分析非线性系统的方法

分析非线性系统的方法
分析非线性系统的方法

非线性系统稳定性问题的判定方法和发展趋势

任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。所以,当系统承受干扰之后,能否稳妥地保持预订的运动轨迹或者工作状态,即系统的稳定性是首要考虑的。一个系统的稳定性,包括平衡态的稳定性问题和任一运动的稳定性问题。而对于给定运动的稳定性可以变换成关于平衡点的稳定性问题。

对平衡点的稳定性进行分析可将平衡点的稳定性定义为李雅普诺夫稳定、一致稳定、渐进稳定、一致渐近稳定、按指数渐进稳定和全局渐进稳定,除了全局渐进稳定,其他都是局部的概念。

非线性系统的数学模型不满足叠加原理或其中包含非线性环节。包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。它与线性系统有以下主要区别:

1.线性控制系统只能有一个平衡点或无穷多的平衡点。但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。

由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。

现代广泛应用于非线性系统上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。另外,在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。目前分析非线性控制系统的常用方法如下:

1、线性化方法

采用线性化模型来近似分析非线性系统。

这种近似一般只限于在工作点附近的小信号情况下才是正确的。这种线性化近似,只是对具有弱非线性(或称非本质非线性)的系统。

常用线性化方法,有正切近似法和最小二乘法。

此外,对一些物理系统的非线性特性比较显著,甚至在工作点附件的小范围内也是非线性的,并且不能用一条简单的直线来代表整个非线性系统特性的系统,可采用分段线性化方法。2、相平面法

相平面法是一种基于时域的分析方法,一种用图解法求解一、二阶非线性常微分方程的方法。

该方法通过图解法将一阶和二阶系统的运动过程转化为位置和速度平面上的相轨迹,从而比较直观、准确地反映系统的稳定性、平衡状态和稳态精度以及初始条件及参数对系统运动的影响。相轨迹的绘制方法步骤简单、计算量小,特别适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统

对于分段线性的非线性系统来说,相平面分析法的步骤为:

(1)用n条分界线(开关线,转换线)将相平面分成n个线性区域;(2)分别写出各个线性区域的微分方程;(3)求出各线性区的奇点位置并画出相平面图;

(4)将各相邻区的相轨迹联成连续曲线------非线性系统的相轨迹。根据绘制出的xx

相轨迹图,去研究非线性系统的稳定性和动态性能。这种方法只适用于一、二阶系统和由阶跃或斜坡输入信号激励的情况。

3、描述函数法又称为谐波线性化法

描述函数法是一种基于频率域的分析方法,一种工程近似方法。

在一定的条件下,用非线性元件输出的基波信号代替在正弦作用下的非正弦输出,使非线性元件近似于一个线性元件,从而可以应用乃奎斯特稳定判据对系统的稳定性进行判别。

这种方法主要用于研究非线性系统的稳定性和自振荡问题。如系统产生自振荡,如何求出其振荡的频率和幅值,以及寻求消除自振荡的方法等。但不能直接给出有关暂态响应方面的可靠信息。

4、李雅普诺夫第一法

李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似数学模型(线性化模型)稳定性的方法。它的基本思路是:首先求系统的平衡状态(非线性系统有多个平衡点);将状态方程在平衡点附近进行线性化(包括不同的平衡点);求出线性化后状态方程的特征值,根据全部特征值在复平面上的分布情况来判定系统在零输入情况下的稳定性。若出现特征值为0的情形需要用到中心流形定理。

李雅普诺夫第一方法与经典控制理论中稳定性判据的思路一致,需求解线性化状态方程或线性状态方程的特征值,根据特征值在复平面的分布来分析稳定性。

但它具有局限性,李雅普诺夫第一方法只讨论了系统状态的稳定性问题,而没有讨论经典控制理论中的输出稳定性问题;由于李雅普诺夫第一法需要求解线性化后系统的特征值,因此该方法也仅能适用于非线性定常系统或线性定常系统,而不能推广至时变系统;仅适用于分析弱非线性问题。

