初中数学一次函数图文解析(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
∵一次函数 的图象与正比例函数 的图象平行,
∴k=-6,
∵一次函数 经过点A(1,-3),
∴-3=-6+b,
解得:b=3,
∴一次函数的解析式为y=-6x+3,
∵-6<0,3>0,
∴一次函数图象经过二、四象限,与y轴交于正半轴,
∴这个一次函数的图象一定经过一、二、四象限,
故选:C.
【点睛】
本题考查了两条直线平行问题及一次函数的性质:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴.
故选B.
【点睛】
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
17.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为( )
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
9.将直线 向下平移 个单位长度得到新直线 ,则 的值为()
A. B. C. D.
【答案】D
【解析】
【分析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知:直线y=2x+1向下平移n个单位长度,得到新的直线的解析式是y=2x+1-n,则1-n=-1,
解得n=2.
故选:D.
故选A.
【点睛】
本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.
16.如图,平面直角坐标系中, 的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线 与 有交点时,b的取值范围是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y= x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.
6.如图,点 在数轴上分别表示数 ,则一次函数 的图像一定不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】A
【解析】
【分析】
根据数轴得出0<﹣2a+3<1,求出1<a<1.5,进而可判断1﹣a和a﹣2的正负性,从而得到答案.
【详解】
解:根据数轴可知:0<﹣2a+3<1,
解得:1<a<1.5,
∴m>0.
∵一次函数y=mx+|m-1|的图象过点(0,2),
∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).
故选B.
【点睛】
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
2.给出下列函数:①y=﹣3x+2:②y= ;③y=﹣ :④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是( )
12.如图,已知直线 与 相交于点 ,点 的横坐标为 ,则关于 的不等式 的解集在数轴上表示正确的是().
A. B.
C. D.
【答案】D
【解析】
试题解析:当x>-1时,x+b>kx-1,
即不等式x+b>kx-1的解集为x>-1.
故选A.
考点:一次函数与一元一次不等式.
13.函数 中, 随 的增大而增大,则直线 经过()
【答案】B
【解析】
【分析】
求出m的值,可得该一次函数y随x增大而减小,再根据与x轴的交点坐标可得不等式解集.
【详解】
解:把 代入 得: ,
解得: ,
∴一次函数 中y随x增大而减小,
∵一次函数 与x轴的交点为 ,
∴不等式 的解集是: ,
故选:B.
【点睛】
本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限
D.若关于x的一元一次不等式组 无解,则m的取值范围是
【答案】B
【解析】
【分析】
利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.
【详解】
A.三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;
A.第一、三、四象限B.第二、三、四象限
C.第一、二、四象限D.第一、二、三象限
【答案】B
【解析】
【分析】
根据一次函数的增减性,可得 ;从而可得 ,据此判断直线 经过的象限.
【详解】
解: 函数 中,y随x的增大而增大,
,则
,
直线 经过第二、三、四象限.
故选:B.
【点睛】
本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,图象经过一、三象限;当k<0时,y随x的增大而减小,图象经过二、四象限;当b>0时,此函数图象交y轴于正半轴;当b<0时,此函数图象交y轴于负半轴.
【答案】B
【解析】
【分析】
由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.
【详解】
∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),
【详解】
解:一次函数y=kx+b(k,b是常数,k≠0)的图象与x轴的交点是(2,0),
当x>2时,y<0.
故答案为:x>2.
故选:C.
【点睛】
本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.
4.如图,函数 和 的图象相交于点 ,则关于 的不等式 的解集为()
15.已知一次函数y=kx+k,其在直角坐标系中的图象大体是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.
【详解】
函数的解析式可化为y=k(x+1),
即函数图象与x轴的交点为(﹣1,0),
观察四个选项可得:A符合.
【详解】
解:直线y= x+b经过点B时,将B(3,1)代入直线y= x+b中,可得 +b=1,解得b=- ;
直线y= x+b经过点A时:将A(1,1)代入直线y= x+b中,可得 +b=1,解得b= ;
直线y= x+b经过点C时:将C(2,2)代入直线y= x+b中,可得1+b=2,解得b=1.
故b的取值范围是- ≤b≤1.
【详解】Baidu Nhomakorabea
一次函数 ,令x=0,则y=1,
∴点A的坐标为(0,1),
∴OA=1,
∴正方形M1的边长为 ,
∴正方形M1的面积= ,
∴正方形M1的对角线为 ,
∴正方形M2的边长为 ,
∴正方形M2的面积= ,
同理可得正方形M3的面积= ,
则正方形 的面积是 ,
故选B.
【点睛】
本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;
D.若关于x的一元一次不等式组 无解,则m的取值范围是 ,正确,是真命题;
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
8.一次函数 的图象与正比例函数 的图象平行且经过点A(1,-3),则这个一次函数的图象一定经过( )
A.第一、二、三象限B.第一、三、四象限
C.第一、二、四象限D.第二、三、四象限
【答案】C
【解析】
【分析】
由一次函数 的图象与正比例函数 的图象平行可得k=-6,把点A坐标代入y=-6x+b可求出b值,即可得出一次函数解析式,根据一次函数的性质即可得答案.
