linux下的tty串口通信
Linux下串口通信编程
![Linux下串口通信编程](https://img.taocdn.com/s3/m/1245420a581b6bd97f19eab6.png)
Linux下串口通信编程一、什么是串口通信?串口通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
二、串口通信的分类串口通信可以分为同步通信和异步通信两类。
同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。
2.1 同步通信同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。
这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。
它们均由同步字符、数据字符和校验字符(CRC)组成。
其中同步字符位于帧开头,用于确认数据字符的开始。
数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。
同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。
2.2 异步通信异步通信中,数据通常以字符或者字节为单位组成字符帧传送。
字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。
发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。
接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。
在异步通行中有两个比较重要的指标:字符帧格式和波特率。
(1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。
1.起始位:位于字符帧开头,占1位,始终为逻辑0电平,用于向接收设备表示发送端开始发送一帧信息。
2.数据位:紧跟在起始位之后,可以设置为5位、6位、7位、8位,低位在前高位在后。
3.奇偶校验位:位于数据位之后,仅占一位,用于表示串行通信中采用奇校验还是偶校验。
(2)波特率,波特率是每秒钟传送二进制数码的位数,单位是b/s。
异步通信的优点是不需要传送同步脉冲,字符帧长度也不受到限制。
linux串口编程参数配置详解
![linux串口编程参数配置详解](https://img.taocdn.com/s3/m/90098e33a5e9856a5612604e.png)
linux串口编程参数配置详解1.linux串口编程需要的头文件#include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数库定义#include <unistd.h> //Unix标准函数定义#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h> //POSIX中断控制定义#include <errno.h> //错误号定义2.打开串口串口位于/dev中,可作为标准文件的形式打开,其中:串口1 /dev/ttyS0串口2 /dev/ttyS1代码如下:int fd;fd = open(“/dev/ttyS0”, O_RDWR);if(fd == -1){Perror(“串口1打开失败!”);}//else//fcntl(fd, F_SETFL, FNDELAY);除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。
O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。
O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。
3.设置波特率最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下:struct termios{tcflag_t c_iflag; //输入模式标志tcflag_t c_oflag; //输出模式标志tcflag_t c_cflag; //控制模式标志tcflag_t c_lflag; //本地模式标志cc_t c_line; //line disciplinecc_t c_cc[NCC]; //control characters}代码如下:int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, };void SetSpeed(int fd, int speed){int i;struct termios Opt; //定义termios结构if(tcgetattr(fd, &Opt) != 0){perror(“tcgetattr fd”);return;}for(i = 0; i < sizeof(speed_arr) / sizeof(int); i++){if(speed == name_arr[i]){tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);if(tcsetattr(fd, TCSANOW, &Opt) != 0){perror(“tcsetattr fd”);return;}tcflush(fd, TCIOFLUSH);}}}注意tcsetattr函数中使用的标志:TCSANOW:立即执行而不等待数据发送或者接受完成。
linux 串口 非标准波特率
![linux 串口 非标准波特率](https://img.taocdn.com/s3/m/2aaae07782c4bb4cf7ec4afe04a1b0717fd5b318.png)
在Linux中,串口通信通常使用termios结构体来配置串口参数,包括波特率等。
要设置非标准的波特率,可以使用以下方法:1. 首先,需要包含头文件`<termios.h>`和`<unistd.h>`。
2. 然后,使用`tcgetattr()`函数获取当前串口属性。
3. 修改`cfsetispeed()`和`cfsetospeed()`函数的参数,分别设置输入和输出波特率。
4. 使用`tcsetattr()`函数更新串口属性。
5. 最后,关闭串口设备。
以下是一个示例代码:```c#include <stdio.h>#include <stdlib.h>#include <string.h>#include <unistd.h>#include <fcntl.h>#include <termios.h>int main() {int fd;struct termios options;// 打开串口设备fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY);if (fd == -1) {perror("open_port: Unable to open /dev/ttyS0 - ");return(-1);}// 获取当前串口属性tcgetattr(fd, &options);// 设置非标准波特率(例如:9600)cfsetispeed(&options, B9600);cfsetospeed(&options, B9600);// 更新串口属性tcsetattr(fd, TCSANOW, &options);// 关闭串口设备close(fd);return 0;}```注意:请根据实际情况修改串口设备名称(如`/dev/ttyS0`)和波特率(如`B9600`)。
linux下的串口通信原理及编程实例
![linux下的串口通信原理及编程实例](https://img.taocdn.com/s3/m/961116233868011ca300a6c30c2259010202f360.png)
linux下的串⼝通信原理及编程实例linux下的串⼝通信原理及编程实例⼀、串⼝的基本原理1 串⼝通讯串⼝通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进⾏传输数据的⼀种通讯⽅式。
串⼝是⼀种接⼝标准,它规定了接⼝的电⽓标准,没有规定接⼝插件电缆以及使⽤的协议。
2 串⼝通讯的数据格式 ⼀个字符⼀个字符地传输,每个字符⼀位⼀位地传输,并且传输⼀个字符时,总是以“起始位”开始,以“停⽌位”结束,字符之间没有固定的时间间隔要求。
每⼀个字符的前⾯都有⼀位起始位(低电平),字符本⾝由7位数据位组成,接着字符后⾯是⼀位校验位(检验位可以是奇校验、偶校验或⽆校验位),最后是⼀位或⼀位半或⼆位停⽌位,停⽌位后⾯是不定长的空闲位,停⽌位和空闲位都规定为⾼电平。
实际传输时每⼀位的信号宽度与波特率有关,波特率越⾼,宽度越⼩,在进⾏传输之前,双⽅⼀定要使⽤同⼀个波特率设置。