5、李雅普诺夫第二法

考虑到李雅普诺夫第一法的局限性提出了李雅普若夫第二法。李雅普诺夫第二法又称为直接法,它是一种对线性系统和非线性系统、定常系统和时变系统都适用的方法。它是在用能量观点分析稳定性的基础上建立起来的。基于这样的观点,只要能找出一个能合理描述动态系统的n维状态的某种形式的能量正性函数,通过考察该函数随时间推移是否衰减,就可判断系统平衡态的稳定性。根据非线性系统动态方程的特征,用相关的方法求出李雅普诺夫函数V(x),然后根据V(x)和)(xV

的性质去判别非线性系统的稳定性。

寻找李雅普诺夫函数的方法:

(1)特殊类型自治系统的Lyapunov函数:首次积分组合法、分离变量法(2)雅克比矩阵法又称克拉索夫斯基方法(3)变量梯度法

(4)递推设计的Lyapunov函数

对非线性控制系统的研究,到本世纪四十年代,已取得一些明显的进展。主要的分析方法有:相平面法、李亚普诺夫法和描述函数法等。非线性系统稳定性的早期研究都是针对一些个别或特殊类型开展的。例如,Poincare于1885年提出的相平面法是一种求解非线性常微分方程的图解方法,虽然能够获得系统的全部特征,如稳定性、过渡过程等,但仅适用于二阶及简单的三阶系统。 Lyapunov稳定性理论是分析和研究非线性控制系统稳定性的重要理论,多年来被大家广泛采用。 Lyapunov方法具有一般性,但要构造出合适的Lyapunov函数却并非易事。除一些特殊类型的非线性系统外,尚无构造Lyapunov函数的通用方法。所以,虽然这些方法都已经被广泛用来解决实际的非线性系统问题,但是这些方法都有一定的局限性,都不能成为分析非线性系统的通用方法。

这些年来,国内外有不少学者一直在这方面进行研究,也研究出一些新的方法,如频率域的

波波夫判据,广义圆判据,输入输出稳定性理论等。但总的来说,非线性控制系统理论目前仍处于发展阶段,远非完善,很多问题都还有待研究解决,领域十分宽广。非线性控制理论作为很有前途的控制理论,将成为二十一世纪的控制理论的主旋律,将为我们人类社会提供更先进的控制系统,使自动化水平有更大的飞越。

电路的基本分析方法

第2章电路的基本分析方法 电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。 本章的学习重点: ●求解复杂电路的基本方法:支路电流法; ●为减少方程式数目而寻求的回路电流法和结点电压法; ●叠加定理及戴维南定理的理解和应用。 2.1 支路电流法 1、学习指导 支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支路数目不多的复杂电路。 2、学习检验结果解析 (1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路? 解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。 2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支

第2章电路的基本分析方法

第2章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Q,当他们并联起来的总电阻为 2.4 Q 这两个电阻的阻值分别为_4Q _和__6Q — 2. 下图所示的电路,A B之间的等效电阻R= 1Q 电路的等效电阻R A B=60Q R CD 5. _______________________________________________________ 下图所示电 路中的A B两点间的等效电阻为12KQ _______________________________ 图中所示 的电流l=6mA则流经6K电阻的电流为2mA ;图中所示方向的电压U为12V 此 6K电阻消耗的功率为24mW 。 4. 3.下图所示的电路, 下图所示电路,每个电阻的阻值均为30 Q, B o B之间的等效电阻R A E=3Q O 6Q 3Q 2Q 2 Q 2 Q 2Q

鼻s Ik 10k皐 A Q T 1 L__JI 1_ () --------------------- 10kQ知 ]6k j L + B O ------ o

6. 下图所示电路中,ab 两端的等效电阻为12Q , cd 两端的等效电阻为4 Q 8.下图所示电路中,ab 两点间的电压U ab 为io V 。 + iov a 24V 已知U F 3V, I S = 3 A 时,支路电流I 才等于2A 。 10. 某二端网络为理想电压源和理想电流源并联电路, 则其等效电路为 理想电压 源。 11. 已知一个有源二端网络的 开路电压为20V,其短路电流为5A,则该有源二端 网络外接4 Q 电阻时,负载得到的功率最大, 最大功率为 25W 12. 应用叠加定理分析线性电路时, 对暂不起作用的电源的处理,电流源应看作 开路,电压 7?下图所示电路a 、 6 Q a i — 5 Li b 间的等效电阻Rab 为4" 9.下图所示电路中, d 15 Q b Hi BO