14.在平面直角坐标系中,直线 与y轴交于点A,如图所示,依次正方形 ,正方形 ,……,正方形 ,且正方形的一条边在直线m上,一个顶点x轴上,则正方形 的面积是()
A. B. C. D.
【答案】B
【解析】
【分析】
由一次函数 ,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形 的面积.
故选:A.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
5.下列函数(1)y=x(2)y=2x﹣1(3)y= (4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.
详解:由表可知:常量为0.5;
所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.
故选A.
点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.
11.下列命题是假命题的是()
A.三角形的外心到三角形的三个顶点的距离相等
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16
A.①③B.③④C.②④D.②③
【答案】B
【解析】
【分析】
分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.
【详解】
解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;
②y= ,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;
③y=﹣ ,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
【详解】
解:(1)y=x是一次函数,符合题意;
(2)y=2x﹣1是一次函数,符合题意;
(3)y= 是反比例函数,不符合题意;
(4)y=2﹣3x是一次函数,符合题意;
(5)y=x2﹣1是二次函数,不符合题意;
故是一次函数的有3个.
故选:B.
【点睛】
此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
x(kg)
0
1
2
3
4
5
6
y(cm)
12
12.5
13
13.5
14
初中数学一次函数图文解析(1)
一、选择题
1.一次函数ymx 的图像过点(0,2),且y随x的增大而增大,则m的值为()
A.1B.3C.1D.1或3
【答案】B
【解析】
【分析】
先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.
【详解】
∵一次函数y=mx+|m-1|中y随x的增大而增大,
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.
【详解】
解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),
∴−8=−4m,
解得:m=2,
故A点坐标为(2,−8),
∵kx+b>−4x时,(k+4)x+b>0,
则关于x的不等式(k+4)x+b>0的解集为:x>2.
∴1﹣a<0,a﹣2<0,
∴一次函数 的图像经过第二、三、四象限,不可能经过第一限.
故选:A.
【点睛】
本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.
7.已知直线 经过点 ,则关于 的不等式 的解集是()
A. B. C. D.
14.5
15
A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+12
【答案】A
【解析】
分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.
④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
故选:B.
【点睛】
此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.
3.一次函数 是( 是常数, )的图像如图所示,则不等式 的解集是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠0)的图象与x轴的交点是(2,0),得到当x>2时,y<0,即可得到答案.
∵一次函数 的图象与正比例函数 的图象平行,
∴k=-6,
∵一次函数 经过点A(1,-3),
∴-3=-6+b,
解得:b=3,
∴一次函数的解析式为y=-6x+3,
∵-6<0,3>0,
∴一次函数图象经过二、四象限,与y轴交于正半轴,
∴这个一次函数的图象一定经过一、二、四象限,
故选:C.
【点睛】
本题考查了两条直线平行问题及一次函数的性质:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴.
故选B.
【点睛】
考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
17.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为( )
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
9.将直线 向下平移 个单位长度得到新直线 ,则 的值为()
A. B. C. D.
【答案】D
【解析】
【分析】
直接根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知:直线y=2x+1向下平移n个单位长度,得到新的直线的解析式是y=2x+1-n,则1-n=-1,
解得n=2.
故选:D.
故选A.
【点睛】
本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.
16.如图,平面直角坐标系中, 的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线 与 有交点时,b的取值范围是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y= x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.
6.如图,点 在数轴上分别表示数 ,则一次函数 的图像一定不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】A
【解析】
【分析】
根据数轴得出0<﹣2a+3<1,求出1<a<1.5,进而可判断1﹣a和a﹣2的正负性,从而得到答案.
【详解】
解:根据数轴可知:0<﹣2a+3<1,
解得:1<a<1.5,
∴m>0.
∵一次函数y=mx+|m-1|的图象过点(0,2),
∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).
故选B.
【点睛】
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
2.给出下列函数:①y=﹣3x+2:②y= ;③y=﹣ :④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是( )
12.如图,已知直线 与 相交于点 ,点 的横坐标为 ,则关于 的不等式 的解集在数轴上表示正确的是().
A. B.
C. D.
【答案】D
【解析】
试题解析:当x>-1时,x+b>kx-1,
即不等式x+b>kx-1的解集为x>-1.
故选A.
考点:一次函数与一元一次不等式.
13.函数 中, 随 的增大而增大,则直线 经过()
【答案】B
【解析】
【分析】
求出m的值,可得该一次函数y随x增大而减小,再根据与x轴的交点坐标可得不等式解集.
【详解】
解:把 代入 得: ,
解得: ,
∴一次函数 中y随x增大而减小,
∵一次函数 与x轴的交点为 ,
∴不等式 的解集是: ,
故选:B.
【点睛】
本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限
D.若关于x的一元一次不等式组 无解,则m的取值范围是
【答案】B
【解析】
【分析】
利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.
