转动惯量实验报告

合集下载

扭摆法测转动惯量实验报告

扭摆法测转动惯量实验报告

扭摆法测转动惯量实验报告一、引言转动惯量是描述物体转动惯性大小的物理量,也是描述物体对转动的抵抗程度。

本实验通过扭摆法测量物体的转动惯量,探究物体转动惯量与物体的质量分布、形状以及转轴位置之间的关系。

二、实验器材和原理实验器材:扭摆装置、圆盘、计时器、测量尺、螺旋测微器等。

实验原理:扭摆法是利用物体在一根固定转轴周围转动时的回复力矩与物体转动惯量之间的关系来测量转动惯量的方法。

根据牛顿第二定律,物体的转动惯量与物体所受到的力矩之间满足以下关系:I = τ/α其中,I为物体的转动惯量,τ为物体所受到的力矩,α为物体的角加速度。

三、实验步骤1. 将圆盘固定在扭摆装置上,确保转轴与圆盘中心对齐。

2. 给圆盘加上一个小角度的转动,释放后观察其回复振动,并记录回复振动的周期T。

3. 通过测量尺测量圆盘的半径r,并计算出圆盘的转动惯量I。

4. 重复实验步骤2和3,分别记录不同角度下圆盘的回复振动周期和转动惯量。

5. 改变圆盘的质量分布、形状或转轴位置,重复步骤2-4。

四、数据处理与分析根据实验记录的周期T和圆盘的半径r,可以通过公式T = 2π√(I/τ)计算出圆盘的转动惯量I。

通过多组实验数据的比较,可以得出以下结论:1. 质量分布对转动惯量的影响:质量集中在转轴附近的物体转动惯量较小,而质量分布均匀的物体转动惯量较大。

2. 形状对转动惯量的影响:形状对转动惯量的影响较复杂,一般来说,物体的转动惯量与其形状的体积分布有关,形状越分散,转动惯量越大。

3. 转轴位置对转动惯量的影响:转轴位置的改变会导致物体的转动惯量发生变化,一般来说,转轴越远离物体质心,转动惯量越大。

五、实验误差分析在实际实验中,由于摩擦、空气阻力等因素的存在,实验数据可能存在一定的误差。

为了减小误差,可以采取以下措施:1. 减小摩擦:在扭摆装置中加入适量的润滑剂,减小转动时的摩擦力。

2. 排除空气阻力:在实验过程中尽量减小圆盘与空气的接触面积,避免空气阻力对实验结果的影响。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。

实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。

旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。

设物体以角速度ω绕某一定轴转动。

质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。

转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。

有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。

它的大小可以计算为(C+K)m。

其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。

实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。

可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。

误差主要来自于读数仪器和实验操作技巧。

有效质量的计算结果与实际质量相比,误差范围较小。

通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。

同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。

转动惯量测量实验报告(共7篇)-转动惯量测量值

转动惯量测量实验报告(共7篇)-转动惯量测量值

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

扭摆法测刚体转动惯量实验报告

扭摆法测刚体转动惯量实验报告

扭摆法测刚体转动惯量实验报告一、实验目的1、掌握扭摆法测量刚体转动惯量的原理和方法。

2、学会使用数字式计时计数器测量扭摆的周期。

3、研究刚体的转动惯量与其质量分布及转轴位置的关系。

二、实验原理扭摆的构造如图 1 所示,将一金属细杆(或圆盘)水平安装在一个扭转弹簧上,构成一个扭摆。

当扭摆受到外力作用,使其在水平面内绕竖直轴转过一定角度后松开,扭摆将在弹簧的恢复力矩作用下作往复扭转运动。

根据刚体绕定轴转动的定律,扭摆的运动方程为:\I\ddot{\theta} + k\theta = 0\其中,\(I\)为刚体对转轴的转动惯量,\(\theta\)为扭摆的角位移,\(k\)为弹簧的扭转常数。

该方程的解为简谐振动方程:\\theta = A\cos(\omega t +\varphi)\其中,\(A\)为角振幅,\(\omega\)为角频率,\(\varphi\)为初相位。

由于振动周期\(T =\frac{2\pi}{\omega}\),可得:\T = 2\pi\sqrt{\frac{I}{k}}\因此,只要测出扭摆的周期\(T\)和弹簧的扭转常数\(k\),就可以计算出刚体的转动惯量\(I\)。

