linux下串口通信设置
07实验七 Linux环境下的串行通信实验
连接驱动器的使能端,使得当RTS设置成高(逻辑1)时,有效RS485驱动器;设置RTS为低 时,使驱动器处于三态,这时候实际上从总线上断开了驱动器,从而允许其他节点可以使 用同一传输线。当使用RTS时,必须确保发送数据前将RTS设置成高,在发送完数据的最 后一位后,将RTS线设成低。。另一种可选方法是自动发送数据控制。这种方法要求特殊 的电路,当数据传输时自动使能或无效驱动器。它减少了软件开销和程序员的潜在错误。
五、基础知识
串行通信 1、基本原理 串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行 端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。 串口是系统资源的一部分,应用程序要使用串口进行通信,必须在使用之前向操作系统提 出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。 2、串口通信的基本任务 (1) 实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实 现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的 帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2) 进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是 并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送 入计算机处理。因此串并转换是串行接口电路的重要任务。 (3) 控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选 择和控制的能力。 (4) 进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他 校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5) 进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用
Linux下串口通信编程
Linux下串口通信编程一、什么是串口通信?串口通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
二、串口通信的分类串口通信可以分为同步通信和异步通信两类。
同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。
2.1 同步通信同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。
这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。
它们均由同步字符、数据字符和校验字符(CRC)组成。
其中同步字符位于帧开头,用于确认数据字符的开始。
数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。
同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。
2.2 异步通信异步通信中,数据通常以字符或者字节为单位组成字符帧传送。
字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。
发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。
接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。
在异步通行中有两个比较重要的指标:字符帧格式和波特率。
(1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。
1.起始位:位于字符帧开头,占1位,始终为逻辑0电平,用于向接收设备表示发送端开始发送一帧信息。
2.数据位:紧跟在起始位之后,可以设置为5位、6位、7位、8位,低位在前高位在后。
3.奇偶校验位:位于数据位之后,仅占一位,用于表示串行通信中采用奇校验还是偶校验。
(2)波特率,波特率是每秒钟传送二进制数码的位数,单位是b/s。
异步通信的优点是不需要传送同步脉冲,字符帧长度也不受到限制。
linux串口编程参数配置详解
linux串口编程参数配置详解1.linux串口编程需要的头文件#include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数库定义#include <unistd.h> //Unix标准函数定义#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h> //POSIX中断控制定义#include <errno.h> //错误号定义2.打开串口串口位于/dev中,可作为标准文件的形式打开,其中:串口1 /dev/ttyS0串口2 /dev/ttyS1代码如下:int fd;fd = open(“/dev/ttyS0”, O_RDWR);if(fd == -1){Perror(“串口1打开失败!”);}//else//fcntl(fd, F_SETFL, FNDELAY);除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。
O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。