限幅与钳位电路分析

欢迎光临实用电子技术网愿你在这里有所收获! 实用电子技术网 返回电子知识 限幅与箝位电路 一、限幅电路 图一是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

图三、任意电平箝位电路 箝位电路可以把信号箝位于某一固定电平上,如图三(a)电路,当输入Ui=0期间,D截止,Uo=-Eo;而当输入Ui突变到Um瞬间,电容C相当短路,输出Uo由-Eo突变至Um,这时D截止,C经R及Eo充电,但充电速度很慢,使Uo随C充电稍有下降;当Ui从Um下降为零瞬间,Uo也负跳幅值Um,此时D导通,C放电很快,因此输出信号起始电平箝位于-Eoo同理,电路(b)的输出信号箝位于Eoo值得注意的是,箝位电路不仅使输出信号的起始电平箝位于某一电平,而且能使输出信号的顶部电平箝位于某一数值,电路元件估算公式如下: -------------------------------------------------式一 式中:Rf、Rr为二极管正向、反向电阻。箝位电路的电容量为: C= ---------------------------------------------------------------式二 式中:C′≤T ρ/3Rs+Rf C″≥100(Tr/R) 其中Tp为输入脉冲信号持续期,Tr为间歇期,Rs为输入信号源内阻。要选用正、反电阻相差大的二极管,如要求变化速度快及反向 恢复时间短,则选硅二极管如2CK型为宜,若要求箝位靠近零电平,则选锗二极管2AK型为合适。

简单非线性电阻电路的分析

第五章 简单非线性电阻电路的分析 5-1 含一个非线性元件的电阻电路的分析 一、含一个非线性元件的电阻电路都可用电源等效定理来等效 N 为含源线性网络。 二、非线性电路的一般分析方法 1、图解法 2、代数法 3、分段分析法 4、假定状态分析法 1、图解法 设非线性电阻的V AR 为 在如上图所示u 和i 的参考方向如下,线形部分的V AR 为 将 代入上式得 通常,用图解法求解u 和i 如图5-2 两曲线的交点Q 是所求解答。直线称为负载线 在求出端口电压 u Q 和 i Q 后。就 可用置换定理求出线性单口网络内部的电 ) (u f i =i R u u oc 0-=)(u f i =oc oc u u u f R u f R u u =+-=)()(00

压电流。 例5-1 电路如图5-3(a)所示,二极管特性曲线如图(d)所示,输入电压随时间变化。 (1)试求所示电路输出电压u0对输入电压u i的曲线,即u0-u i转移特性; (2)若输入电压的波形如图(e)所示,试求输出电压u0的波形。 解戴维南等效电路 由电路可知 2 i oc u u= i u u30 0 + =

若 u i 变化时(交流),戴维南等效电压源也是时变的。但Ro 是定值,所以 线性网络的负载线具有不变的斜率 -1/Ro ,在 u-i 平面上作平行移动,每一时 刻负载线在电压轴的截距总是等于等效电压源在该时刻的瞬时值,负载线与二极管特性曲线的交点也在移动,即二极管的电压、电流都随时间而变。 求u 0-u i 转移特性曲线 由图(a )可得 当 时,0u 由 确定。 当 时,0i =, 可得转移特性曲线如图5-4所示 2、代数法 若i=f(u)中的f(u)可用初等函数表示,那么可利用节点法或回路法求解。 例5-2 如图5-5所示电路中,已知非线性电阻的V AR 为 试求电流i 。 030u u i =+0>i u i u u o 30+=0