弹簧的扭转常数\(k\)可以通过测量一个已知转动惯量的标准物体(如圆柱体)的摆动周期来确定。

三、实验仪器1、扭摆装置及附件。

2、数字式计时计数器。

3、待测刚体(金属细杆、金属圆盘等)。

4、游标卡尺、米尺。

四、实验内容及步骤1、用游标卡尺测量金属细杆的直径\(d\),在不同部位测量多次,取平均值。

用米尺测量金属细杆的长度\(l\)。

2、调整扭摆装置,使扭摆的转轴处于水平状态,并将数字式计时计数器的功能选择为测量周期。

3、将金属细杆水平安装在扭摆上,轻轻扭转一个角度后松开,让其自由摆动。

用计时计数器测量其摆动\(10\)个周期的时间\(t_1\),重复测量\(3\)次,计算金属细杆摆动的周期\(T_1\)。

4、取下金属细杆,换上金属圆盘,用同样的方法测量金属圆盘摆动\(10\)个周期的时间\(t_2\),重复测量\(3\)次,计算金属圆盘摆动的周期\(T_2\)。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告
未来可以进一步研究非均质刚体(如内部质 量分布不均的物体)的转动惯量,探讨其测 量方法和影响因素。
拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法

转动惯量的实验报告

转动惯量的实验报告

转动惯量的实验报告转动惯量的实验报告一、引言转动惯量是物体旋转时所具有的惯性,是描述物体旋转运动的物理量。

本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量对转动惯量的影响。

二、实验装置和方法实验装置包括转动惯量测量装置、测量器具(卷尺、天平等)和不同形状的物体(如圆盘、长方体等)。

实验步骤如下:1. 将转动惯量测量装置放置在水平台面上,确保其稳定。

2. 选择一个物体,如圆盘,测量其质量m,并记录下来。

3. 将圆盘固定在转动惯量测量装置上,并使其能够自由旋转。

4. 通过卷尺测量圆盘的半径r,并记录下来。

5. 用测量器具测量圆盘的转动惯量I,并记录下来。

6. 重复步骤2-5,测量其他形状的物体的质量、尺寸和转动惯量。

三、实验结果与分析根据实验数据,我们计算得到了不同物体的转动惯量,并进行了比较。

以下是一些实验结果和分析:1. 圆盘与长方体的转动惯量比较我们测量了相同质量的圆盘和长方体的转动惯量,并发现圆盘的转动惯量要大于长方体。

这是因为圆盘的质量分布更加集中在旋转轴附近,而长方体的质量分布相对较为分散,导致圆盘的转动惯量较大。

2. 形状对转动惯量的影响我们还测量了不同形状的物体的转动惯量,并发现不同形状的物体具有不同的转动惯量。

例如,对于相同质量的物体,圆盘的转动惯量大于长方体,而球体的转动惯量又大于圆盘。

这是因为球体的质量分布更加集中在旋转轴附近,相比之下,圆盘的质量分布更为分散,导致球体的转动惯量最大。

3. 质量对转动惯量的影响我们还进行了不同质量物体的转动惯量比较。

实验结果显示,对于相同形状的物体,质量越大,转动惯量也越大。

这是因为质量的增加会增加物体的惯性,从而增大了物体的转动惯量。

四、实验误差分析在本实验中,存在一些误差可能影响了实验结果的准确性。

例如,测量质量时天平的读数误差、测量尺寸时卷尺的读数误差等。

此外,转动惯量测量装置本身可能存在一定的摩擦力,也会对实验结果产生一定的影响。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量实验报告

转动惯量实验报告

转动惯量实验报告一、实验目的1.学习转动惯量的概念和计算方法;2.通过实验测量确定不同物体的转动惯量;3.探究转动惯量和物体几何形状、质量的关系。

二、实验原理1.转动惯量:物体对绕过其质心轴心旋转的惯性特征的度量。

对于刚体,它由物体质量和物体构型决定。

2.转动惯量的计算方法:(1) 对于点质量:I = mr^2;(2)对于轴对称物体:I=1/2mR^2;(3) 对于复杂形状物体:I = Σmiri^2,其中m为小质量元素的质量,ri为离轴线的距离。

3.转动惯量的实验测量方法:利用转动定理,即T=Iα,其中T为转矩,α为角加速度。

三、实验器材1.转动惯量测量装置:由转动马达、转动平衡台、挠度计和电源等组成;2.一组不同形状的物体,如长方体、圆柱体和球体等;3.一个尺子和一个卷尺。

四、实验步骤1.将转动平衡台固定在桌面上,并将待测物体放在平衡台上;2.将挠度计的感应头与测量物体相切,并调整挠度计的灵敏度;3.通过转动马达,给待测物体加上一定的角加速度,并记录挠度计的示数;4.重复以上步骤3次,取平均值作为最终结果。

五、实验数据处理1.根据转动定理T=Iα,其中T为转矩,通过测量挠度计的示数可获得转矩大小;2.计算转动惯量:I=T/α;3.对于不同形状的物体,根据其几何形状和质量,计算并比较转动惯量的大小。

六、实验结果分析1.根据实验测得的数据,计算出不同物体的转动惯量;2.比较不同物体之间转动惯量的大小差异;3.分析转动惯量与物体的几何形状、质量之间的关系;七、实验结论1.转动惯量是描述物体对转动运动的惯性特征的物理量,它与物体的质量和几何形状有关;2.转动惯量的计算可以通过测量转矩和角加速度来实现;3.实验结果表明,不同物体具有不同的转动惯量,且转动惯量与物体的几何形状和质量有关;4.实验中可能存在的误差包括挠度计示数误差、驱动电压稳定性等,可通过改进实验装置和提高测量精度来减小误差。