O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。
3.设置波特率最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下:struct termios{tcflag_t c_iflag; //输入模式标志tcflag_t c_oflag; //输出模式标志tcflag_t c_cflag; //控制模式标志tcflag_t c_lflag; //本地模式标志cc_t c_line; //line disciplinecc_t c_cc[NCC]; //control characters}代码如下:int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, };void SetSpeed(int fd, int speed){int i;struct termios Opt; //定义termios结构if(tcgetattr(fd, &Opt) != 0){perror(“tcgetattr fd”);return;}for(i = 0; i < sizeof(speed_arr) / sizeof(int); i++){if(speed == name_arr[i]){tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);if(tcsetattr(fd, TCSANOW, &Opt) != 0){perror(“tcsetattr fd”);return;}tcflush(fd, TCIOFLUSH);}}}注意tcsetattr函数中使用的标志:TCSANOW:立即执行而不等待数据发送或者接受完成。
linux 串口 非标准波特率
在Linux中,串口通信通常使用termios结构体来配置串口参数,包括波特率等。
要设置非标准的波特率,可以使用以下方法:1. 首先,需要包含头文件`<termios.h>`和`<unistd.h>`。
2. 然后,使用`tcgetattr()`函数获取当前串口属性。
3. 修改`cfsetispeed()`和`cfsetospeed()`函数的参数,分别设置输入和输出波特率。
4. 使用`tcsetattr()`函数更新串口属性。
5. 最后,关闭串口设备。
以下是一个示例代码:```c#include <stdio.h>#include <stdlib.h>#include <string.h>#include <unistd.h>#include <fcntl.h>#include <termios.h>int main() {int fd;struct termios options;// 打开串口设备fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY);if (fd == -1) {perror("open_port: Unable to open /dev/ttyS0 - ");return(-1);}// 获取当前串口属性tcgetattr(fd, &options);// 设置非标准波特率(例如:9600)cfsetispeed(&options, B9600);cfsetospeed(&options, B9600);// 更新串口属性tcsetattr(fd, TCSANOW, &options);// 关闭串口设备close(fd);return 0;}```注意:请根据实际情况修改串口设备名称(如`/dev/ttyS0`)和波特率(如`B9600`)。
linux 串口初始化程序实例
linux 串口初始化程序实例Linux 串口初始化程序实例在Linux系统中,串口是一种常见的通信接口,用于连接计算机与外部设备,实现数据的传输和通信。
本文将介绍一个基于Linux系统的串口初始化程序实例,帮助读者了解如何在Linux系统中进行串口的初始化配置。
我们需要打开终端并登录到Linux系统。
然后,通过以下命令查看系统中可用的串口设备:```ls /dev/ttyS*```该命令将列出系统中所有的串口设备,例如/dev/ttyS0、/dev/ttyS1等。
根据实际情况,选择需要初始化的串口设备。
接下来,我们需要使用stty命令来配置串口的参数,如波特率、数据位、校验位、停止位等。
例如,假设我们将串口设备设置为波特率9600,数据位8位,无校验位,停止位为1位,可以使用以下命令进行配置:```stty -F /dev/ttyS0 9600 cs8 -parenb -cstopb其中,-F参数指定要配置的串口设备,9600为波特率,cs8为数据位8位,-parenb为无校验位,-cstopb为停止位1位。
配置完成后,我们可以通过以下命令检查串口的参数配置是否正确:```stty -F /dev/ttyS0 -a```该命令将显示串口的当前参数配置,包括波特率、数据位、校验位、停止位等。
接下来,我们可以使用串口设备进行数据的收发。
例如,可以使用cat命令从串口设备读取数据:```cat /dev/ttyS0```该命令将会连续地从串口设备读取数据并输出到终端。
如果需要通过串口发送数据,可以使用echo命令:```echo "Hello, Serial Port!" > /dev/ttyS0该命令将向串口设备发送字符串"Hello, Serial Port!"。
通过以上步骤,我们就完成了Linux系统中串口的初始化配置。
读者可以根据实际需求,对串口的参数进行相应的配置,并使用串口进行数据的收发。
linux下的串口通信原理及编程实例
linux下的串⼝通信原理及编程实例linux下的串⼝通信原理及编程实例⼀、串⼝的基本原理1 串⼝通讯串⼝通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进⾏传输数据的⼀种通讯⽅式。