3 通讯⽅式单⼯模式(Simplex Communication)的数据传输是单向的。
通信双⽅中,⼀⽅固定为发送端,⼀⽅则固定为接收端。
信息只能沿⼀个⽅向传输,使⽤⼀根传输线。
半双⼯模式(Half Duplex)通信使⽤同⼀根传输线,既可以发送数据⼜可以接收数据,但不能同时进⾏发送和接收。
数据传输允许数据在两个⽅向上传输,但是,在任何时刻只能由其中的⼀⽅发送数据,另⼀⽅接收数据。
因此半双⼯模式既可以使⽤⼀条数据线,也可以使⽤两条数据线。
半双⼯通信中每端需有⼀个收发切换电⼦开关,通过切换来决定数据向哪个⽅向传输。
因为有切换,所以会产⽣时间延迟,信息传输效率低些。
全双⼯模式(Full Duplex)通信允许数据同时在两个⽅向上传输。
因此,全双⼯通信是两个单⼯通信⽅式的结合,它要求发送设备和接收设备都有独⽴的接收和发送能⼒。
在全双⼯模式中,每⼀端都有发送器和接收器,有两条传输线,信息传输效率⾼。
显然,在其它参数都⼀样的情况下,全双⼯⽐半双⼯传输速度要快,效率要⾼。
Linux串口通信编程
![Linux串口通信编程](https://img.taocdn.com/s3/m/4fb748ff172ded630b1cb680.png)
2) 设置属性:奇偶校验位、数据位、停止位。
主要设置<termbits.h>中的termios3) 打开、关闭和读写串口。
串口作为设备文件,可以直接用文件描述符来进行网上的一个例子:/*串口设备无论是在工控领域,还是在嵌入式设备领域,应用都非常广泛。
而串口编程也就显得必不可少。
偶然的一次机会,需要使用串口,而且操作系统还要求是Linux,因此,趁着这次机会,综合别人的代码,进行了一次整理和封装。
具体的封装格式为C代码,这样做是为了很好的移植性,使它可以在C和C++环境下,都可以编译和使用。
代码的头文件如下: *//////////////////////////////////////////////////////////////////// //////////////filename:stty.h#ifndef__STTY_H__#define__STTY_H__//包含头文件#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>#include<sys/stat.h>#include<fcntl.h>#include<termios.h>#include<errno.h>#include<pthread.h>//// 串口设备信息结构typedef struct tty_info_t{int fd;// 串口设备IDpthread_mutex_t mt;// 线程同步互斥对象char name[24];// 串口设备名称,例:"/dev/ttyS0"struct termios ntm;// 新的串口设备选项struct termios otm;// 旧的串口设备选项}TTY_INFO;//// 串口操作函数TTY_INFO *readyTTY(int id);int setTTYSpeed(TTY_INFO *ptty,int speed);int setTTYParity(TTY_INFO *ptty,int databits,int parity,int st opbits);int cleanTTY(TTY_INFO *ptty);int sendnTTY(TTY_INFO *ptty,char*pbuf,int size);int recvnTTY(TTY_INFO *ptty,char*pbuf,int size);int lockTTY(TTY_INFO *ptty);int unlockTTY(TTY_INFO *ptty);#endif/*从头文件中的函数定义不难看出,函数的功能,使用过程如下:(1)打开串口设备,调用函数setTTYSpeed();(2)设置串口读写的波特率,调用函数setTTYSpeed();(3)设置串口的属性,包括停止位、校验位、数据位等,调用函数setTTYParity ();(4)向串口写入数据,调用函数sendnTTY();(5)从串口读出数据,调用函数recvnTTY();(6)操作完成后,需要调用函数cleanTTY()来释放申请的串口信息接口;其中,lockTTY()和unlockTTY()是为了能够在多线程中使用。
实验9指导书:串口通信实验
![实验9指导书:串口通信实验](https://img.taocdn.com/s3/m/8d952d45192e45361166f51f.png)
实验指导书:串口通信实验实验目的:通过程序,理解并验证串口通信的编程方法和机制。
本次实验分两个环节,第一环节为用程序发送字符串,用linux命令在另一窗口直接从串口读取;第二环节为用发送程序发送字符串,用接收程序在另一窗口读取串口并显示。
要求必须完成第一环节,而第二环节为选作。
本实验在虚拟机环境下完成,利用虚拟机创建两个虚拟串口,基于这两个虚拟串口完成串口通信实验。
实验内容:本次实验需要在linux环境下,用vi工具输入对应的程序,并编译通过,运行后观察结果是否正确。
一、设置虚拟机串口1.1 VMware的串口:一个虚拟机最多可以添加四个虚拟串口,有如下3个方法配置虚拟串口:(1) 连接一个虚拟串口到宿主机的物理串口。
(2) 连接一个虚拟串口到宿主机上的一个文件。
(3) 在两个虚拟机之间建立一个直接的连接,或者将虚拟机的串口与宿主机的应用程序连接。
1.2 为虚拟机添加串口首先要保证虚拟机下的linux处于关机(power off)状态,(1) 选择菜单中的虚拟机 设置(英文版为:VM -> Settings),在硬件(Hardware)标签页中,如果已有串行端口(serial port),则选中该串口,并点选移除。
(2) 点击Add按钮,在Add Hardware Wizard对话框中选择Serial Port,点击next,分两次添加两个串口,具体的选项如下图:串口2的设置:注意两个串口都使用了命名管道方式,但一个是服务器端,一个是客户端。
(3) 启动linux操作系统,测试两个串口是否设置成功在linux桌面空白处点击右键,打开两个终端窗口。
在其中一个窗口(称为窗口A)中,建立工作目录,并进入该目录。
即,执行下述命令:[1]cd /home[2]mkdir src[3]cd src[4]cat /dev/ttyS1 //注意是大写的S在另一个窗口(称为窗口B)执行下述命令:[5]cd /home/src[6]echo hello >/dev/ttyS0 //注意是大写的S此时,应在窗口A中显示出“hello”这个字符串,这表明窗口B通过串口/deb/ttyS0发送的字符串,通过串口连接,在窗口A的串口/dev/ttyS1上接收到了该字符串。
linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解
![linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解](https://img.taocdn.com/s3/m/44afc00b763231126edb1161.png)
linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解首先:1。
终端和控制台都不是个人电脑的概念,而是多人共用的小型中型大型计算机上的概念.一台主机,连很多终端,终端为主机提供了人机接口,每个人都通过终端使用主机的资源. 终端有字符哑终端和图形终端两种.控制台是另一种人机接口, 不通过终端与主机相连, 而是通过显示卡-显示器和键盘接口分别与主机相连, 这是人控制主机的第一人机接口.话回到个人计算机上,个人计算机只有控制台,没有终端. 当然愿意的话, 可以在串口上连一两台字符哑终端. 但是linux偏要按POSIX标准把个人计算机当成小型机来用,那么就在控制台上通过getty软件虚拟了六个字符哑终端(或者叫控制台终端tty1-tty6)(数量可以在/etc/inittab里自己调)和一个图型终端, 在虚拟图形终端中又可以通过软件(如rxvt)再虚拟无限多个虚拟字符哑终端(pts/0....). 记住,这全是虚拟的,用起来一样,但实际上并不是.所以在个人计算机上,只有一个实际的控制台,没有终端,所有终端都是在控制台上用软件模拟的.要把个人计算机当主机再通过串口或网卡外连真正的物理终端也可以,但由于真正的物理终端并不比个人计算机本身便宜,一般没有人这么做.2.如同其他UNIX类系统,Linux本身也是基于命令行的。
试试“Ctrl”+“Alt”+“Fx”。
这就是控制台,算是Linux的本来面目。
至于使用方法,除了多出登录注销外,其它操作和我们在linux图形界面(X—window)下的终端操作是一样的,在X-Window出问题或不运行X-Window的时候,操作主要在这里完成。
Linux在控制台下提供了不止一个(字符哑)终端,支持多用户同时登录,包括在本机同时登录。