八、实验心得通过完成这个转动惯量实验,我深刻理解了转动惯量的概念和计算方法。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量实验报告

转动惯量实验报告

转动惯量实验报告目录1. 实验目的1.1 认识转动惯量的概念1.2 学习如何测量转动惯量2. 实验原理2.1 转动惯量的定义2.2 转动惯量的计算公式3. 实验器材和方法3.1 实验器材清单3.2 实验步骤4. 实验数据和处理4.1 实验数据记录4.2 数据的处理方法5. 实验结果分析5.1 转动惯量的计算结果5.2 结果的可靠性讨论6. 实验结论7. 参考文献1. 实验目的1.1 认识转动惯量的概念在本实验中,我们旨在通过实际操作,让学生了解转动惯量是什么,以及它在物理学中的重要性和应用。

1.2 学习如何测量转动惯量另一个实验目的是让学生学会如何通过实验测量物体的转动惯量,掌握测量方法和技巧。

2. 实验原理2.1 转动惯量的定义转动惯量是物体对转动的惯性,它描述了物体在围绕某一轴旋转时所表现出的惯性特征,通常用符号 I 表示。

2.2 转动惯量的计算公式转动惯量的计算公式是I = Σmr^2,其中 m 为物体的质量,r 为质心到旋转轴的距离。

3. 实验器材和方法3.1 实验器材清单- 转动台- 测力计- 不同形状的物体3.2 实验步骤1. 将物体固定在转动台上2. 施加力使物体旋转3. 测量施加的力和物体的角加速度4. 重复实验并记录数据4. 实验数据和处理4.1 实验数据记录在实验中记录了不同物体的质量、旋转半径、施加的力和角加速度等数据。

4.2 数据的处理方法通过数据处理软件对实验数据进行处理,应用转动惯量计算公式,得出不同物体的转动惯量数值。

5. 实验结果分析5.1 转动惯量的计算结果根据实验数据和处理结果,计算得出了不同物体的转动惯量数值,并进行比较分析。

5.2 结果的可靠性讨论对实验结果的可靠性进行讨论,分析可能存在的误差来源并提出改进方法。

6. 实验结论通过本实验,我们成功测量了不同物体的转动惯量,并对实验结果进行了分析和讨论,验证了转动惯量计算公式的可靠性。

7. 参考文献列出本实验中所涉及到的相关物理学原理、实验方法和参考资料。

转动惯量 实验报告

转动惯量 实验报告

转动惯量实验报告转动惯量实验报告引言:转动惯量是描述物体旋转惯性的物理量,它在刚体力学和旋转动力学中具有重要的意义。

本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布以及旋转轴位置的关系。

实验装置与方法:实验装置包括转动惯量测量仪、不同形状的物体(如圆环、圆盘、长方体等)以及测量工具(如卷尺、天平等)。

首先,将待测物体固定在转动惯量测量仪上,确保物体能够自由旋转。

然后,通过改变转动轴的位置,测量物体在不同转动轴位置下的转动周期和振幅。

实验结果与分析:通过实验测量,我们得到了不同物体在不同转动轴位置下的转动周期和振幅数据。

首先,我们将数据整理成表格,并绘制出转动周期与转动轴位置的关系曲线。

根据实验数据的分析,我们发现转动惯量与物体形状、质量分布以及旋转轴位置密切相关。

1. 形状对转动惯量的影响:我们选取了不同形状的物体进行实验,包括圆环、圆盘和长方体。

通过实验数据的比较,我们发现相同质量的物体,圆环的转动惯量最大,圆盘次之,长方体最小。

这是因为圆环的质量分布更加集中在离转动轴较远的位置,使得转动惯量增大;而长方体的质量分布相对均匀,转动惯量较小。

2. 质量分布对转动惯量的影响:我们选取了两个相同形状但质量分布不同的物体进行实验,比较了它们的转动惯量。

结果显示,质量集中在离转动轴较远位置的物体转动惯量较大,而质量分布相对均匀的物体转动惯量较小。

这进一步验证了质量分布对转动惯量的影响。

3. 旋转轴位置对转动惯量的影响:我们固定了一个物体,通过改变旋转轴的位置,测量了不同旋转轴位置下的转动周期和振幅。

结果显示,离转动轴较远的位置转动周期较长,振幅较小;而离转动轴较近的位置转动周期较短,振幅较大。

这说明旋转轴位置的改变会影响物体的转动惯量。

结论:通过本次实验,我们得出了以下结论:1. 转动惯量与物体形状、质量分布以及旋转轴位置密切相关。

2. 相同质量的物体中,质量分布越集中、离转动轴越远的物体转动惯量越大。

测量转动惯量实验报告

测量转动惯量实验报告

测量转动惯量实验报告一、实验目的转动惯量是描述刚体转动惯性大小的物理量,它与刚体的质量分布以及转轴的位置有关。

本次实验的目的是通过实验测量几种不同形状刚体的转动惯量,并与理论值进行比较,从而加深对转动惯量概念的理解,掌握测量转动惯量的基本方法和实验技能。

二、实验原理1、转动惯量的定义对于绕定轴转动的刚体,其转动惯量 I 定义为刚体中各质点的质量mi 与其到转轴的距离 ri 的平方的乘积之和,即 I =Σ mi ri² 。