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合求解含有受控源的现行电路。 关键词:受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1.当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a中所示电路的入端电阻R AB. 解:首先,将电压控制型的受控电流源gu 1与R 1 并联的诺顿支路等效变化成电压 控制型的受控电压源gu 1R 1 与电阻R 1 串联的等效戴维南支路,如图b所示.在电 阻R 1与电阻R 2 串联化简之前,应将受控电压源的控制电压转换为端口电流i,即 u 1=-R 2 i.然后,将由电压u 1 控制的电压控制型受控电压源gu 1 R 1 转化为电流控 制型的受控电压源-gR 1R 2 i,如图c所示.由图c可知,由于该电流控制型的受 控电压源的控制电流i就是该受控电压源支路的电流,因此,可最终将该电流控 制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2 .这样,该一端口网络的入 端电阻R AB=R 1+R 2 -gR 1 R 2 . 例1—2 例1—2求解图a中所示电路的入端电阻R AB. 解:可对该一端口网络连续运用戴维南-诺顿等效变换,最后可得到图 b所示的电路.由于电压控制型的受控电流源 u1 8Ω的控制量u1就是它的端电压,且二者的假定正方向相反,因此,可将其简化为一阻值为-8Ω的电阻.这样,该一端口网络的入端电阻 R AB=1/(1 2+1 2-1 8)=8 7 2. 2.受控源的控制量为网络的端口电压或电流时,可将各支路进行等效变 换,可将受控源作为独立源处理.当电路等效到端口时,若控制量是端口电流,则可将电路等效成受控电压源、独立电压源和电阻的串联组合;若控制量是端口电压,则可将电路等效成受控电流源、独立电流源和电阻的并联组合.再进一步将受控源置换为一电阻,最后可求出最简单的等效电路. 例2—1 例2—1简化图a所示电路.

电路的几种分析方法

几种常见电路分析方法浅析 摘要:对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。现就具体电路采用不同方法进行如下比较。 关键词:电路分析电流源支路电流法网孔电流法结点分析法叠加定理戴维宁定理与诺顿定理 Several Commonly Used Analytical Methods in Circuit Abstract: on the circuit analysis methods, such as superposition theorem, branch analysis method, mesh analysis method, nodal analysis method, Thevenin and Norton's theorem. According to the specific circuit and related conditions of flexibility in the use of these methods, the basic circuit analysis has important significance. The specific circuit using different methods are compared. Key words :Circuit Analysis of voltage source current source branch current method mesh current method nodal analysis method of superposition theorem and David theorem and Norton theorem in Nanjing. 引言:每种电路的分析方法,一般都有其适用范围。应用霍夫定律求解适用于求多支路的电流,但电路不能太复杂;电源法等效变换法适用于电源较多的电路;节点电位法适用于支路多、节点少的电路;网孔分析法使适用于支路多、节点多、但网孔少的电路;戴维宁定理和叠加定理适用于求某一支路的电流或某段电路两端电压。上面例题的电路比较简单,可选择任意一种方法求解,对于一些比较复杂但有一

限幅电路

你问的是这个问题吗? 下图:是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

导通,u O s=E;当ui低于E时,D截止,u O=ui。它的限幅特性如图Z1610所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图Z1611所示的双向限幅电路,它的限幅特性如图Z1612所示。当输入一个振幅较大的正弦信号时,输出波形见图Z1613。 2.三极管限幅器 利用三极管的截止和饱和特性也可构成限幅电路(如图Z1614所示),这类电路还兼有放大作用。为了满足一些较高的技术要求,还可以用集成运放构成限幅电路。 备做一个限幅电路的整理,在学校内学的如下图:

二极管限幅电路实验报告(最新整理)

R u i D u O E t 一、实验目的 实验:设计和探究二极管限幅电路 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中, 若二极管具有理想的开关特性,那么,当u i 低于 E 时,D 不导通, u o =E ;当 u i高于 E 以 后,D 导通, u o = u i 。该限幅器的限幅特性如图所示,当输入振幅大于 E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值 E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D E u i 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 u i u E R u i u O u O E E t t t

R u i D 1 D2 u O E E t 3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 u i u E E E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1. 这些数据都几乎一样,没什么太大差别。 2. 结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012 年 5 月 10 日星期四 t

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

第二章电路的基本分析方法1

第二章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为 2.4Ω。这两个电阻的阻值分别为_ _4Ω___和__6Ω。 2. 下图所示的电路,A、B之间的等效电阻R AB= 1 Ω。 3. 下图所示的电路,A、B之间的等效电阻R AB= 3 Ω。 A 2Ω B 4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R AB= 60 Ω。 5. 下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压U 为____12V____.此6K电阻消耗的功率为__24mW_________。

U A 6. 下图所示电路中,ab 两端的等效电阻为 12Ω ,cd 两端的等效电阻为 4Ω 。 7.下图所示电路a 、b 间的等效电阻Rab 为 4 。 8. 下图所示电路中,ab 两点间的电压 ab U 为 10 V 。 9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。