控制台“Alt”+“Fx”能够切换到第x个(字符哑)终端。
如果需要从X-Window里跳到第(字符哑)终端,需要“Ctrl”+“Alt”+“Fx”。
linux设备驱动,tty串口编程
![linux设备驱动,tty串口编程](https://img.taocdn.com/s3/m/3673f784680203d8ce2f24a4.png)
linux设备驱动,tty串口编程2011-12-04 08:56:33分类:LINUXXC2440开发板上已经含有S3C2440的3个串口驱动,我们只要知道各个串口的设备名称就可以了,204 s3c2410_serial ,204是串口的主设备号。
s3c2410_serial是设备名称,在 dev目录下 ls 一下就可以发现ptyd0 s3c2410_serial0 ttysaptyd1 s3c2410_serial1 ttysbptyd2 s3c2410_serial2 ttyscs3c2410_serial0,s3c2410_serial1,s3c2410_serial2 分别是串口1、2、3的设备名称下面是测试源码,打开串口1、2,程序执行后,串口1的波特率变为9600,这时候你的串口终端就没有反应了(串口1波特率默认115200),把终端软件串口1 波特率改为9600后,连接终端,回车一下,然后输入几个‘1’后,画面如上图。
这时用telnet工具登陆开发板,执行ps 查看现有运行的程序,找到tty [root@XC2440 /root]# psPID USER TIME COMMAND1 root 0:04 init2 root 0:00 [kthreadd]3 root 0:00 [ksoftirqd/0]5 root 0:00 [kworker/u:0]6 root 0:00 [khelper]7 root 0:00 [kworker/u:1]10 root 0:00 [netns]236 root 0:00 [sync_supers]238 root 0:00 [bdi-default]240 root 0:00 [kblockd]249 root 0:00 [khubd]252 root 0:00 [kseriod]258 root 0:00 [kmmcd]347 root 0:00 [rpciod]349 root 0:00 [kworker/0:1]355 root 0:00 [kswapd0]356 root 0:00 [aio]357 root 0:00 [nfsiod]358 root 0:00 [crypto]901 root 0:00 [mtdblock0]906 root 0:00 [mtdblock1]911 root 0:00 [mtdblock2]916 root 0:00 [mtdblock3]1028 root 0:00 [usbhid_resumer]1049 root 0:00 [yaffs-bg-1]1060 root 0:00 vsftpd /etc/vsftpd.conf1065 root 0:00 -/bin/sh1067 root 0:00 /usr/sbin/telnetd -l /bin/login1070 root 0:18 /usr/local/qtopia/bin/qpe -qws1071 root 0:00 boa1072 root 0:00 [kworker/0:2]1085 root 0:02 /usr/local/qtopia/bin/quicklauncher1086 root 0:00 /usr/local/qtopia/bin/qss1089 root 0:02 /usr/local/qtopia/bin/quicklauncher1098 root 0:00 [flush-31:3]1100 root 0:00 ./tty1101 root 0:00 -ash1104 root 0:00 ps[root@XC2440 /root]# kill 1100执行 kill 1100 后tty测试程序就被终止了,这时串口终端就可以用了,回车一下Terminated[@XC2440 pub]#Please press Enter to activate this console.Processing /etc/profile...Done[root@XC2440 /]#[root@XC2440 /]#测试代码如下:#include <errno.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/ioctl.h>#include <sys/types.h>#include <errno.h>#include <termios.h>#include <sys/time.h>#include <signal.h>#include <string.h>#include <fcntl.h>#include <asm/param.h>#include "pthread.h"//#include "serial_set.h"/******************************************************************* * 函数名称: set_opt* 功能描述:设置串口基本参数* 输入参数: fd 打开的串口标识符(通过open_port函数返回)nSpeed 波特率 2400、4800、9600、115200nBits 数据位 7、8nEvent 奇偶校验 'O' 'N' 'E'nStop 停止位 1、2* 输出参数:无* 返回值: 0 设置成功-1 设置过程出错* 其它说明:无* 修改日期版本号修改人修改内容*-------------------------------------------------------------------- * 2010/09/27 V1.0 *** 创建函数***********************************************************************/int set_opt(int fd,int nSpeed, int nBits, char nEvent, int nStop) {struct termios newtio,oldtio;//保存测试现有串口参数设置,在这里如果串口号等出错,会有相关的出错信息if ( tcgetattr( fd,&oldtio) != 0){perror("SetupSerial 1");return -1;}//extern void bzero(void *s, int n); 置字节字符串s的前n个字节为零bzero( &newtio, sizeof( newtio ) );//设置字符大小newtio.c_cflag |= CLOCAL | CREAD;newtio.c_cflag &= ~CSIZE;//设置数据位switch( nBits ){case 7:newtio.c_cflag |= CS7;break;case 8:newtio.c_cflag |= CS8;break;}//设置校验位switch( nEvent ){case 'O':newtio.c_cflag |= PARENB;newtio.c_cflag |= PARODD;newtio.c_iflag |= (INPCK | ISTRIP);break;case 'E':newtio.c_iflag |= (INPCK | ISTRIP);newtio.c_cflag &= ~PARODD; break;case 'N':newtio.c_cflag &= ~PARENB; break;}//设置波特率switch( nSpeed ){case 2400:cfsetispeed(&newtio, B2400); cfsetospeed(&newtio, B2400); break;case 4800:cfsetispeed(&newtio, B4800); cfsetospeed(&newtio, B4800); break;case 9600:cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break;case 115200:cfsetispeed(&newtio, B115200); cfsetospeed(&newtio, B115200); break;default:cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break;}//设置停止位if( nStop == 1 )newtio.c_cflag &= ~CSTOPB; else if ( nStop == 2 )//设置等待时间和最小接收字符newtio.c_cc[VTIME] = 0;newtio.c_cc[VMIN] = 0;//处理未接收字符tcflush(fd,TCIFLUSH);//激活新配置if((tcsetattr(fd,TCSANOW,&newtio))!