子集
是含有2个元素的集合的概率是( )
(A)3
10
(B)1
12
(C)45
64
(D)3
8
【解析】选D.所有子集共8个, ,{a},{b},{c},{a,b},{a,c},
职申请,尽快到你处工作。
(1) 用苏打水浸过的干净布冷敷局部,涂上獾油、清凉油等。
2.一个小组有6位同学,在其中选1位做小组长,用随机模拟法 估计甲被选中的概率,给出下列步骤: ①统计甲的编号出现的个数m; ②将六名学生编号1、2、3、4、5、6; ③利用计算器或计算机产生1到6之间的整数随机数,统计其个 数n; ④则甲被选中的概率估计是 m .
【练一练】1.与大量重复试验相比,随机模拟方法的优点是
()
(A)省时、省力
(B)能得概率的精确值
(C)误差小
(D)产生的随机数多
2.抛掷两枚相同的骰子,用随机模拟方法估计上面点数的和是 6的倍数的概率时,用1,2,3,4,5,6分别表示上面的点数是 1,2,3,4,5,6,用计算器或计算机分别产生1到6的两组整数随 机数各60个,每组第i个数组成一组,共组成60组数,其中有 一组是16,这组数表示的结果是否满足上面点数的和是6的倍 数:______.(填“是”或“否”)
随机数的产生课件
伪随机数生成器的实现
线性同余法
线性同余法是一种常见的伪随机数生成器,通 过迭代计算来产生序列。它需要确定种子和一 组参数来控制生成的随机数序列。
梅森旋转演算法
梅森旋转演算法是一种高质量的伪随机数生成 器。它使用位操作和旋转运算来生成随机数序 列,具有较长的周期和良好的统计特性。
真随机数生成器的实现
的游戏乐趣和挑战,如随机胜利条件、
道具生成和敌人行为。
3
密码学
随机数在密码学中起到关键作用,用 于生成密钥、加密数据和验证身份。
数学模型
随机数在数学模型中用于模拟和预测 复杂系统的行为,如气象模型、金融 模型和生态模型。
总结
随机数的重要性
随机数在现代科学和技术中扮演着重要角色, 为众多应用提供随机性、不确定性和安全性。
线性复杂性检测
线性复杂性检测用于检测随 机数生成器的线性复杂性, 即是否存在线性关系。线性 复杂性低的生成器更难预测数 生成器的周期性。长周期生 成器可以提供更长的随机序 列,减小重复和预测的可能 性。
随机数的应用案例
1
游戏设计
2
游戏设计中的随机元素可以提供更多
2. NIST Special Publication 800-90A. (2010). Recommendation for Random Number Generation Using Deterministic Random Bit Generators.