串⼝是⼀种接⼝标准,它规定了接⼝的电⽓标准,没有规定接⼝插件电缆以及使⽤的协议。
2 串⼝通讯的数据格式 ⼀个字符⼀个字符地传输,每个字符⼀位⼀位地传输,并且传输⼀个字符时,总是以“起始位”开始,以“停⽌位”结束,字符之间没有固定的时间间隔要求。
每⼀个字符的前⾯都有⼀位起始位(低电平),字符本⾝由7位数据位组成,接着字符后⾯是⼀位校验位(检验位可以是奇校验、偶校验或⽆校验位),最后是⼀位或⼀位半或⼆位停⽌位,停⽌位后⾯是不定长的空闲位,停⽌位和空闲位都规定为⾼电平。
实际传输时每⼀位的信号宽度与波特率有关,波特率越⾼,宽度越⼩,在进⾏传输之前,双⽅⼀定要使⽤同⼀个波特率设置。
3 通讯⽅式单⼯模式(Simplex Communication)的数据传输是单向的。
通信双⽅中,⼀⽅固定为发送端,⼀⽅则固定为接收端。
信息只能沿⼀个⽅向传输,使⽤⼀根传输线。
半双⼯模式(Half Duplex)通信使⽤同⼀根传输线,既可以发送数据⼜可以接收数据,但不能同时进⾏发送和接收。
数据传输允许数据在两个⽅向上传输,但是,在任何时刻只能由其中的⼀⽅发送数据,另⼀⽅接收数据。
因此半双⼯模式既可以使⽤⼀条数据线,也可以使⽤两条数据线。
半双⼯通信中每端需有⼀个收发切换电⼦开关,通过切换来决定数据向哪个⽅向传输。
因为有切换,所以会产⽣时间延迟,信息传输效率低些。
全双⼯模式(Full Duplex)通信允许数据同时在两个⽅向上传输。
因此,全双⼯通信是两个单⼯通信⽅式的结合,它要求发送设备和接收设备都有独⽴的接收和发送能⼒。
在全双⼯模式中,每⼀端都有发送器和接收器,有两条传输线,信息传输效率⾼。
显然,在其它参数都⼀样的情况下,全双⼯⽐半双⼯传输速度要快,效率要⾼。
Linux串口通信编程
2) 设置属性:奇偶校验位、数据位、停止位。
主要设置<termbits.h>中的termios3) 打开、关闭和读写串口。
串口作为设备文件,可以直接用文件描述符来进行网上的一个例子:/*串口设备无论是在工控领域,还是在嵌入式设备领域,应用都非常广泛。
而串口编程也就显得必不可少。
偶然的一次机会,需要使用串口,而且操作系统还要求是Linux,因此,趁着这次机会,综合别人的代码,进行了一次整理和封装。
具体的封装格式为C代码,这样做是为了很好的移植性,使它可以在C和C++环境下,都可以编译和使用。
代码的头文件如下: *//////////////////////////////////////////////////////////////////// //////////////filename:stty.h#ifndef__STTY_H__#define__STTY_H__//包含头文件#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>#include<sys/stat.h>#include<fcntl.h>#include<termios.h>#include<errno.h>#include<pthread.h>//// 串口设备信息结构typedef struct tty_info_t{int fd;// 串口设备IDpthread_mutex_t mt;// 线程同步互斥对象char name[24];// 串口设备名称,例:"/dev/ttyS0"struct termios ntm;// 新的串口设备选项struct termios otm;// 旧的串口设备选项}TTY_INFO;//// 串口操作函数TTY_INFO *readyTTY(int id);int setTTYSpeed(TTY_INFO *ptty,int speed);int setTTYParity(TTY_INFO *ptty,int databits,int parity,int st opbits);int cleanTTY(TTY_INFO *ptty);int sendnTTY(TTY_INFO *ptty,char*pbuf,int size);int recvnTTY(TTY_INFO *ptty,char*pbuf,int size);int lockTTY(TTY_INFO *ptty);int unlockTTY(TTY_INFO *ptty);#endif/*从头文件中的函数定义不难看出,函数的功能,使用过程如下:(1)打开串口设备,调用函数setTTYSpeed();(2)设置串口读写的波特率,调用函数setTTYSpeed();(3)设置串口的属性,包括停止位、校验位、数据位等,调用函数setTTYParity ();(4)向串口写入数据,调用函数sendnTTY();(5)从串口读出数据,调用函数recvnTTY();(6)操作完成后,需要调用函数cleanTTY()来释放申请的串口信息接口;其中,lockTTY()和unlockTTY()是为了能够在多线程中使用。
Linux串口打印设置
一、基于VM虚拟机linux系统串口配置配置分为虚拟机下配置及linux系统下minicom配置两部分。
虚拟机模块配置如下:打开虚拟机配置界面。
选择Edit virtual machine settings。
进入配置界面。
选择Add…按钮,添加相关的设备文件。
选中串口选项后继续选择下一步。
此处选择”使用主机上的物理串口设备”选项,继续下一步。
此处我们选择文件。
对于物理串口选项,此处可以采用自动检测选项。
如果下来菜单中有对应于串口的端口号,则可以选择。
注意,对于设备状态,要确保选中“connect at power on“,即,上电连接状态。
至此,虚拟机端串口配置完毕。
注意:此处我们串口添加成功后默认未COM2.Linux下串口配置及使用。
Linux下一般使用minicom来作为串口数据输入输出的终端。