=0){perror("com set error");//打印com set error及出错原因return -1;}printf("set done!\n");return 0;}/******************************************************************** *** 函数名称: open_port* 功能描述:打开指定串口* 输入参数: fd 文件描述符comport 串口号(1、2、3)* 输出参数:无* 返回值:出错返回 -1成功返回 fd文件描述符* 其它说明:无* 修改日期版本号修改人修改内容*-------------------------------------------------------------------- * 2010/09/27 V1.0 *** 创建函数********************************************************************* **//*static struct uart_driver s3c24xx_uart_drv = {.owner = THIS_MODULE,.dev_name = "s3c2410_serial",.nr = CONFIG_SERIAL_SAMSUNG_UARTS,.cons = S3C24XX_SERIAL_CONSOLE,.driver_name = S3C24XX_SERIAL_NAME,.major = S3C24XX_SERIAL_MAJOR,.minor = S3C24XX_SERIAL_MINOR,};*/int open_port(int fd,int comport){//char *dev[]={"/dev/ttyS0","/dev/ttyS1","/dev/ttyS2"}; long vdisable;//没用//打开串口if (comport==1){//fd = open("/dev/ttySAC0",O_RDWR|O_NOCTTY|O_NDELAY);fd = open("/dev/s3c2410_serial0",O_RDWR|O_NOCTTY|O_NDELAY); if (-1 == fd){perror("Can't Open s3c2410_serial0");return(-1);}elseprintf("open s3c2410_serial0 .....\n");}else if(comport==2){fd = open("/dev/s3c2410_serial1",O_RDWR|O_NOCTTY|O_NDELAY); if (-1 == fd){perror("Can't Open s3c2410_serial1");return(-1);}elseprintf("open s3c2410_serial1 .....\n");}else if (comport==3){fd = open("/dev/s3c2410_serial2",O_RDWR|O_NOCTTY|O_NDELAY);if (-1 == fd){perror("Can't Open s3c2410_serial2");return(-1);}elseprintf("open s3c2410_serial2 .....\n");}else if (comport==4){fd = open("/dev/s3c2410_serial3",O_RDWR|O_NOCTTY|O_NDELAY);if (-1 == fd){perror("Can't Open s3c2410_serial3");return(-1);}elseprintf("open s3c2410_serial3 .....\n");}//恢复串口的状态为阻塞状态,用于等待串口数据的读入if(fcntl(fd, F_SETFL, 0) < 0)printf("fcntl failed!\n");elseprintf("fcntl=%d\n",fcntl(fd, F_SETFL,0));//测试打开的文件描述符是否引用一个终端设备,以进一步确认串口是否正确打开if(isatty(STDIN_FILENO)==0)printf("standard input is not a terminal device\n");elseprintf("isatty success!\n");printf("fd-open=%d\n",fd);return fd;}unsigned int val=0;int main(int argc, char **argv){long ret=0;int receNum=0,receFlag=0;unsigned char ReceBuf[512],SendBuf[512];int fd,fdd;int nread,i;unsigned char buff[512];struct timeval timeout;bzero(buff, 512);if((fdd=open_port(fdd,2)) < 0)//打开串口 2{printf("open_port error2\n");return -1;}if((i=set_opt(fdd,9600,8,'N',1)) < 0)//设置串口 9600 8 N 1 {printf("set_opt error2\n");return -1;}printf("fd=%d\n",fdd);if((fd=open_port(fd,1)) < 0)//打开串口 1{printf("open_port error1\n");return -1;}if((i=set_opt(fd,9600,8,'N',1)) < 0)//设置串口 9600 8 N 1 {printf("set_opt error1\n");return -1;}printf("fd=%d\n",fd);_sec=1;//设置定时器_usec=0;while (1){nread = read(fd,buff,256);//读串口数据非阻塞if(nread>0){memcpy(&ReceBuf[receNum],buff,nread);receFlag=2;receNum +=nread; if(receNum>511)receNum=0;printf("nread = %d\n",nread);printf("%s\n",buff);bzero(buff,nread);//清空}else{//printf("main\n");if(receFlag>1)receFlag--;if(receFlag==1){write(fd,ReceBuf,receNum);//写数据receNum=0;receFlag=0;}_sec=0;_usec=20000;//设置时间 20MS 读取一下串口数据ret=select(0,NULL,NULL,NULL,&timeout);}}close(fdd);close(fd);return 0;}。
linux 串口 poll() 工作原理
![linux 串口 poll() 工作原理](https://img.taocdn.com/s3/m/beb05e5bf4335a8102d276a20029bd64783e628d.png)
linux 串口 poll() 工作原理Linux的串口poll()函数是一种用于监测串口设备状态的机制。
它可以用于检测串口是否有数据可读或是否可以写入数据。
在本文中,我们将详细介绍Linux串口poll()函数的工作原理。
我们需要了解什么是串口。
串口是一种用于在计算机和外部设备之间传输数据的接口。
在Linux系统中,串口通常被表示为特殊文件,例如/dev/ttyS0或/dev/ttyUSB0。
通过这些特殊文件,我们可以读取和写入串口数据。
在Linux系统中,我们可以使用poll()函数来监测串口的状态。
poll()函数是一个系统调用,它可以等待一个或多个文件描述符(包括串口文件描述符)上的事件发生。
当有事件发生时,poll()函数将返回,并告诉我们哪个文件描述符上发生了事件。
在使用poll()函数之前,我们需要创建一个pollfd结构体数组,并将需要监测的串口文件描述符加入到数组中。
pollfd结构体定义如下:```cstruct pollfd {int fd; // 文件描述符short events; // 要监测的事件(读、写或错误)short revents; // 实际发生的事件};```在创建pollfd结构体数组后,我们需要设置需要监测的事件。
在串口中,我们通常需要监测以下事件:- POLLIN:表示文件描述符上有数据可读。
- POLLOUT:表示文件描述符上可以写入数据。
- POLLERR:表示文件描述符上发生了错误。