3. Bailey, D. et al. (2007). A Proposal for Truly Random Number Generation in Digital Hardware.
未来随机数生成器的发展方向
《随机数的产生》课件
局限性
伪随机数生成器受到初 始种子选择的影响,可 能会导致预测性和周期 性问题。
硬件随机数生成器
1 原理
基于物理过程(例如热 噪声、放电噪声等)生 成真正的随机数。
2 基于物理过程的硬
件随机数生成器
利用物理过程生成随机 数,但实现上存在一些 技术挑战。
3 优缺点分析
硬件随机数生成数生成器
1 原理
利用量子力学中的不确定性原理生成真正的随机数。
2 实现方式
目前有不同的实现方式,如基于光子的实现和基于超导电子的实现。
3 优缺点分析
量子随机数生成器生成的随机数具有绝对的随机性,但技术上尚不成熟且成本较高。
随机数的应用
1 密码学
2 模拟
随机数在密码学中起到重要作用,用于生 成加密密钥和随机挑战。
式的优缺点比较
3 发展趋势及挑战
随机数生成技术仍在不
伪随机数生成器便于实
断发展,量子随机数生
现,但存在周期性问题。
成器的应用前景广阔,
硬件随机数生成器和量
但还需要克服技术难题。
子随机数生成器生成的
随机数质量更高。
《随机数的产生》PPT课件
# 随机数的产生 ## 介绍 - 什么是随机数? - 随机数在计算机中的应用 - 常见的随机数生成方式
伪随机数生成器
1 定义
伪随机数是通过确定性 算法生成的,看起来像 是随机生成的。
2 线性同余法
使用线性同余法生成伪 随机数序列,但它存在 周期性问题。
3 伪随机数生成器的
随机数用于模拟各种现实世界的随机事物, 如天气、股票价格等。
3 游戏
4 科学计算
游戏中的随机性让游戏更有挑战性和趣味 性,使游戏更具变化。
伪随机数生成器受到初 始种子选择的影响,可 能会导致预测性和周期 性问题。
硬件随机数生成器
1 原理
基于物理过程(例如热 噪声、放电噪声等)生 成真正的随机数。
2 基于物理过程的硬
件随机数生成器
利用物理过程生成随机 数,但实现上存在一些 技术挑战。
3 优缺点分析
硬件随机数生成数生成器
1 原理
利用量子力学中的不确定性原理生成真正的随机数。
2 实现方式
目前有不同的实现方式,如基于光子的实现和基于超导电子的实现。
3 优缺点分析
量子随机数生成器生成的随机数具有绝对的随机性,但技术上尚不成熟且成本较高。
随机数的应用
1 密码学
2 模拟
随机数在密码学中起到重要作用,用于生 成加密密钥和随机挑战。
式的优缺点比较
3 发展趋势及挑战
随机数生成技术仍在不
伪随机数生成器便于实
断发展,量子随机数生
现,但存在周期性问题。
成器的应用前景广阔,
硬件随机数生成器和量
但还需要克服技术难题。
子随机数生成器生成的
随机数质量更高。
《随机数的产生》PPT课件
# 随机数的产生 ## 介绍 - 什么是随机数? - 随机数在计算机中的应用 - 常见的随机数生成方式
伪随机数生成器
1 定义
伪随机数是通过确定性 算法生成的,看起来像 是随机生成的。
2 线性同余法
使用线性同余法生成伪 随机数序列,但它存在 周期性问题。
3 伪随机数生成器的
随机数用于模拟各种现实世界的随机事物, 如天气、股票价格等。
3 游戏
4 科学计算
游戏中的随机性让游戏更有挑战性和趣味 性,使游戏更具变化。
(整数值)随机数的产生 课件
②求这2个零件直径相等的概率.
解析:(1)由所给数据可知,一等品零件共有 6 个.设“从 10
个零件中,随机抽取一个为一等品”为事件 A,则 P(A)=160=35. (2)①一等品零件的编号为 A1,A2,A3,A4,A5,A6,从这 6 个一
等品零件中随机抽取 2 个,所有可能的结果有:{A1,A2},{A1,A3}, {A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2, A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},
跟踪 训练
3.利用计算器产生10个入 反复按 ENTER 键 10 次即可得到.
题型四 古典概率模型的综合问题
例4 有编号为A1,A2,…A10的10个零件,测量其 直径(单位:cm),得到下面数据:
编号 A1
A2
A3
A4
A5
A6
A7
A8
A9 A10
(3)设初三年级女生比男生多的事件为 A,初三年级女生男生数记为(y, z).
跟踪 训练
由(2)知 y+z=500,且 y,z∈N*,基本事件空间包含的基
本事件有:(245,255),(246,254),(247,253),…,(255, 245),共 11 个.
事 件 A 包 含 的 基 本 事 件 有 : (251,249) , (252,248) , (253,247),(254,246),(255,245),共 5 个,即 P(A)=151.