2、三线摆法测量转动惯量三线摆是通过测量刚体扭转摆动的周期来计算转动惯量的。

将一质量为 m0 的圆盘,用三条等长的悬线对称地悬挂在一个水平的圆盘上,构成三线摆。

当圆盘作小角度扭转摆动时,其运动可近似为简谐运动。

根据能量守恒定律和简谐运动的周期公式,可以推导出圆盘的转动惯量 I0 与摆动周期 T0 的关系为:I0 =(m0gRr) /(4π²H0T0²)其中,g 为重力加速度,R 为下圆盘(即摆盘)的半径,r 为上圆盘(即悬盘)的半径,H0 为上下圆盘之间的距离。

对于质量为 m 的待测刚体,将其放在下圆盘上,此时系统的转动惯量为 I',摆动周期为 T',则待测刚体的转动惯量 I 为:I = I' I03、平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,刚体的质量为 m,两平行轴之间的距离为 d,则刚体对另一平行轴的转动惯量 I 为:I = Ic + md²三、实验仪器三线摆实验仪、游标卡尺、米尺、电子天平、待测刚体(圆环、圆柱等)四、实验步骤1、调节三线摆装置(1)将三线摆的上、下圆盘调至水平,通过调节底座上的三个旋钮,使上圆盘的悬线与下圆盘的圆心在同一竖直线上。

(2)用米尺测量上下圆盘之间的距离 H0,测量 5 次,取平均值。

(3)用游标卡尺测量上圆盘和下圆盘的半径 r 和 R,各测量 5 次,取平均值。

2、测量下圆盘的质量 m0 和摆动周期 T0(1)用电子天平称出下圆盘的质量 m0。

转动惯量实验报告理论力学

转动惯量实验报告理论力学

转动惯量实验报告-理论力学。

转动惯量实验报告-理论力学一、实验目的1.加深对转动惯量概念的理解;2.掌握用三线摆法测定物体转动惯量的原理和方法;3.学习用图解法处理实验数据。

二、实验原理转动惯量是物体在转动过程中的惯性大小的量度,它反映了物体对转动的抵抗能力。

转动惯量的大小与物体的质量、形状以及转动轴的位置有关。

本实验采用三线摆法测定物体的转动惯量。

三线摆法的基本原理是将待测物体悬挂于三条等长的细线下端,使物体在水平面内作小幅度的摆动。

当物体摆动时,三条细线的张力相等,且物体对三条细线的拉力之和为零。

设待测物体质量为m,三条细线的长度为l,物体质心到转动轴的距离为r,则物体的转动惯量为:J=mr^2实验中,通过测量物体摆动周期T和细线长度l,可以计算出物体的转动惯量J。

三、实验步骤1.将三线摆悬挂在支架上,调整三条细线的长度相等,且使三条细线的悬挂点处于同一水平面内。

2.将待测物体悬挂于三条细线下端,使物体在水平面内作小幅度摆动。

用秒表测量物体摆动10个周期的时间t,计算出单个周期的时间T=t/10。

3.重复测量3次,取平均值作为最终结果。

4.测量三条细线的长度l,记录数据。

5.根据实验原理公式计算待测物体的转动惯量J。

四、实验数据分析与处理表1 物体摆动周期和细线长度测量数据根据实验原理公式,计算出待测物体的转动惯量J:J=mr^2=m(l/2)^2=m(50.0/2)^2=625m(g·cm^2)其中,m为待测物体的质量,以克为单位。

由于本实验中未测量物体的质量,因此转动惯量的结果以m(g·cm^2)为单位表示。

五、实验结论通过本实验,我们掌握了用三线摆法测定物体转动惯量的原理和方法。

实验中,我们发现物体摆动周期T与细线长度l之间存在一定关系。

通过测量物体摆动周期T和细线长度l,我们可以计算出物体的转动惯量J。

本实验方法简单可靠,具有一定的实用价值。

同时,通过本实验,我们也加深了对转动惯量概念的理解。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握使用秒表、游标卡尺、米尺等测量工具。