在设置完事件后,我们可以调用poll()函数来等待事件的发生。
poll()函数的原型如下:```cint poll(struct pollfd *fds, nfds_t nfds, int timeout);```其中,fds是指向pollfd结构体数组的指针,nfds是数组中的文件描述符数量,timeout是等待的超时时间(以毫秒为单位)。
如果timeout为负数,则表示无限等待,直到有事件发生为止。
基于linux和Qt的串口通信调试器调的设计及应用
![基于linux和Qt的串口通信调试器调的设计及应用](https://img.taocdn.com/s3/m/d720e217964bcf84b9d57b79.png)
基于linux和Qt的串口通信调试器调的设计及应用摘要:目前基于Linux操作系统的应用开发越来越广泛,Qt是一个跨平台的C++图形用户界面应用程序框架,它可以开发基于Linux上的图形应用程序。
Linux操作系统对串行口提供了很好的支持,为了在Linux系统下能让串口与其它硬件设备方便直观地进行通信,本文介绍了在Ubuntu10.10系统平台Qt-4.7及Qt Creator2.0编程环境下串口调试界面的设计及程序的编写。
关键词:串口通信Linux QT1 Qextserialport 类介绍在Qt类库中并没有特定的串口基础类,现在很多人使用的是第三方写的qextserialport类,它是一个跨平台的串口类,可以很方便地在Qt 中对串口进行读写操作。
本文也使用了该类。
文件下载地址: /projects/qextserialport/files/下载到的文件名为qextserialport-1.2win-alpha。
在linux平台中,我们只需用到其中的四个文件:qextserialbase.cpp和qextserialbase.h以及posix_qextserialport.cpp和posix_qextserialport.h。
其中前两个文件定义了一个QextSerialBase 类,它提供了操作串口所必需的一些变量和函数等;后两个文件定义了一个Posix_QextSerialPort 类,Posix_QextSerialPort类添加了Linux平台下操作串口的一些功能。
2 串口的基本设置串口的基本参数在posix_qextserialport.cpp文件里的构造函数中进行设置,它的最后一个构造函数:Posix_QextSerialPort::Posix_QextSerialPort(const QString & name, const PortSettings&settings, QextSerialBase::QueryMode mode)它共有3个参数,第一个是串口名,第二个是对串口参数的基本设置,第三个是读取串口的方式。
linux c语言 串口读取数据的方法
![linux c语言 串口读取数据的方法](https://img.taocdn.com/s3/m/d2eb9c880408763231126edb6f1aff00bed570f2.png)
linux c语言串口读取数据的方法Linux下使用C语言读取串口数据的方法引言:串口是计算机和外部设备进行通信的一种重要的通信接口。
在Linux系统中,要使用C语言读取串口数据,需要通过打开串口设备文件,设置串口参数,并进行读取数据的操作。
本文将介绍如何通过C语言在Linux下读取串口数据的方法。
目录:1. 了解串口的工作原理2. 打开串口设备文件3. 设置串口参数4. 读取串口数据5. 示例程序6. 总结1. 了解串口的工作原理:在开始编写C语言读取串口数据的方法前,首先需要了解串口的工作原理。
串口是通过硬件电路实现两台设备之间的数据传输,属于一种异步串行通信方式。
典型的串口包含发送数据引脚(TX)、接收数据引脚(RX)、数据位、停止位、奇偶校验位等。
2. 打开串口设备文件:在Linux系统中,每个串口设备都被映射到一个设备文件上,例如/dev/ttyS0代表第一个串口设备,/dev/ttyUSB0代表第一个USB串口设备。
要使用C语言读取串口数据,需要首先打开相应的串口设备文件。
在C语言中,使用open()函数打开串口设备文件。
open()函数的原型如下:cint open(const char *pathname, int flags);其中pathname参数指定要打开的串口设备文件路径,flags参数指定打开方式。
常用的flags参数有O_RDONLY(只读方式打开)、O_WRONLY (只写方式打开)和O_RDWR(读写方式打开)。
例如,要打开第一个串口设备文件,可以调用open()函数如下:cint fd = open("/dev/ttyS0", O_RDWR);if (fd == -1){perror("Error opening serial port");return -1;}当open()函数成功打开串口设备文件时,会返回一个非负整数的文件描述符fd,用于后续的操作。
Linux串口调试详解
![Linux串口调试详解](https://img.taocdn.com/s3/m/ac2dbaf4fbb069dc5022aaea998fcc22bcd14300.png)
Linux串⼝调试详解测试平台宿主机平台:Ubuntu 16.04.6⽬标机:iMX6ULL⽬标机内核:Linux 4.1.15⽬标机添加串⼝设备⼀般嵌⼊式主板的默认镜像可能只配置了调试串⼝,并⽤于 console 控制台打印;接下来对怎么样通过设备树来分配引脚⽤于⽤户串⼝通信进⾏描述;前提:⽬标机以及正常烧录 uboot、内核、⽂件系统、dtb等;本⽂仅更新设备树dtb⽂件;设备树⽂件修改在内核源码中找到相关板⼦对应的dtb⽂件;位置: arch/arm/boot/dts ⽬录下本⽂使⽤的板⼦相关⽂件有:imx6ull.dtsi // 官⽅通⽤板层dtsimys-imx6ull-14x14-evk.dts // 基于imx6ull-14x14-evk.dts模板修改mys-imx6ull-14x14-evk-gpmi-weim.dts // ⽤户层dts添加 uart3和uart4 的⽀持,修改 mys-imx6ull-14x14-evk.dts ⽂件如下pinctrl_uart2: uart2grp {fsl,pins = <MX6UL_PAD_UART2_TX_DATA__UART2_DCE_TX 0x1b0b1MX6UL_PAD_UART2_RX_DATA__UART2_DCE_RX 0x1b0b1>;};pinctrl_uart2dte: uart2dtegrp {fsl,pins = <MX6UL_PAD_UART2_TX_DATA__UART2_DTE_RX 0x1b0b1MX6UL_PAD_UART2_RX_DATA__UART2_DTE_TX 0x1b0b1MX6UL_PAD_UART3_RX_DATA__UART2_DTE_CTS 0x1b0b1MX6UL_PAD_UART3_TX_DATA__UART2_DTE_RTS 0x1b0b1>;};/* 增加uart3/4/5的引脚配置 */pinctrl_uart3: uart3grp {fsl,pins = <MX6UL_PAD_UART3_TX_DATA__UART3_DCE_TX 0x1b0b1MX6UL_PAD_UART3_RX_DATA__UART3_DCE_RX 0x1b0b1>;};pinctrl_uart4: uart4grp {fsl,pins = <MX6UL_PAD_UART4_TX_DATA__UART4_DCE_TX 0x1b0b1MX6UL_PAD_UART4_RX_DATA__UART4_DCE_RX 0x1b0b1>;};pinctrl_uart5: uart5grp {fsl,pins = <MX6UL_PAD_UART5_TX_DATA__UART5_DCE_TX 0x1b0b1MX6UL_PAD_UART5_RX_DATA__UART5_DCE_RX 0x1b0b1>;};...../* 使能串⼝ */&uart1 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart1>;status = "okay";};&uart2 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart2>;/*fsl,uart-has-rtscts;*//* for DTE mode, add below change *//* fsl,dte-mode; *//* pinctrl-0 = <&pinctrl_uart2dte>; */status = "disabled";};/* 增加使⽤串⼝,其中使能3、关闭4/5 */&uart3 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart3>;status = "okay";};&uart4 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart4>;status = "okay";};/* 这⾥必须注意⼀点,由于UART5和I2C2接⼝的引脚是复⽤的,I2C2默认是使能的所以必须禁⽤I2C2,再使能UART5. */&uart5 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart5>;status = "disabled";};然后重新编译⽣成设备树 dtb ⽂件cp arch/arm/configs/mys_imx6_defconfig .configmake ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- dtbs⽣成的 dtb ⽂件:arch/arm/boot/dts/mys-imx6ull-14x14-evk-gpmi-weim.dtb设备树⽂件更新采⽤ MFGTool2 进⾏设备树更新,怎么单独仅更新设备树参见mys-imx6ull-14x14-evk-gpmi-weim.dtb 替换 /Profiles/Wh Linux Update/OS Firmware/files/ 下⾯的 dtb⽂件然后执⾏ mfgtool2-linux-mys-6ulx-nand-dtb.vbsSet wshShell = CreateObject("WScript.shell")wshShell.run "mfgtool2.exe -c ""Wh Linux Update"" -l ""NAND-dtb"" -s ""lite=l"" -s ""6uluboot=14x14evk"" -s ""nand=nand"" -s ""6uldtb=14x14-evk"" -s ""nanddtb=gpmi-weim"" -s ""part_uboot=0"" -s ""part_kernel=1"" -s ""part_dtb=2"" Set wshShell = Nothing更新成功,设备重启之后,看到添加的串⼝设备已⽀持,串⼝驱动实现框架另外的⽂章在分析;串⼝应⽤编程1.串⼝相关操作在Linux下,除了⽹络设备,其余的都是⽂件的形式,串⼝设备也⼀样在/dev下。
简单的Linux串口通信程序
![简单的Linux串口通信程序](https://img.taocdn.com/s3/m/618e2b7b1eb91a37f1115ce6.png)
int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ perror("error"); }
17:43
3. 设置串口
最基本的设置串口包括波特率设置,校验位和停止位设置,数 据位。串口的设置主要是设置struct termios结构体的各成员值。
1
• 实验步骤
– 1.阅读理解源码
• 源码位置:serial\serial.c • 阅读源码方法
– Linux下使用gedit编辑器 – windows下使用SourceInsight软件
– 2.编译应用程序
2
【基础知识】
Linux操作系统从一开始就对串行口提供了很好的支持,为进行
串行通讯提供了大量的函数,本实验主要是为掌握在Linux中进行 串行通讯编程的基本方法。
2. 打开串口
在Linux 下串口文件是位于/dev 下,com1为/dev/ttyS0 ,com2 为/dev/ttyS1 操作系统 串口1 Windows COM1 Linux /dev/ttyS0 串口2 COM2 /dev/ttyS1 USB/RS-232转换器 /dev/ttyUSB0
打开串口是通过使用标准的文件打开函数操作:
struct termios { unsigned short c_iflag; /* 输入模式标志*/ unsigned short c_oflag; /* 输出模式标志*/ unsigned short c_cflag; /* 控制模式标志*/ unsigned short c_lflag; /* local mode flags */ unsigned char c_line; /* line discipline */ unsigned char c_cc[NCC]; /* control characters */ };
Linux 串口读写
![Linux 串口读写](https://img.taocdn.com/s3/m/bbfe874ae45c3b3567ec8b94.png)
Linux 串口读写串口简介串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。
常用的串口是RS-232-C 接口(又称EIA RS-232-C)它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。
它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个25 个脚的DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。
传输距离在码元畸变小于4% 的情况下,传输电缆长度应为50 英尺。
Linux 操作系统从一开始就对串行口提供了很好的支持串口操作打开串口在Linux 下串口文件是位于/dev 下的串口一为/dev/ttyS0串口二为/dev/ttyS1设置串口最基本的设置串口包括波特率设置,效验位和停止位设置。
设置这个结构体很复杂,我这里就只说说常见的一些设置:波特率设置设置波特率的例子函数:/***@brief 设置串口通信速率*@param fd 类型 int 打开串口的文件句柄*@param speed 类型 int 串口速度*@return void*/int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,B38400, B19200, B9600, B4800, B2400,B1200, B300, };int name_arr[] ={38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9600, 4800, 2400, 1200, 300, }; void set_speed(int fd, int speed){int i;int status;struct termios Opt;tcgetattr(fd, &Opt);for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {if (speed == name_arr[i]) {/*** tcflush函数刷清(抛弃)输入缓存(终端驱动程序已接收到,但用户程序尚未读)或输出缓存(用户程序已经写,但尚未发送)。
基于linux (fedora 17)的QT串口通信实例
![基于linux (fedora 17)的QT串口通信实例](https://img.taocdn.com/s3/m/5a345325e2bd960590c677e5.png)
2.解压下载的文件到当前目录
# unzip qextserialport-1.2win-alpha.zip
这里不对压缩包内的详细信息及qextserialport类的结构做详细介绍,直接说明需要用到的源文件
linux下:
myCom->setParity(PAR_NONE);
//奇偶校验设置,我们设置为无校验
myCom->setStopBits(STOP_1);
//停止位设置,我们设置为1位停止位
myCom->setFlowControl(FLOW_OFF);
//数据流控制设置,我们设置为无数据流控制
ui(new Ui::MainWindow){
ui->setupUi(this);
//myCom = new Win_QextSerialPort("COM1",QextSerialBase::EventDriven);
//【windows下使用】定义串口对象,指定串口名和查询模式,这里使用事件驱动EventDriven
3.打开Qt Creator集成开发环境,新建工程Qt4 Gui Application ,工程名为com ,其他默认即可。
4.将上述linux下需要用到的4个文件拷贝至com工程目录下,然后将该4个文件添加至工程。
5.将整个工程编译,会报错如下:
error: 'struct PortSettings' has no member named 'Timeout_Sec'
qextserialbase.cpp qextserialbase.h posix_qextserialport.cpp posix_qextserialport.h
Linux下tty终端设备的工作机制的分析及应用