3 Ω 1 10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为理想电压源。 11.已知一个有源二端网络的开路电压为20V,其短路电流为5A,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为25W 。 12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理,电流源应看作开路,电压源应看作短路。 13.用叠加定理分析下图电路时,当电流源单独作用时的I1= 1A ,当电压源单独作用时的I1= 1A ,当电压源、电流源共同时的I1= 。 2A 14.下图所示的电路中,(a)图中Uab与I的关系表达式为Uab= 3I ,(b) 图中Uab与I的关系表达式为Uab=3I+10 ,(c) 图中Uab与I的关系表达式为Uab=6(I+2)-10 ,(d)图中Uab与I的关系表达式为Uab=6(I+2)-10 。

(整理)基本放大电路的分析方法.

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I = I B (03.09) C V =V CC-I C R c (03.10) CE I 、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 B 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C =8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

电路一般分析方法步骤汇总

线性电路主要分析方法步骤汇总 网孔电流法的一般步骤 步骤: 1)确定网孔,假定网孔电流的绕行方向; 2)列写KVL方程; 3)联立求解。 说明: 1)对于含有电流源的支路: a)若在单一网孔支路上,少列一个方程; b)若在两网孔公共支路上,要假定电压变量,多列一个方程,即:网孔电流与电流源电流关系的方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是网孔电流,则要补充一个方程,即:网孔电流与控制量之间关系的方程。 结点电压法的一般步骤 步骤: 1)选参考结点; 2)列写独立结点电压方程; 3)联立求解。 说明: 1)对于含有纯电压源的支路: a)如果电压源接在独立结点和参考点之间,这个独立结点电压就等于电压源电压,可以少解一个方程; b)如果电压源接在两个独立结点之间,则要在电压源支路假定电流变量,多列一个方程,即:结点电压与电压源电压之间的关系方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是结点电压,则要补充一个方程,即:结点电压与控制量之间的关系方程。

一端口网络的戴维宁等效电路 (1) 开路电压Uoc 的计算 戴维宁等效电路中的电压源电压即为一端口开路电压Uoc ,电压源的极性与所求开路电压极性相同。计算Uoc 的方法视电路形式而定(结点电压法、网孔电流法)。 (2)等效电阻的计算 等效电阻为将一端口网络内部独立电源全部置零(电压源短路,电流源开路)后,所得无源一端口网络的输入电阻。 常用下列方法计算: A 、当网络内部不含有受控源时可采用电阻串、并联和△-Y 互换的方法计算等效电阻; B 、外加电源法(加压求流或加流求压):eq u R i =(此时一端 口内部独立电源全部置零) C 、开路电压,短路电流法:oc eq sc u R i =(此时一端口内部独立电源全部保留) 一阶电路初始值的计算 如何判断一阶电路?电路含有一个独立的动态元件;有带开 关的直流激励、或已知初始储能和直流激励、或有阶跃函数激励。 求初始值的步骤: 1. 由换路前电路(一般为稳定状态)求u C (0-)和i L (0-); 2. 由换路定律得 u C (0+) 和 i L (0+); 3. 画0+等效电路。 在0+时刻等效电路中,电容用u C (0+)的电压源替代,电感用i L (0+)的电流源替代。 4. 由0+电路求所需各变量的值即为0+值 三要素法求解一阶电路的步骤 1、求响应量的初始值; 2、求响应量的稳态值; 画出t →∞时稳态电路,其中电容和电感分别用开路和短路置

二极管基本电路及其分析方法

§1-4 二极管基本电路及其分析方法 1.4.1 二极管的等效模型 1、二极管的直流模型 1)理想开关模型 2)恒压降模型 3)折线模型 2、二极管的交流小信号模型 当在二极管的工作点上叠加有低频交流小信号电压ud时,只要工作点选择合适,且ud足够小,可以将Q点附近的特性曲线看成是线性的(线性化),则交流电压与电流之间的关系可以用一个电阻rd来表示。 rd——即为工作点处的交流电阻,rd=UT/ID。 注意:小信号模型只能表示交流电压与电流之间的关系,不能反映总的电压与电流的关系。 1.4.2 二极管的应用电路 二极管在低频电路和脉冲电路中常用于整流、限幅、钳位、稳压等波形变换和处理电路,在高频电路中常用于检波、调幅、混频等频率变换电路. 1、整流电路