跟踪 训练
4.某初级中学共有学生2 000名,各年级男、女 生人数如下表:
女生 男生
初一年级 373 377
初二年级
解析:(1)由所给数据可知,一等品零件共有 6 个.设“从 10
个零件中,随机抽取一个为一等品”为事件 A,则 P(A)=160=35. (2)①一等品零件的编号为 A1,A2,A3,A4,A5,A6,从这 6 个一
等品零件中随机抽取 2 个,所有可能的结果有:{A1,A2},{A1,A3}, {A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2, A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},
跟踪 训练
3.利用计算器产生10个入 反复按 ENTER 键 10 次即可得到.
题型四 古典概率模型的综合问题
例4 有编号为A1,A2,…A10的10个零件,测量其 直径(单位:cm),得到下面数据:
编号 A1
A2
A3
A4
A5
A6
A7
A8
A9 A10
(3)设初三年级女生比男生多的事件为 A,初三年级女生男生数记为(y, z).
跟踪 训练
由(2)知 y+z=500,且 y,z∈N*,基本事件空间包含的基
本事件有:(245,255),(246,254),(247,253),…,(255, 245),共 11 个.
事 件 A 包 含 的 基 本 事 件 有 : (251,249) , (252,248) , (253,247),(254,246),(255,245),共 5 个,即 P(A)=151.
跟踪 训练
4.某初级中学共有学生2 000名,各年级男、女 生人数如下表:
女生 男生
初一年级 373 377
初二年级
(整数值)随机数(random numbers)的产生 课件
由计算器或计算机模拟试验的方法为 随机模拟方法或蒙特卡罗方法
1.如何利用计算器产生随机数?
例1: 产生1到25之间的取整数值的随机数. 解:具体操作如下 第一步:ON→MODE→MODE→MODE→1→0 →
第二步:25 →SHIFT→RAN#→+ → 0.5 → = 第三步:以后每次按“=”都会产生一个1到25的取 整数值的随机数.
若要产生[M,N]的随机整数,操作如下:
第一步:ON → MODE→MODE→MODE→1→0 → 第二步:N-M+1→SHIFT→RAN#→+ → M-0.5 →= 第三步:以后每次按“=”都会产生一个M到N的取 整数值的随机数.
(1)第一步,第二步的操作顺序可以互换; (2)如果已进行了一次随机整数的产生,再做类似的操
产生随机数的方法:
(1)由试验(如摸球或抽签)产生随机数 产生1—25之间的随机整数. ①将25个大小形状相同的小球分别标1,2, …, 24, 25, 放入一个袋中,充分搅拌 ②从中摸出一个球,这个球上的数就是 随机数
产生随机数的方法: (2)由计算器或计算机产生随机数 计算器或计算机产生的随机数是根据确定的算法产生的, 具有周期性(周期很长),具有类似随机数的性质,但并不 是真正的随机数,故叫 伪随机数
C32 0.42 (1 0.4) 0.288
试设计一个用计算器或计算机模拟掷骰子的实验, 估计出现一点的概率. (1)规定1表示出现1点,2表示出现2点,...,6 表示出现6点
(2)用计算器或计算机产生N个1至6之间的随机数
(3)统计数字1的个数n,算出概率的近似值n/N
(整数值)随机数的产生
试验次数
2048 4040 12000 24000 30000 72088
1.如何利用计算器产生随机数?
例1: 产生1到25之间的取整数值的随机数. 解:具体操作如下 第一步:ON→MODE→MODE→MODE→1→0 →
第二步:25 →SHIFT→RAN#→+ → 0.5 → = 第三步:以后每次按“=”都会产生一个1到25的取 整数值的随机数.
若要产生[M,N]的随机整数,操作如下:
第一步:ON → MODE→MODE→MODE→1→0 → 第二步:N-M+1→SHIFT→RAN#→+ → M-0.5 →= 第三步:以后每次按“=”都会产生一个M到N的取 整数值的随机数.