二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。

当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。

根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。

三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。

四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。

3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。

4、测量下盘质量\(m_0\)。

5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。

6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。

五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定物体的转动惯量。

2、验证转动惯量的平行轴定理。

二、实验原理三线摆是将一个匀质圆盘,以三条等长的摆线对称地悬挂在一个水平的圆盘上。

当圆盘绕垂直于盘面的中心轴作微小扭转摆动时,圆盘的运动可以看作是一种简谐振动。

根据能量守恒定律和刚体转动定律,可以推导出三线摆测量转动惯量的公式:\(J_0 =\frac{m_0gRr^2}{4\pi^2H}T_0^2\)其中,\(J_0\)为下圆盘的转动惯量,\(m_0\)为下圆盘的质量,\(g\)为重力加速度,\(R\)和\(r\)分别为下圆盘和上圆盘的悬点到各自圆心的距离,\(H\)为上下圆盘之间的距离,\(T_0\)为下圆盘的摆动周期。

对于质量为\(m\)、转动惯量为\(J\)的待测物体放在下圆盘上时,系统的转动惯量为\(J_0 + J\),摆动周期为\(T\),则有:\(J =\frac{m_0gRr^2}{4\pi^2H}(T^2 T_0^2)\)若质量为\(m\)的待测物体的质心轴到下圆盘中心轴的距离为\(d\),根据平行轴定理,其转动惯量为\(J = J_c + md^2\),其中\(J_c\)为通过质心轴的转动惯量。

三、实验仪器三线摆实验仪、游标卡尺、米尺、电子秒表、待测圆环、圆柱体等。

四、实验步骤1、调节三线摆底座水平,使上圆盘和下圆盘处于平行状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量六次取平均值。

3、用游标卡尺测量上下圆盘的悬点到各自圆心的距离\(R\)和\(r\),各测量六次取平均值。

4、测量下圆盘的质量\(m_0\)和半径\(R_0\)。

5、轻轻转动下圆盘,使其做小角度摆动,用电子秒表测量下圆盘摆动\(50\)次的时间,重复测量六次,计算平均周期\(T_0\)。

6、将待测圆环放在下圆盘上,使圆环的中心与下圆盘的中心重合,测量系统的摆动周期\(T\),重复测量六次。

7、用游标卡尺测量圆环的内、外直径,计算圆环的质量和转动惯量。

刚体转动惯量实验报告

刚体转动惯量实验报告

一、实验目的1. 验证刚体转动定律,通过实验方法测量刚体的转动惯量。

2. 观察刚体的转动惯量与质量分布的关系。

3. 学习使用实验仪器和方法,进行物理量的测量和数据处理。

二、实验原理刚体转动惯量(J)是描述刚体绕某一固定轴转动时,其惯性大小的物理量。

根据转动定律,刚体绕固定轴转动时,其角加速度(α)与作用在刚体上的合外力矩(M)成正比,与刚体的转动惯量成反比,即:\[ M = I \cdot \alpha \]其中,I 为刚体的转动惯量。

对于规则形状的均质刚体,其转动惯量可以通过几何公式直接计算得出。

但对于不规则形状或非均质刚体,其转动惯量一般需要通过实验方法测定。

三、实验仪器1. 刚体转动惯量测量装置(包括:旋转轴、测量台、测速仪、计时器、砝码等)2. 刚体(如圆环、均质杆等)3. 质量测量仪4. 游标卡尺四、实验步骤1. 将刚体放置在测量台上,调整旋转轴使其垂直于刚体的旋转平面。

2. 使用质量测量仪测量刚体的质量(m)。

3. 使用游标卡尺测量刚体的几何尺寸(如半径、长度等)。

4. 将砝码挂在旋转轴上,调整砝码的质量和位置,使其对刚体产生合外力矩。

5. 使用测速仪测量刚体的角速度(ω)。

6. 使用计时器测量砝码下降的时间(t)。

7. 根据实验数据,计算刚体的转动惯量。

五、数据处理1. 计算刚体的角加速度(α):\[ \alpha = \frac{2\pi \cdot \omega}{t} \]2. 计算刚体的转动惯量(I):\[ I = \frac{m \cdot r^2}{2} \]其中,r 为刚体的几何尺寸。

六、实验结果与分析1. 通过实验测量,得到刚体的转动惯量(I)为:_______ kg·m²。

2. 分析实验结果,比较不同刚体的转动惯量,观察质量分布对转动惯量的影响。

3. 分析实验误差,探讨可能的原因。

七、实验总结1. 通过本次实验,成功验证了刚体转动定律,并测量了刚体的转动惯量。

测转动惯量的实验报告

测转动惯量的实验报告

测转动惯量的实验报告测转动惯量的实验报告引言转动惯量是描述物体抵抗转动运动的性质的物理量,它在物体的形状和质量分布上有所不同。

为了研究物体的转动惯量,我们进行了一系列实验。

本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量分布对转动惯量的影响,并验证转动惯量的定义和计算公式。