![Linux下tty终端设备的工作机制的分析及应用](https://img.taocdn.com/s3/m/eab5ebf9afaad1f34693daef5ef7ba0d4a736d2c.png)
Linux下tty终端设备的工作机制的分析及应用祝良荣【摘要】介绍Linux下tty设备的工作机制,分析了部分Linux内核tty相关部分驱动程序源码和各种数据结构及其相互关系,同时介绍了用户空间应用程序使用tty 设备驱动程序的方法,重点分析了对tty设备的读写操作流程,并在此基础上进一步举例说明了利用tty设备的工作机制实现一种虚拟tty终端来实现双CPU系统中数据流通信的方法,以增强这类系统的数据流协作处理能力,从而给出了一种处理流式数据思路.【期刊名称】《现代电子技术》【年(卷),期】2006(029)013【总页数】3页(P112-114)【关键词】Linux操作系统;tty终端;终端行规范;数据流【作者】祝良荣【作者单位】浙江工业职业技术学院,浙江,绍兴,312000【正文语种】中文【中图分类】TP2121 引言Unix类操作系统下,一般都提供tty设备作为人机交互以及数据通信设备,Linux 下看到的控制台就是由几个/dev/ttyN设备(比如tty0就是/dev/console,tty1,tty2就是不同的虚拟终端)构成的。
在数据通信方面ttyS0就是第一个通信串行口com1。
从这里可以看到tty设备承担了计算机系统与外界进行信息交流的职能,在系统中具有比较重要的作用。
2 tty终端工作机制图1显示了tty设备驱动程序的各个模块的层次关系。
① 内核提供给用户进程一个设备节点,如/dev/ttyS0,并提供标准的文件系统接口,用户可以用操作普通文件一样操作终端设备。
② 用户的操作必须经过称为终端行规范(terminal line discipline)的模块中进行规范处理。
tty_ldisc结构体定义了与终端相关的line discipline(行规程,内核专门建有struct tty_ldisc ldiscs[NR_LDISCS]),供各类设备进行选择,如:TTY规程(N_TTY)用于连接终端输入驱动设备和终端显示驱动设备,而PPP规程(N_PPP)用来连接终端驱动设备和网络驱动设备。
tty串口参数
![tty串口参数](https://img.taocdn.com/s3/m/91a12b5f876fb84ae45c3b3567ec102de3bddf4c.png)
tty串口参数引言概述:TTY串口(Teletypewriter)是计算机与外部设备进行数据交换的一种通信接口,常用于串行通信。
TTY串口参数是配置TTY串口通信的一组重要设置,包括波特率、数据位、停止位、奇偶校验等。
正确设置这些参数对于串口通信的稳定性和可靠性至关重要。
本文将深入探讨TTY串口参数的相关知识,介绍其作用和设置方法,以及在实际应用中的注意事项。
正文:1. 波特率的作用与设置:1.1 波特率的定义:波特率是指单位时间内传输的比特数,通常以每秒位数(bps)表示。
在TTY串口通信中,波特率是配置的关键参数之一,它决定了数据传输的速度。
常见的波特率有9600bps、115200bps等。
1.2 波特率的设置方法:波特率的设置需要保持发送端和接收端一致。
通过在终端或串口设备中进行配置,将波特率设置为通信双方协商好的数值,确保数据的正确传输。
波特率设置不当可能导致数据丢失或解析错误。
1.3 波特率的选择与适用场景:波特率的选择应根据具体应用场景和硬件设备的支持能力来确定。
较低的波特率适用于远距离传输或噪音环境,而较高的波特率适用于要求高速传输的场景。
在选择时需要综合考虑通信距离、噪音干扰和硬件性能等因素。
2. 数据位、停止位和校验位的设置:2.1 数据位的定义与作用:数据位表示每个字符传输中实际携带的数据位数,通常为7或8位。
数据位的设置决定了每个字符能够携带的信息量,对于数据的正确解析至关重要。
2.2 停止位的作用与设置:停止位表示每个字符传输结束后,发送端发送的停止位数。
常见的停止位有1位或2位。
停止位的设置保证了接收端能够正确识别每个字符的结束位置。
2.3 校验位的意义与配置:校验位用于检测数据传输过程中的错误。
常见的校验位包括奇校验、偶校验、无校验等。
校验位的选择取决于通信双方的约定,通过校验位可以在一定程度上提高数据传输的可靠性。
3. 控制流的设置与作用:3.1 控制流的定义与类型:控制流用于控制数据的流动,防止数据丢失或溢出。
linux 读取串口数据方法
![linux 读取串口数据方法](https://img.taocdn.com/s3/m/d392ba216ad97f192279168884868762caaebb87.png)
linux 读取串口数据方法【原创实用版2篇】目录(篇1)一、Linux 读取串口数据的方法概述二、使用 C 语言读取串口数据三、使用 Qt 库读取串口数据四、使用 Python 读取串口数据五、总结正文(篇1)一、Linux 读取串口数据的方法概述在 Linux 系统中,串口是一种常用的设备接口,可以用于接收和发送数据。
Linux 提供了多种方法来读取和操作串口数据。
本文将介绍几种常见的方法,包括使用 C 语言、Qt 库和 Python 语言来读取串口数据。
二、使用 C 语言读取串口数据1.打开串口在 C 语言中,打开串口需要使用 fcntl 函数。
首先,需要包含头文件<fcntl.h>和<termios.h>。
然后,使用以下代码打开串口:```cint fd = open("/dev/ttyS0", O_RDWR);if (fd < 0) {perror("Can"t Open Serial Port");return -1;}```2.设置串口速度打开串口成功后,需要设置串口的波特率、数据位、校验位和停止位等参数。
可以使用以下代码设置串口速度:```cstruct termios tty;if (tcgetattr(fd, &tty)!= 0) {perror("Can"t Get Serial Port Attributes");return -1;}tty.c_cflag &= ~PARENB; // 清除奇偶校验位tty.c_cflag &= ~CSTOPB; // 使用一个停止位tty.c_cflag |= CS8; // 8 位数据位tty.c_cflag &= ~CRTSCTS; // 禁用硬件流控制tty.c_cflag |= CREAD | CLOCAL; // 使能读和忽略 modem 控制线if (tcsetattr(fd, TCSANOW, &tty)!= 0) {perror("Can"t Set Serial Port Attributes");return -1;}```3.读取串口数据使用以下代码读取串口数据:char buf[64];int len = read(fd, buf, sizeof(buf));if (len < 0) {perror("Can"t Read from Serial Port");return -1;}printf("Read data: %s", buf);```三、使用 Qt 库读取串口数据在 Qt 中,可以使用 QSerialPort 类来读取串口数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步通信:以单字符为发送单位,字符间发送能存在间隔起始位:发送”0”,表示字符传送开始数据位:可允许4 5 6 7的数据位停止位:一个字符结束的标志位,奇偶校验位:根据传送数据内“1”的个数是偶数还是奇数来校验数据是否准确空闲位:在没有数据发送时,设置“1”Structure termios{tcflag_t c_iflag; 输入方式tcflag_t c_oflag; 输出方式tcflag_t c_cflag; 控制模式标志tcflag_t c_Iflag; 本地tcflag_t c_cc[NCCS]; 控制字符,用于保存终端的特殊字符}c_iflag 标志常量:Input mode ( 输入模式) input mode可以在输入值传给程序之前控制其处理的方式。
其中输入值可能是由序列埠或键盘的终端驱动程序所接收到的字元。
我们可以利用termios结构的c_iflag的标志来加以控制,其定义的方式皆以OR 来加以组合。
IGNBRK :忽略输入中的 BREAK 状态。
(忽略命令行中的中断)BRKINT :(命令行出现中断时,可产生一插断)如果设置了 IGNBRK,将忽略 BREAK。
如果没有设置,但是设置了 BRKINT,那么 BREAK 将使得输入和输出队列被刷新,如果终端是一个前台进程组的控制终端,这个进程组中所有进程将收到 SIGINT 信号。
如果既未设置 IGNBRK 也未设置 BRKINT,BREAK 将视为与NUL 字符同义,除非设置了 PARMRK,这种情况下它被视为序列 377 � �。
IGNPAR :忽略桢错误和奇偶校验错。