(1)第一步,第二步的操作顺序可以互换; (2)如果已进行了一次随机整数的产生,再做类似的操
产生随机数的方法:
(1)由试验(如摸球或抽签)产生随机数 产生1—25之间的随机整数. ①将25个大小形状相同的小球分别标1,2, …, 24, 25, 放入一个袋中,充分搅拌 ②从中摸出一个球,这个球上的数就是 随机数
产生随机数的方法: (2)由计算器或计算机产生随机数 计算器或计算机产生的随机数是根据确定的算法产生的, 具有周期性(周期很长),具有类似随机数的性质,但并不 是真正的随机数,故叫 伪随机数
C32 0.42 (1 0.4) 0.288
试设计一个用计算器或计算机模拟掷骰子的实验, 估计出现一点的概率. (1)规定1表示出现1点,2表示出现2点,...,6 表示出现6点
(2)用计算器或计算机产生N个1至6之间的随机数
(3)统计数字1的个数n,算出概率的近似值n/N
(整数值)随机数的产生
试验次数
2048 4040 12000 24000 30000 72088
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/62021/3/62021/3/63/6/2021 9:52:05 AM
•
11、越是没有本领的就越加自命不凡 。2021/3/62021/3/62021/3/6M ar-216- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/62021/3/62021/3/6Saturday, March 06, 2021
跟踪演练1 某校高一年级共20个班,1 200名学生,期中考试 时如何把学生分配到40个考场中去? 解 要把1 200人分到40个考场,每个考场30人,可用计算机 完成. (1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数按顺序给每个学生一个随机数(每人都不相同). (3)使用计算机的排序功能按随机数从小到大排列,可得到1 200名学生的考试号0001,0002,…,1200,然后0001~0030 为第一考场,0031~0060为第二考场,依次类推.
高中数学·必修3·人教A版
3.2.2 (整数值)随机数(random numbers)的产生
[学习目标] 1.了解随机数的意义. 2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率. 3.理解用模拟方法估计概率的实质.
[预习导引] 1.随机数
要产生1~n(n∈N*)之间的随机整数,把n个_大__小__形__状__相同的 小球分别标上1,2,3,…,n,放入一个袋中,把它们_充__分_ _搅__拌__,然后从中摸出一个,这个球上的数就称为随机数.
要点一 随机数的产生方法
例1 产生10个1~100之间的取整数值的随机数. 解 法一 抽签法. (1)把100个大小、形状相同的小球分别标上号码1,2, 3,…,100; (2)把这些已经标上号码的小球放到一个袋子中搅拌均匀. (3)从袋子中任意摸出一个小球,这个球上的数就是第一个 随机数. (4)把步骤(3)中的操作重复10次,即可得到10个1~100 之间的整数值随机数.
答案 A
3.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9
这10个数字中的6个数字组成的六位数,由于长时间未登
录QQ,小明忘记了密码的最后一个数字,如果小明登录
QQ时密码的最后一个数字随意选取,则恰好能登录的概
率是
()
1 A.105 答案 D
1 B.104
1 C.102
1 D.10
解析 只考虑最后一位数字即可,从 0 至 9 这 10 个数字中
要点二 随机模拟法估计概率
例2 种植某种树苗成活率为0.9,若种植这种树苗5棵,求恰 好成活4棵的概率.设计一个试验,随机模拟估计上述概 率.
解 利用计算器或计算机产生0到9之间取整数值的随机数, 我们用0代表不成活,1至9的数字代表成活,这样可以体 现成活率是0.9,因为是种植5棵,所以每5个随机数作为一 组可产生30组随机数:
•
16、业余生活要有意义,不要越轨。2021/3/62021/3/6Marc h 6, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/62021/3/62021/3/62021/3/6
谢谢观赏
You made my day!
我们,还在路上……
2.计算器和计算机产生随机数的方法 用计算器的随机函数RANDI(a,b)或计算机的随机函数 RANDBETWEEN(a,b)可以产生从整数a到整数b的取整 数值的随机数.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/62021/3/6Saturday, March 06, 2021
2.伪随机数 计算机或计算器产生的随机数是依照_确__定__算__法__产生的数, 具有_周__期__性__(_周__期__很长),它们具有类似_随__机__数__的性 质.因此,计算机或计算器产生的并不是_真__正__的__随__机__数__, 我们称它们为伪随机数.