实验一:转动惯量与物体形状的关系在第一组实验中,我们选择了三个不同形状的物体:圆盘、长方体和圆柱体。

首先,我们测量了这些物体的质量和尺寸。

然后,我们通过将这些物体放置在转轴上并施加一个旋转力矩,测量了它们的角加速度。

根据牛顿第二定律和角动量定理,我们可以计算出它们的转动惯量。

实验结果表明,转动惯量与物体的形状密切相关。

对于相同质量的物体,圆盘的转动惯量最小,长方体次之,而圆柱体的转动惯量最大。

这是因为圆盘的质量分布在其半径方向上更为均匀,而圆柱体的质量集中在中心轴附近,导致了转动惯量的增加。

这一实验结果与我们的预期相符。

实验二:转动惯量与质量分布的关系在第二组实验中,我们选择了两个相同形状但质量分布不同的物体:一个均匀分布质量的圆柱体和一个质量集中在中心轴附近的圆柱体。

同样地,我们测量了它们的质量和尺寸,并通过施加旋转力矩来测量它们的角加速度。

实验结果表明,质量分布的改变会显著影响转动惯量。

相同质量的物体中,质量集中在中心轴附近的圆柱体的转动惯量要大于质量均匀分布的圆柱体。

这是因为质量集中在中心轴附近的物体,其质量距离转轴的距离较小,从而增加了转动惯量。

这一实验结果进一步验证了转动惯量与质量分布的关系。

结论通过这一系列实验,我们得出了以下结论:1. 转动惯量与物体的形状密切相关,形状不同会导致转动惯量的差异。

2. 转动惯量与质量分布密切相关,质量集中在中心轴附近的物体转动惯量较大。

3. 转动惯量可以通过测量角加速度和施加力矩来计算,符合牛顿第二定律和角动量定理。

这些实验结果对于深入理解物体的转动性质和应用于工程设计中的转动系统具有重要意义。

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告一、实验目的1、学习用三线摆法测量物体的转动惯量。

2、验证转动惯量的平行轴定理。

二、实验原理三线摆是由三根等长的悬线将一个匀质圆盘悬挂在一个水平的圆盘支架上构成的。

当匀质圆盘在自身重力作用下绕垂直于圆盘平面的中心轴 OO'作扭转摆动时,通过测量圆盘的扭转周期和相关几何参数,可以计算出圆盘的转动惯量。

设下圆盘质量为 m₀,半径为 R₀,上圆盘质量为 m,半径为 r,上下圆盘之间的距离为 h。

当下圆盘扭转一个小角度θ 后,在重力矩的作用下,圆盘将做周期性的扭转摆动。

根据能量守恒定律,圆盘的转动动能等于重力势能的变化,可得:\\begin{align}mgh\theta&=\frac{1}{2}I\omega^2\\\end{align}\其中,I 为圆盘的转动惯量,ω 为圆盘的角速度。

由于圆盘的摆动角度很小,sinθ ≈ θ ,则重力矩为mghθ 。

又因为圆盘做简谐运动,其周期 T 与角速度ω 的关系为:\(\omega =\frac{2\pi}{T}\)。

将上述关系代入可得:\\begin{align}mgh\theta&=\frac{1}{2}I(\frac{2\pi}{T})^2\\I&=\frac{mghT^2}{4\pi^2\theta}\end{align}\对于三线摆,通过几何关系可以得到:\(h =\sqrt{(R_0^2r^2)}\)。

当质量为 m 的待测物体放在下圆盘上,且其质心与下圆盘中心轴重合时,测出此时的摆动周期 T',则系统的转动惯量为:\\begin{align}I'&=(m_0 + m)\frac{g\sqrt{(R_0^2 r^2)}T'^2}{4\pi^2\theta}\end{align}\则待测物体的转动惯量为:\(I_{x} = I' I_0\)。

平行轴定理:如果一个刚体对通过质心的轴的转动惯量为 Ic,那么对与该轴平行、相距为 d 的任意轴的转动惯量为:\(I = I_c +md^2\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验项目:测量形状不规则物体的转动惯量(一)实验目的及要求:发散思维设计两种不同的方法去求物体的转动惯量。