【详解】
A.三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;
A.第一、三、四象限B.第二、三、四象限
C.第一、二、四象限D.第一、二、三象限
【答案】B
【解析】
【分析】
根据一次函数的增减性,可得 ;从而可得 ,据此判断直线 经过的象限.
【详解】
解: 函数 中,y随x的增大而增大,
,则
,
直线 经过第二、三、四象限.
故选:B.
【点睛】
本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,图象经过一、三象限;当k<0时,y随x的增大而减小,图象经过二、四象限;当b>0时,此函数图象交y轴于正半轴;当b<0时,此函数图象交y轴于负半轴.
【答案】B
【解析】
【分析】
由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.
【详解】
∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),
【详解】
解:一次函数y=kx+b(k,b是常数,k≠0)的图象与x轴的交点是(2,0),
当x>2时,y<0.
故答案为:x>2.
故选:C.
【点睛】
本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.
4.如图,函数 和 的图象相交于点 ,则关于 的不等式 的解集为()
15.已知一次函数y=kx+k,其在直角坐标系中的图象大体是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.
【详解】
函数的解析式可化为y=k(x+1),
即函数图象与x轴的交点为(﹣1,0),
观察四个选项可得:A符合.
【详解】
解:直线y= x+b经过点B时,将B(3,1)代入直线y= x+b中,可得 +b=1,解得b=- ;
直线y= x+b经过点A时:将A(1,1)代入直线y= x+b中,可得 +b=1,解得b= ;
直线y= x+b经过点C时:将C(2,2)代入直线y= x+b中,可得1+b=2,解得b=1.
故b的取值范围是- ≤b≤1.
【详解】Baidu Nhomakorabea
一次函数 ,令x=0,则y=1,
∴点A的坐标为(0,1),
∴OA=1,
∴正方形M1的边长为 ,
∴正方形M1的面积= ,
∴正方形M1的对角线为 ,
∴正方形M2的边长为 ,
∴正方形M2的面积= ,
同理可得正方形M3的面积= ,
则正方形 的面积是 ,
故选B.
【点睛】
本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;
D.若关于x的一元一次不等式组 无解,则m的取值范围是 ,正确,是真命题;
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
8.一次函数 的图象与正比例函数 的图象平行且经过点A(1,-3),则这个一次函数的图象一定经过( )
A.第一、二、三象限B.第一、三、四象限
C.第一、二、四象限D.第二、三、四象限
【答案】C
【解析】
【分析】
由一次函数 的图象与正比例函数 的图象平行可得k=-6,把点A坐标代入y=-6x+b可求出b值,即可得出一次函数解析式,根据一次函数的性质即可得答案.
14.在平面直角坐标系中,直线 与y轴交于点A,如图所示,依次正方形 ,正方形 ,……,正方形 ,且正方形的一条边在直线m上,一个顶点x轴上,则正方形 的面积是()
A. B. C. D.
【答案】B
【解析】
【分析】
由一次函数 ,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形 的面积.
故选:A.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
5.下列函数(1)y=x(2)y=2x﹣1(3)y= (4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.
详解:由表可知:常量为0.5;
所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.
故选A.
点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.
11.下列命题是假命题的是()
A.三角形的外心到三角形的三个顶点的距离相等
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16
A.①③B.③④C.②④D.②③
【答案】B
【解析】
【分析】
分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.
【详解】
解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;
②y= ,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;
③y=﹣ ,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
【详解】
解:(1)y=x是一次函数,符合题意;
(2)y=2x﹣1是一次函数,符合题意;
(3)y= 是反比例函数,不符合题意;
(4)y=2﹣3x是一次函数,符合题意;
(5)y=x2﹣1是二次函数,不符合题意;
故是一次函数的有3个.
故选:B.
【点睛】
此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
x(kg)
0
1
2
3
4
5
6
y(cm)
12
12.5
13
13.5
14
初中数学一次函数图文解析(1)
一、选择题
1.一次函数ymx 的图像过点(0,2),且y随x的增大而增大,则m的值为()
A.1B.3C.1D.1或3
【答案】B
【解析】
【分析】
先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.
【详解】
∵一次函数y=mx+|m-1|中y随x的增大而增大,
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.
【详解】
解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),
∴−8=−4m,
解得:m=2,
故A点坐标为(2,−8),
∵kx+b>−4x时,(k+4)x+b>0,
则关于x的不等式(k+4)x+b>0的解集为:x>2.
∴1﹣a<0,a﹣2<0,
∴一次函数 的图像经过第二、三、四象限,不可能经过第一限.
故选:A.
【点睛】
本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.
7.已知直线 经过点 ,则关于 的不等式 的解集是()
A. B. C. D.
14.5
15
A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+12
【答案】A
【解析】
分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.
④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;
故选:B.
【点睛】
此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.
3.一次函数 是( 是常数, )的图像如图所示,则不等式 的解集是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠0)的图象与x轴的交点是(2,0),得到当x>2时,y<0,即可得到答案.