类似于Windows下的超级终端。
虚拟机下配置完毕后,进入Linux系统中,在Shell 终端下输入minicom -s即可配置串口终端。
配置完成后执行minicom启动串口终端。
在终端界面下完成相关的参数配置并保存后,启动终端设备,即可在minicom中观察到数据输出。
<四>Minicom的使用(1)minicom界面介绍第一次运行minicom,启动minicom要以root权限登录系统,需要进行minicom的设置,输入下了命令#minicom –s,显示的屏幕如下所示,按上下光标键进行上下移动选择,我们要对串行端口进行设置,因此选中Serial port setup,然后回车:__[configuration]─-─—┐//配置│ Filenames and paths │//文件名和路径│ File transfer protocols│//文件传输协议│ Serial port setup │//串行端口设置│ Modem and dialing │//调制解调器和拨号│ Screen and keyboard │//屏幕和键盘│ Save setup as dfl │//设置保存到│ Save setup as.. │//储存设定为│ Exit │//退出│ Exit from Minicom │//退出minicom└──────────┘(2)minicom的参数设置选中设置串行端口,点击回车后,弹出设置的界面如下:点击”A”设置串行设置为/dev/ttyS1,这表示使用串口2(com2),如果是/dev/ttyS1则表示使用串口2(com 2).按”E”键进入设置”bps/par/Bits”(波特率)界面,如下图所示。
linux下的tty串口通信
异步通信:以单字符为发送单位,字符间发送能存在间隔起始位:发送”0”,表示字符传送开始数据位:可允许4 5 6 7的数据位停止位:一个字符结束的标志位,奇偶校验位:根据传送数据内“1”的个数是偶数还是奇数来校验数据是否准确空闲位:在没有数据发送时,设置“1”Structure termios{tcflag_t c_iflag; 输入方式tcflag_t c_oflag; 输出方式tcflag_t c_cflag; 控制模式标志tcflag_t c_Iflag; 本地tcflag_t c_cc[NCCS]; 控制字符,用于保存终端的特殊字符}c_iflag 标志常量:Input mode ( 输入模式) input mode可以在输入值传给程序之前控制其处理的方式。
其中输入值可能是由序列埠或键盘的终端驱动程序所接收到的字元。
我们可以利用termios结构的c_iflag的标志来加以控制,其定义的方式皆以OR 来加以组合。
IGNBRK :忽略输入中的 BREAK 状态。
(忽略命令行中的中断)BRKINT :(命令行出现中断时,可产生一插断)如果设置了 IGNBRK,将忽略 BREAK。
如果没有设置,但是设置了 BRKINT,那么 BREAK 将使得输入和输出队列被刷新,如果终端是一个前台进程组的控制终端,这个进程组中所有进程将收到 SIGINT 信号。
如果既未设置 IGNBRK 也未设置 BRKINT,BREAK 将视为与NUL 字符同义,除非设置了 PARMRK,这种情况下它被视为序列 377 � �。
IGNPAR :忽略桢错误和奇偶校验错。
PARMRK :如果没有设置 IGNPAR,在有奇偶校验错或桢错误的字符前插入377 �。
如果既没有设置 IGNPAR 也没有设置 PARMRK,将有奇偶校验错或桢错误的字符视为 �。
INPCK :启用输入奇偶检测。
Linux下串口操作-嵌入式-C语言实现
Linux下串⼝操作-嵌⼊式-C语⾔实现1.找到串⼝的设备号在linux系统下,所有的设备都是⽂件,所以要先找到串⼝这个设备⽂件,之后就可以对这个串⼝进⾏操作。
#define UART_DEV "/dev/tty*" ///dev/tty**串⼝号2.打开串⼝并初始化串⼝串⼝的打开只需要⼀个open函数就可以打开,下⾯有⼀个初始化的函数,先将串⼝打开,如果打开成功,会返回⼀个设备描述符int uart_init(void ){int fd=0;fd = open(UART_DEV , O_RDWR|O_NOCTTY|O_NDELAY, 0);if (fd < 0){printf("open error!\n");return -1;}set_opt(fd);return fd;}set_opt函数⽤于设置串⼝的相关基本参数,⼀般串⼝都会设置波特率什么的,其余的参数可以⽤到的时候再查询是什么意思,set_opt函数的定义如下:int set_opt(int fd){struct termios old_cfg, new_cfg;tcgetattr(fd, &new_cfg);new_cfg.c_cflag |= (CLOCAL | CREAD);cfsetispeed(&new_cfg, B9600);//设置波特率cfsetospeed(&new_cfg, B9600);new_cfg.c_cflag &= ~CSIZE;new_cfg.c_cflag |= CS8;new_cfg.c_cflag &= ~PARENB;new_cfg.c_cflag &= ~CSTOPB;new_cfg.c_cc[VTIME] = 0;new_cfg.c_cc[VMIN] = 0;tcflush(fd,TCIFLUSH);tcsetattr(fd, TCSANOW, &new_cfg);return0;}这样设置好了以后,串⼝的初始化基本就完成了。
基于linux和Qt的串口通信调试器调的设计及应用
基于linux和Qt的串口通信调试器调的设计及应用摘要:目前基于Linux操作系统的应用开发越来越广泛,Qt是一个跨平台的C++图形用户界面应用程序框架,它可以开发基于Linux上的图形应用程序。