2、二极管限幅电路 二极管的导通压降为UD=0.7V, (1)|ui|< UD时, D1、D2 都截止,视为开路,输出为uo=ui。 (2)ui> UD时,D1截止,D2导通,输出为uo = 0.7V 。 (3)ui<-UD时,D2截止,D1导通,输出为uo = -0.7V 。 输出电压被限幅在±0.7V之间,是一个双向限幅电路。由于二极管在限幅时并非理想的恒压源,在限幅期间电压仍会有变化,所以二极管限幅为“软限幅”。限幅电路常用作波形变换和保护电路。 3、二极管钳位电路 钳位:把交流信号的顶部或底部固定在某个电位值上。 二极管钳位电路是改变信号直流成分的电路。

(1)ui负半周,二极管导通,uo=uD =0V,导通电阻RD很小, C被充电到ui的峰值。 (2)ui正半周,二极管反偏截止,C无法放电,输出电压为uo=ui+uC=5V。(3)下一个负半周,二极管上的电压为0,二极管截止,输出电压为uO=0V。此后,二极管保持截止状态,电容无法放电,相当于恒压源,输出电压为:uo=ui +2.5V,uo的底部被钳位于0V。

非线性电路的分析方法研究

高频电子线路 课程论文 论文题目:非线性电路的分析方法研究 专业:08电子信息工程本科 小组成员: DZU Joecindy 指导老师:王丽 完成时间:2011年12月22日 非线性电路的分析方法研究 【摘要】我们要将电路元件的范围及其相应的分析方法进行拓展,引入对非线性二端元件的分析和总结。非线性二端元件就是接线端自变量和接线端的函数具有非线性关系的元件。

下面我们将对非线性电路的分析方法进行研究,从而对其分类和总结。 【关键词】非线性电路 直接分析法 数值分析法 图形分析法 分段线性分析法 小信号分析法 前 言 到目前为止,我们已经学习过若干种线性元件的电路,也学习过这些元件构成的线性电路分析法。本文将就非线性问题进行分类和归纳总结。 1.直接分析法 此方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列写出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。 我们首先用直接分析法求解图1.1所示的简单非线性电阻电路。假设图中非线性电阻的特性可表示为下列v-i 关系: 2,00,0 D D D D Kv v i v ?>=?≤? 常熟K 大于零。 D i 图1.1 该电路的求解过程:

(D v -E )/R +D i = 0 (1.1) 补充方程: D i = K D v 2 (1.2) 注意该元件在D v 大于零的时候才能工作。如果D v <0 则 D i = 0 用原件的非线性v-i 关系替换式(1.1)中的D i 就得到了用节点电压表示的节点方程: (D v -E )/R + Kv D 2 = 0 (1.3) 化简式(1.3),得到下列二次方程: RK D v 2 + D v – E = 0 求出D v 并选择正解,即: D v = (1.4) 对应的i D 表达式可通过将上式替换式(1.2)得到,即: D i = 12K RK ?-+ ?? 小结:这类分析方法很有局限性,通常只适用于函数关系较简单的非线性求解问题,对于较复杂的问题,下面我们将讨论到。 2.数值分析法 当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这是就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解,下面介绍常用到的计算方法: 在《电路基理论基础》一书中给出的3种方法: ① 前向欧拉法(Forward Euler method ): (以后本文均以(,)dy f y x dx =表示dy dx ) 1k y + = k y + h f (k y , k x ) 其中h 为积分步长 ② 后向欧拉法 (Backward Euler method )

二极管限幅电路实验报告

实验:设计和探究二极管限幅电路 一、实验目的 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性 二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱 三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以 后,D 导通, o u =i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D R E u i u O t E u O u i t E u i u O 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 D R E u O t E u O u i t E u i

3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 D1R E u O u i t E u i D2E E t u O E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论 五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1.这些数据都几乎一样,没什么太大差别。 2.结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012年5月10日星期四

实验四 设计一个限幅电路

实验四 设计一个限幅电路 一、实验目的 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性 二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱 三、实验原理 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以 后,D 导通, o u = i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D R E u i u O t E u O u i t E u i u O 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 D R E u O t E u O u i t E u i 3、 二极管双向限幅电路

将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 D1R E u O u i t E u i D2E E t u O E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论