结合理论知识,加深转动惯量在刚体运动中所起作用的理解。

(二)仪器器材:密度均匀薄木板、三线摆、DH4601转动惯量测试仪、实验机架、水平仪、游标卡尺、米尺、细线、圆柱体、天平、大头针、剪刀、钳子、透明胶。

(三)理论值计算:2d J r m =⎰ 2i i J r m =∆∑计算得J= 。

方案一:三线摆法1一、实验原理: 1.重心——物体各部分所受重力的合力的作用点。

在物体内各部分所受重力可看作平行力的情况下,重心是一个定点。

一般物体可用悬挂法求的重心。

质心——物体的质量中心,是研究物体机械运动的一个重要参考点。

当作用力通过该点时,物体只作平动而不发生转动;否则在发生移动的同时物体将绕该点转动。

在研究质心的运动时,可将物体的质量看作集中于质心。

对于密度平均的物体,其质心与重心重合。

根据平衡力定理:重力和拉力平衡,大小相等,在一条直线上测两次就可以得到两条直线两条不平行的直线交于一个点就是重心,亦即质心。

2. 左图是三线摆实验装置的示意图。

上、下圆盘均处于水平,悬挂在横梁上。

三个对称分布的等长悬线将两圆盘相连。

上圆盘固定,下圆盘可绕中心轴O ’O 作扭摆运动。

下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。

根据能量守恒定律或刚体的转动定律均可以导出物体绕中心轴O ’O 的转动惯量。

I 0=T 0²(M 0gRr )/(4π²H 0)……①其中M0为下盘的质量:r 、R 分别为上下悬点离各自圆盘中心的距离;H0为平衡时上下盘间的垂直距离;To 为下盘作简谐运动的周期,g 为重力加速度(在广州地区g=9.788m/s ²)。

将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与OO’轴重合。

测出此时摆运动周期T1和上下圆盘间的垂直距离H。

同理可求得待测刚体和下圆盘对中心转轴OO’轴的总转动惯量为:I1=T1²[(M0+M)gRr]/(4π²H)………………………②如不计因重量变化而引起悬线伸长,则有H≈H0。

那么,待测物体绕中心轴的转动惯量为:I=I1—I0-=[(T1²(M0+M)- T0²M0)gRr]/(4π²H0)………………③O 轴的转动惯量。

因此,通过长度、质量和时间的测量,便可求出刚体绕O二、实验步骤:1. 仪器操作方法(1) 打开电源DH4601转动惯量测试仪,程序预置的周期数为n = 30 (数显)。

当计时开始时,计数达到2n + 1次时,计时停止并且显示具体时间(单位是秒),这个时间即为n 个周期的时间。

例如,我们预置周期数为50,按下执行键开始计时,信号灯不停闪烁,即为计时状态。

当这个计数达到2×50+1=101 次时计时停止,显示具体时间。

(2) 设置周期数的方法。

若要设置50 次,先按“置数”开锁,再按上调(或下调)改变周期数n ,再按“置数”锁定,此时,即可按执行键开始计时,信号灯不停闪烁,即为计时状态。

当物体经过光电门的次数达到设定值时,数字显示器将显示具体时间(单位是秒)。

只要按“返回”即可回到上次刚执行的周期数“50”,再按“执行”键即可第二次计时。

(3) 当断电后再开机,程序从头预置30 次周期,须重复上述步骤。

2. 实验操作步骤(1)选择一个点,用细线分穿过该点将薄木板悬挂于空中,且细线另一端垂挂重物,使其自然垂直于木板所在的平面,用大头针将细线固定住,再用铅笔沿细线在木板上画出该细线在木板上的底纹。

(2)再选择另外一个点(该点不在步骤一所画出的细线上)用同样的方法画出另外一条细线,这两条细线的交点即为该薄木板的质心记为点A。

(3)调节底座及下盘水平:将水准仪分别置于底座与下盘,调整上盘的三个旋钮,使水准仪的气泡居中,使底座(下盘)水平。

(4)测出的上、下圆盘相邻两个悬孔间的距离a 和b ,然后算出悬孔到中心的距离r 和R 。

r=a/√3,R=b/√3 …………④(5)用米尺测出两圆盘之间的垂直距离Ho 。

(6)测量空盘绕中心轴OO’转动的运动周期To :轻轻转动上盘(上盘上有小转动杆),带动下盘转动,这样可以避免三线摆在做扭动时发生晃动。

注意扭摆的转角控制在5°以内。

用累积放大法测出扭摆运动的周期(计时器设定n = 50个周期)。

(7)测量待测物体与下盘共同转动的周期T1:将待测圆环置于下圆盘上,注意使两者中心重合,按上面的方法测出它们一起扭摆运动的周期T1 。

(8)用天平测量、记录各刚体的质量(下圆盘质量在其表面上已有标注,单位为克)。

三、实验数据记录:表1有关长度测量的记录表下盘质量Mo= ,待测木板的质量M= ,两圆盘的垂直距离Ho= ,根据式④计算出R= ,r= 。

表2累积法测周期的数据记录表根据式③计算出待测薄木板绕中心轴OO’的转动惯量I。

I=I1—I0-=[(T1²(M0+M)- T0²M0)gRr]/(4π²H0)I= 。

四、误差来源分析及改进:⑴米尺及游标卡尺的读数误差;⑵用累积放大法测周期时,未等摆动平稳时便开始测量;⑶摆动角度过大;⑷三线摆中,下轴未能保持平行。

改进:控制下转盘扭摆角度于5°内;方案二:三线摆法2:一、 实验原理:左图是三线摆实验装置的示意图。

上、下圆盘均处于水平,悬挂在横梁上。

三个对称分布的等长悬线将两圆盘相连。

上圆盘固定,下圆盘可绕中心轴O ’O 作扭摆运动。

下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。

根据能量守恒定律或刚体的转动定律均可以导出物体绕中心轴O ’O 的转动惯量。

I 0=T 0²(M 0gRr )/(4π²H 0)……① 其中M0为下盘的质量:r 、R 分别为上下悬点离各自圆盘中心的距离;H0为平衡时上下盘间的垂直距离;To 为下盘作简谐运动的周期,g 为重力加速度(在广州地区g=9.788m/s ²)。