PARMRK :如果没有设置 IGNPAR,在有奇偶校验错或桢错误的字符前插入377 �。
如果既没有设置 IGNPAR 也没有设置 PARMRK,将有奇偶校验错或桢错误的字符视为 �。
INPCK :启用输入奇偶检测。
ISTRIP :去掉第八位。
INLCR :将输入中的 NL 翻译为 CR。
(将收到的换行符号转换为Return)IGNCR :忽略输入中的回车。
ICRNL :将输入中的回车翻译为新行 (除非设置了 IGNCR)(否则当输入信号有 CR 时不会终止输入)。
IUCLC :(不属于 POSIX) 将输入中的大写字母映射为小写字母。
IXON :启用输出的 XON/XOFF 流控制。
IXANY :(不属于 POSIX.1;XSI) 允许任何字符来重新开始输出。
(?) IXOFF :启用输入的 XON/XOFF 流控制。
IMAXBEL:(不属于 POSIX) 当输入队列满时响零。
Linux 没有实现这一位,总是将它视为已设置。
c_oflag 标志常量:Output mode ( 输出模式)Output mode主要负责控制输出字元的处理方式。
输出字元在传送到序列埠或显示器之前是如何被程序来处理。
输出模式是利用termios结构的c_oflag的标志来加以控制,其定义的方式皆以OR来加以组合。
OPOST :启用具体实现自行定义的输出处理。
OLCUC :(不属于 POSIX) 将输出中的小写字母映射为大写字母。
ONLCR :(XSI) 将输出中的新行符映射为回车-换行。
OCRNL :将输出中的回车映射为新行符ONOCR :不在第 0 列输出回车。
ONLRET :不输出回车。
OFILL :发送填充字符作为延时,而不是使用定时来延时。
OFDEL :(不属于 POSIX) 填充字符是 ASCII DEL (0177)。
如果不设置,填充字符则是 ASCII NUL。
NLDLY :新行延时掩码。
取值为 NL0 和 NL1。
CRDLY :回车延时掩码。
取值为 CR0, CR1, CR2, 或 CR3。
TABDLY :水平跳格延时掩码。
取值为 TAB0, TAB1, TAB2, TAB3 (或 XTABS)。
取值为 TAB3,即 XTABS,将扩展跳格为空格 (每个跳格符填充 8 个空格)。
(?) BSDLY :回退延时掩码。
取值为 BS0 或 BS1。
(从来没有被实现过)VTDLY :竖直跳格延时掩码。
取值为 VT0 或 VT1。
FFDLY :进表延时掩码。
取值为 FF0 或 FF1。
c_cflag 标志常量:Control mode ( 控制模式)Control mode主要用于控制终端设备的硬件设置。
利用termios结构的c_cflag的标志来加以控制。
控制模式用在序列线连接到数据设备,也可以用在与终端设备的交谈。
一般来说,改变终端设备的组态要比使用termios的控制模式来改变行(lines)的行为来得容易。
CBAUD :(不属于 POSIX) 波特率掩码 (4+1 位)。
CBAUDEX :(不属于 POSIX) 扩展的波特率掩码 (1 位),包含在 CBAUD 中。
(POSIX 规定波特率存储在 termios 结构中,并未精确指定它的位置,而是提供了函数cfgetispeed() 和cfsetispeed() 来存取它。
一些系统使用c_cflag 中 CBAUD 选择的位,其他系统使用单独的变量,例如 sg_ispeed 和sg_ospeed 。
)CSIZE:字符长度掩码(传送或接收字元时用的位数)。
取值为 CS5(传送或接收字元时用5bits), CS6, CS7, 或 CS8。
CSTOPB :设置两个停止位,而不是一个。
CREAD :打开接受者。
PARENB :允许输出产生奇偶信息以及输入的奇偶校验(启用同位产生与侦测)。
PARODD :输入和输出是奇校验(使用奇同位而非偶同位)。
HUPCL :在最后一个进程关闭设备后,降低 modem 控制线 (挂断)。
(?) CLOCAL :忽略 modem 控制线。
LOBLK :(不属于 POSIX) 从非当前 shell 层阻塞输出(用于 shl )。
(?) CIBAUD :(不属于 POSIX) 输入速度的掩码。
CIBAUD 各位的值与 CBAUD 各位相同,左移了 IBSHIFT 位。
CRTSCTS :(不属于 POSIX) 启用 RTS/CTS (硬件) 流控制。
c_lflag 标志常量:Local mode ( 局部模式)Local mode主要用来控制终端设备不同的特色。
利用termios结构里的c_lflag的标志来设定局部模式。
在巨集中有两个比较重要的标志:1.ECHO:它可以让你阻止键入字元的回应。
2.ICANON(正规模式)标志,它可以对所接收的字元在两种不同的终端设备模式之间来回切换。
ISIG:当接受到字符 INTR, QUIT, SUSP, 或 DSUSP 时,产生相应的信号。
ICANON:启用标准模式 (canonical mode)。
允许使用特殊字符 EOF, EOL, EOL2, ERASE, KILL, LNEXT, REPRINT, STATUS, 和 WERASE,以及按行的缓冲。
XCASE:(不属于 POSIX; Linux 下不被支持) 如果同时设置了 ICANON,终端只有大写。
输入被转换为小写,除了有前缀的字符。
输出时,大写字符被前缀(某些系统指定的特定字符),小写字符被转换成大写。
ECHO :回显输入字符。
ECHOE :如果同时设置了 ICANON,字符 ERASE 擦除前一个输入字符,WERASE 擦除前一个词。
ECHOK :如果同时设置了 ICANON,字符 KILL 删除当前行。
ECHONL :如果同时设置了 ICANON,回显字符 NL,即使没有设置 ECHO。
ECHOCTL :(不属于 POSIX) 如果同时设置了 ECHO,除了 TAB, NL, START, 和 STOP 之外的 ASCII 控制信号被回显为 ^X, 这里 X 是比控制信号大 0x40 的 ASCII 码。
例如,字符 0x08 (BS) 被回显为 ^H。
ECHOPRT :(不属于 POSIX) 如果同时设置了 ICANON 和 IECHO,字符在删除的同时被打印。
ECHOKE :(不属于 POSIX) 如果同时设置了 ICANON,回显 KILL 时将删除一行中的每个字符,如同指定了 ECHOE 和 ECHOPRT 一样。
DEFECHO :(不属于 POSIX) 只在一个进程读的时候回显。
FLUSHO :(不属于 POSIX; Linux 下不被支持) 输出被刷新。
这个标志可以通过键入字符 DISCARD 来开关。
NOFLSH :禁止在产生 SIGINT, SIGQUIT 和 SIGSUSP 信号时刷新输入和输出队列,即关闭queue中的flush。
TOSTOP :向试图写控制终端的后台进程组发送 SIGTTOU 信号(传送欲写入的信息到后台处理)。
PENDIN :(不属于 POSIX; Linux 下不被支持) 在读入下一个字符时,输入队列中所有字符被重新输出。
(bash 用它来处理 typeahead)IEXTEN :启用实现自定义的输入处理。
这个标志必须与 ICANON 同时使用,才能解释特殊字符 EOL2,LNEXT,REPRINT 和 WERASE,IUCLC 标志才有效。
c_cc 数组:特殊控制字元可提供使用者设定一些特殊的功能,如Ctrl+C的字元组合。
特殊控制字元主要是利用termios结构里c_cc的阵列成员来做设定。
c_cc阵列主要用于正规与非正规两种环境,但要注意的是正规与非正规不可混为一谈。
其定义了特殊的控制字符。
符号下标 (初始值) 和意义为:VINTR:(003, ETX, Ctrl-C, or also 0177, DEL, rubout) 中断字符。
发出 SIGINT 信号。
当设置 ISIG 时可被识别,不再作为输入传递。
VQUIT :(034, FS, Ctrl-) 退出字符。
发出 SIGQUIT 信号。
当设置 ISIG 时可被识别,不再作为输入传递。
VERASE :(0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) 删除字符。
删除上一个还没有删掉的字符,但不删除上一个 EOF 或行首。
当设置 ICANON 时可被识别,不再作为输入传递。
VKILL :(025, NAK, Ctrl-U, or Ctrl-X, or also @) 终止字符。
删除自上一个 EOF 或行首以来的输入。
当设置 ICANON 时可被识别,不再作为输入传递。
VEOF :(004, EOT, Ctrl-D) 文件尾字符。
更精确地说,这个字符使得 tty 缓冲中的内容被送到等待输入的用户程序中,而不必等到 EOL。
如果它是一行的第一个字符,那么用户程序的 read() 将返回 0,指示读到了 EOF。