电路的基本分析方法

第2章电路的基本分析方法 学习要点 掌握支路电流法、节点电压法、叠加定理、等效电源定理等常用的电路分析方法,重点是叠加定理和戴维南定理 理解电路等效的概念,掌握用电路等效概念分析计算电路的方法 了解受控源的概念以及含受控源电阻电路的分析计算 了解非线性电阻电路的图解分析方法,理解静态电阻和动态电阻的意义 电路的基本分析方法 2.1 简单电阻电路分析 2.2 复杂电阻电路分析 2.3 电压源与电流源的等效变换 2.4 电路定理 2.5 含受源电阻电路的分析 2.6 非线性电阻电路的分析 2.1 简单电阻电路分析 电阻电路:只含电源和电阻的电路 简单电阻电路:可以利用电阻串、并联方法进行分析的电路。应用这种方法对电路进行分析时,一般先利用电阻串、并联公式求出该电路的总电阻,然后根据欧姆定律求出总电流,最后利用分压公式或分流公式计算出各个电阻的电压或电流。 2.1.1 电阻的串联 n 个电阻串联可等效为一个电阻 12n R R R R =++Λ+ 分压公式 k k k R U R I U R == 两个电阻串联时 1112R U U R R = + 2 212 R U U R R =+ R +U 1- + U 2 -+U n -+U 1-+U 2-

2.1.2 电阻的并联 n 个电阻并联可等效为一个电阻 121111 n R R R R =++Λ+ 分流公式 k k k U R I I R R = = 两个电阻并联时 2 112R I I R R = + 1 212 R I I R R = + 2.2 复杂电阻电路分析 复杂电路电阻:不能利用电阻串并联方法化简,然后应用欧姆定律进行分析的电路。解决复杂电路的方法:一种是根据电路待求的未知量,直接应用基尔霍夫定律列出足够的独立方程式,然后联立求解出各未知量;另一种是应用等效变换的概念,将电路化简或进行等效变换后,再通过欧姆定律、基尔霍夫定律或分压、分流公式求解出结果。 2.2.1 支路电流法 支路电流法是以支路电流为未知量,直接应用KCL 和KVL ,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。 一个具有b 条支路、n 个节点的电路,根据KCL 可列出(n -1)个独立的节点电流方程式,根据KVL 可列出b -(n -1)个独立的回路电压方程式。 图示电路 (1) 支路数b=3,支路电流有1I 、2I 、3I 三个。 I n n R U U S2

第二章电路的分析方法(答案).

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

限幅电路

限幅放大器电路原理 时间:2009-05-31 17:55:59 来源:资料室作者: 限幅电路(limiter circuit) :去除过高或过低的电压信号,保护电路不因为太高或太低的电压,造成电路工作不正常。利用二极管限幅,是集成电路(Integrated Circuit, IC)设计中常用来保护电路的方法。限幅器采用的方法,可利用二极管的压降,三极管集电极电流截止与饱和或者差动放大器限制电流以及二极管正反向的电阻变化等方法。 s(t)=5sinωt(v) (1)图1即为限幅电路 输入信号: 外加电压小于0.7V的部分:截止状态 因此:I=0,V0=S(t)-IR=S(t) 外加电压高于0.7V的部分:导通且维持导通电压V D(on) = 0.7V 。 图1 (2)图2部分: s(t) > -0.7V:截止状态:V0=S(t)-IR=S(t) s(t) <= -0.7V:导通状态:Vo= -V D(on) =-0.7v →限制Vo大于-0.7V

图2 图3 双向限幅器 (3)见图4,s(t) > 0.7V:D1导通、D2截止Vo= V D(on)=0.7v s(t) < -0.7V:D2导通、D1截止Vo= -V D(on)=-0.7v -0.7V < s(t) < 0.7V:D1/D2皆截止,Vo = s(t) →限制Vo在-0.7V及0.7V之间

图4 (4),见图5 s(t) > Va + 0.7V;D1导通、D2截止Vo = Va+ V D(on)=Va + 0.7v s(t) < -(Vb+0.7V) :D2导通、D1截止Vo = -Vb - V D(on)=-(Vb + 0.7v -(Vb+0.7V) < s(t) < (Va+0.7V) :D1/D2皆截止,Vo = s(t) →限制Vo在-(Vb + 0.7V)及(Va + 0.7V)之间 图5 图6

相关文档
最新文档