将下圆盘换成薄木板时,测量数据,跟据式①计算即可得到木板的转动惯量。

二、 实验步骤:(1)根据方案一得出的圆盘的质心,以该质心为圆心以R 为半径画一圆,将该圆三等分,在圆周上取得X 、Y 、Z 三点,且将大头针钉在该点上,再讲该三根大头针扭曲直至能用细线将该木板平行挂起为止。

(2)将三线摆仪器的下圆盘拆卸下来,再将薄木板通过细线挂在三线摆仪器的上圆盘上,将水准仪放在薄木板上,调节三条线的线长,直至该薄木板水平。

(2)测出的上圆盘相邻两个悬孔间的距离a ,然后算出悬孔到中心的距离r 。

r=a/√3 ………… ④(r 能由方案一测出的数据直接得出)(3)用米尺测出圆盘和薄木板之间的垂直距离H 1 。

(4)轻微转动转盘,使其转动角度小于或等于5,用累积放大法测出扭摆运动的周期(计时器设定n = 50个周期)。

记录并整理数据。

三、 实验数据记录:由方案一的测量结果,可以获得以下数据:薄木板质量M= ,下圆盘和薄木板间的垂直距离H 1= ,R= ,r= 。

测量次 1 2 3 4 5 平均值Hr RO'O 三线摆实验装置图数T2转动50周期所需的时间/s根据式①计算得出薄木板的转动惯量 I2 。

I0=T0²(M0gRr)/(4π²H0)I2= 。

四、误差来源分析及改进:(1)米尺及游标卡尺的读数误差;(2)待测物体质量测量时产生误差;(3)摆动角度过大;(4)由于木板质量过轻,不能将悬挂木板的线拉直。

改进:控制摆动角度于5°之内;悬挂木板的线尽可能用细软线。

方案三:复摆法:四、实验原理:一个可绕固定轴摆动的刚体称为复摆。

刚体的质心为C, 对过O 点的转轴的转动惯量为J, O、C两点间距离的距离为h。

据转动定律,得22dsin dJ mghtθθ=-若θ较小时22ddJ mghtθθ=-令2mghJ ω=则222d0 d tθωθ+=有22J Tmghππω==可得刚体绕过点O且垂直于薄木板转轴的转动惯量224TJ mghπ=……………⑤又由转动惯量的平行轴定理有:质量为M的物体绕过质心的且垂直于薄木板的轴的转动惯量为Ic ,当转轴平行移动距离x 时,则此物体对新轴AB 的转动惯量为I= I c +Mx²。

于是根据转动惯量平行轴定理有,过薄木板质心的转轴的转动惯量为I c=I-Mx²…………⑥二、实验步骤:(1)打开电源DH4601转动惯量测试仪,将程序周期数设为n=50.(2)在待测薄木板上侧面钉一大头针(DH4601转动惯量测试仪测周期用),拿一长木板,在木板上钉一细钉,将薄木板通过细钉悬挂于长木板上,记该点为点B,记该木板的质心的为A点。

(3)将薄木板向上拉开a角,松开手,让薄木板以该细钉为转轴做扭摆运动。

(4)待其摆动较为稍稳定时,用DH4601转动惯量测试仪测量该薄木板摆动50个周期所用的时间,并记录下来。

(5)重复步骤(3)、(4)5次,并将实验数据记录在下表4中。

取其平均值。

(6)用游标卡尺测量AB两点间的距离,记为H。

三、数据记录与计算:3= 。

H= 。

M= 。

由方案一已测出薄木板质量M,根据式⑤计算出该薄木板质心所在轴的转动惯量为Io= 。

由⑥式有:I A=I B-MH²四、误差来源分析及改进:(1)米尺及游标卡尺的读数误差;(2)薄木板摆动过程中,与长木板的摩擦过大。

改进:减少薄木板与长木板的接触面积,如将悬挂薄木板的大头钉钉在长木板的侧面,减少摩擦。

(四)注意事项:(1)在使用三线摆法测待测物体的转动惯量时,底盘必须保持平衡。

(2)在使用方案(一)、(二)时要注意待测物体与三线摆仪器的中心轴OO’重合。

(3)三线摆法测量时,底盘的扭转角度不宜过大,最好保持在5°。

(4)在三个测量方案里,都必须等到摆动平稳时才开始用累积放大法测其周期,这样能够减小误差。

(5)DH4601转动惯量测试仪的光电感应的感应端必须摆在摆动角的中间附近位置,确保转动一个周期能够两次扫过该感应端。

(五)对该次实验的评价:。

相关文档
最新文档