3.产生随机数的常用方法 ①_用__计__算__器__产__生__;②_用__计__算__机__产__生__;③_抽__签__法__.
规律方法 整数随机数模拟试验估计概率时,首先要确定随机 数的范围和用哪些数代表不同的试验结果.我们可以从以下三 方面考虑: (1)当试验的基本事件等可能时,基本事件总数即为产生随机数 的范围,每个随机数代表一个基本事件; (2)研究等可能事件的概率时,用按比例分配的方法确定表示各 个结果的数字个数及总个数; (3)当每次试验结果需要n个随机数表示时,要把n个随机数作 为一组来处理,此时一定要注意每组中的随机数字能否重复.
跟踪演练2 某篮球爱好者做投篮练习,假设其每次投篮命中 的概率是60%,那么在连续三次投篮中,三次都投中的概率 是多少? 解 我们通过设计模拟试验的方法来解决问题,利用计算机 或计算器可以产生0到9之间的取整数值的随机数.我们用1, 2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可 以体现投中的概率是60%.因为是投篮三次,所以每三个随机 数作为一组.例如:产生20组随机数:
812 932 569 683 271 989 730 537 925 834 907 113 966 191 432 256 393 027 556 755 这就相当于做了20次试验,在这组数中,如果3个数均在1,2, 3,4,5,6中,则表示三次都投中,它们分别是:113,432, 256,556,即共有4个数,我们得到了三次投篮都投中的概率 近似为=20%.
法二 用计算器产生 按键过程如下:
以后反复按 ENTER 键 10 次,就可得到 10 个 1~100 之间的取 整数值的随机数.
规律方法 1.产生随机数可以采用抽签法或用计算机(器)产生 随机数. 2.利用计算机或计算器产生随机数时,需切实保证操作步骤 与顺序的正确性.并且注意不同型号的计算器产生随机数的 方法可能会不同,具体操作可参照其说明书.
所以 P=280=25.
5.在利用整数随机数进行随机模拟试验中,整数a到整数b之
间的每个整数出现的可能性是________.
答案
1 b-a+1
解析 [a,b]中共有 b-a+1 个整数,每个整数出现的可能
性相等,所以每个整数出现的可能性是b-1a+1.
1.随机数具有广泛的应用,可以帮助我们安排和模拟一些试 验,这样可以代替我们自己做大量重复试验.通过本节课 的学习,我们要熟练掌握随机数产生的方法以及随机模拟 试验的步骤:(1)设计概率模型,(2)进行模拟试验,(3)统 计试验结果.
随机选择一个作为密码的最后一位数字有 10 种可能,选对
只有一种可能,所以选对的概率是110.
4.从数字1,2,3,4,5中任意取出两个不同的数字构成一
个两位数,则这个两位数大于40的概率是
()
A.15
B.25
C.35
D.45
答案 B
解析 基本事件总数为 20,而大于 40 的基本事件数为 8 个,
1.用随机模拟方法估计概率时,其准确程度决定于 ( )
A.产生的随机数的大小
B.产生的随机数的个数
C.随机数对应的结果
D.产生随机数的方法
答案 B
解析 随机数容量越大,概率越接近实际数.
2.与大量重复试验相比,随机模拟方法的优点是 ( )
A.省时、省力
B.能得概率的精确值
C.误差小
D.产生的随机数多Fra bibliotek•13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/62021/3/62021/3/62021/3/63/6/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月6日星期 六2021/3/62021/3/62021/3/6
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/62021/3/62021/3/63/6/2021
69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315 27120 21782 58555 61017 45241 44134 92201 70362 83005 94976 56173 34783 16624 30344 01117 这就相当于做了 30 次试验,在这些数组中,如果恰有一个 0, 则表示恰有 4 棵成活,共有 9 组这样的数,于是我们得到种 植 5 棵这样的树苗恰有 4 棵成活的概率约为390=30%.