Linux操作系统对串行口提供了很好的支持,为了在Linux系统下能让串口与其它硬件设备方便直观地进行通信,本文介绍了在Ubuntu10.10系统平台Qt-4.7及Qt Creator2.0编程环境下串口调试界面的设计及程序的编写。
关键词:串口通信Linux QT1 Qextserialport 类介绍在Qt类库中并没有特定的串口基础类,现在很多人使用的是第三方写的qextserialport类,它是一个跨平台的串口类,可以很方便地在Qt 中对串口进行读写操作。
本文也使用了该类。
文件下载地址: /projects/qextserialport/files/下载到的文件名为qextserialport-1.2win-alpha。
在linux平台中,我们只需用到其中的四个文件:qextserialbase.cpp和qextserialbase.h以及posix_qextserialport.cpp和posix_qextserialport.h。
其中前两个文件定义了一个QextSerialBase 类,它提供了操作串口所必需的一些变量和函数等;后两个文件定义了一个Posix_QextSerialPort 类,Posix_QextSerialPort类添加了Linux平台下操作串口的一些功能。
2 串口的基本设置串口的基本参数在posix_qextserialport.cpp文件里的构造函数中进行设置,它的最后一个构造函数:Posix_QextSerialPort::Posix_QextSerialPort(const QString & name, const PortSettings&settings, QextSerialBase::QueryMode mode)它共有3个参数,第一个是串口名,第二个是对串口参数的基本设置,第三个是读取串口的方式。
详解linux下的串口通讯开发
详解linux下的串口通讯开发串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。
常用的串口是RS-232-C接口(又称EIA RS-232-C)它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。
串口通讯指的是计算机依次以位(bit)为单位来传送数据,串行通讯使用的范围很广,在嵌入式系统开发过程中串口通讯也经常用到通讯方式之一。
Linux对所有设备的访问是通过设备文件来进行的,串口也是这样,为了访问串口,只需打开其设备文件即可操作串口设备。
在linux系统下面,每一个串口设备都有设备文件与其关联,设备文件位于系统的/dev目录下面。
如linux下的/ttyS0,/ttyS1分别表示的是串口1和串口2。
下面来详细介绍linux下是如何使用串口的:1. 串口操作需要用到的头文件#include <stdio.h> /*标准输入输出定义*/#include <stdlib.h> /*标准函数库定义*/#include <unistd.h> /*Unix 标准函数定义*/#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> /*文件控制定义*/#include <termios.h> /*POSIX 终端控制定义*/#include <errno.h> /*错误号定义*/#include <string.h> /*字符串功能函数*/2. 串口通讯波特率设置波特率的设置定义在<asm/termbits.h>,其包含在头文件<termios.h>里。
常用的波特率常数如下:B0-------à0 B1800-------à1800B50-----à50 B2400------à2400B75-----à75 B4800------à4800B110----à110 B9600------à9600B134----à134.5 B19200-----à19200B200----à200 B38400------à38400B300----à300 B57600------à57600B600----à600 B76800------à76800B1200---à1200 B115200-----à115200假定程序中想要设置通讯的波特率,使用cfsetispeed( )和cfsetospeed( )函数来操作,获取波特率信息是通过cfgetispeed()和cfgetospeed()函数来完成的。
Linux串口调试详解
Linux串⼝调试详解测试平台宿主机平台:Ubuntu 16.04.6⽬标机:iMX6ULL⽬标机内核:Linux 4.1.15⽬标机添加串⼝设备⼀般嵌⼊式主板的默认镜像可能只配置了调试串⼝,并⽤于 console 控制台打印;接下来对怎么样通过设备树来分配引脚⽤于⽤户串⼝通信进⾏描述;前提:⽬标机以及正常烧录 uboot、内核、⽂件系统、dtb等;本⽂仅更新设备树dtb⽂件;设备树⽂件修改在内核源码中找到相关板⼦对应的dtb⽂件;位置: arch/arm/boot/dts ⽬录下本⽂使⽤的板⼦相关⽂件有:imx6ull.dtsi // 官⽅通⽤板层dtsimys-imx6ull-14x14-evk.dts // 基于imx6ull-14x14-evk.dts模板修改mys-imx6ull-14x14-evk-gpmi-weim.dts // ⽤户层dts添加 uart3和uart4 的⽀持,修改 mys-imx6ull-14x14-evk.dts ⽂件如下pinctrl_uart2: uart2grp {fsl,pins = <MX6UL_PAD_UART2_TX_DATA__UART2_DCE_TX 0x1b0b1MX6UL_PAD_UART2_RX_DATA__UART2_DCE_RX 0x1b0b1>;};pinctrl_uart2dte: uart2dtegrp {fsl,pins = <MX6UL_PAD_UART2_TX_DATA__UART2_DTE_RX 0x1b0b1MX6UL_PAD_UART2_RX_DATA__UART2_DTE_TX 0x1b0b1MX6UL_PAD_UART3_RX_DATA__UART2_DTE_CTS 0x1b0b1MX6UL_PAD_UART3_TX_DATA__UART2_DTE_RTS 0x1b0b1>;};/* 增加uart3/4/5的引脚配置 */pinctrl_uart3: uart3grp {fsl,pins = <MX6UL_PAD_UART3_TX_DATA__UART3_DCE_TX 0x1b0b1MX6UL_PAD_UART3_RX_DATA__UART3_DCE_RX 0x1b0b1>;};pinctrl_uart4: uart4grp {fsl,pins = <MX6UL_PAD_UART4_TX_DATA__UART4_DCE_TX 0x1b0b1MX6UL_PAD_UART4_RX_DATA__UART4_DCE_RX 0x1b0b1>;};pinctrl_uart5: uart5grp {fsl,pins = <MX6UL_PAD_UART5_TX_DATA__UART5_DCE_TX 0x1b0b1MX6UL_PAD_UART5_RX_DATA__UART5_DCE_RX 0x1b0b1>;};...../* 使能串⼝ */&uart1 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart1>;status = "okay";};&uart2 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart2>;/*fsl,uart-has-rtscts;*//* for DTE mode, add below change *//* fsl,dte-mode; *//* pinctrl-0 = <&pinctrl_uart2dte>; */status = "disabled";};/* 增加使⽤串⼝,其中使能3、关闭4/5 */&uart3 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart3>;status = "okay";};&uart4 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart4>;status = "okay";};/* 这⾥必须注意⼀点,由于UART5和I2C2接⼝的引脚是复⽤的,I2C2默认是使能的所以必须禁⽤I2C2,再使能UART5. */&uart5 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_uart5>;status = "disabled";};然后重新编译⽣成设备树 dtb ⽂件cp arch/arm/configs/mys_imx6_defconfig .configmake ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- dtbs⽣成的 dtb ⽂件:arch/arm/boot/dts/mys-imx6ull-14x14-evk-gpmi-weim.dtb设备树⽂件更新采⽤ MFGTool2 进⾏设备树更新,怎么单独仅更新设备树参见mys-imx6ull-14x14-evk-gpmi-weim.dtb 替换 /Profiles/Wh Linux Update/OS Firmware/files/ 下⾯的 dtb⽂件然后执⾏ mfgtool2-linux-mys-6ulx-nand-dtb.vbsSet wshShell = CreateObject("WScript.shell")wshShell.run "mfgtool2.exe -c ""Wh Linux Update"" -l ""NAND-dtb"" -s ""lite=l"" -s ""6uluboot=14x14evk"" -s ""nand=nand"" -s ""6uldtb=14x14-evk"" -s ""nanddtb=gpmi-weim"" -s ""part_uboot=0"" -s ""part_kernel=1"" -s ""part_dtb=2"" Set wshShell = Nothing更新成功,设备重启之后,看到添加的串⼝设备已⽀持,串⼝驱动实现框架另外的⽂章在分析;串⼝应⽤编程1.串⼝相关操作在Linux下,除了⽹络设备,其余的都是⽂件的形式,串⼝设备也⼀样在/dev下。
简单的Linux串口通信程序
int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ perror("error"); }
17:43
3. 设置串口
最基本的设置串口包括波特率设置,校验位和停止位设置,数 据位。串口的设置主要是设置struct termios结构体的各成员值。
1
• 实验步骤
– 1.阅读理解源码
• 源码位置:serial\serial.c • 阅读源码方法
– Linux下使用gedit编辑器 – windows下使用SourceInsight软件
– 2.编译应用程序
2
【基础知识】
Linux操作系统从一开始就对串行口提供了很好的支持,为进行
串行通讯提供了大量的函数,本实验主要是为掌握在Linux中进行 串行通讯编程的基本方法。
2. 打开串口
在Linux 下串口文件是位于/dev 下,com1为/dev/ttyS0 ,com2 为/dev/ttyS1 操作系统 串口1 Windows COM1 Linux /dev/ttyS0 串口2 COM2 /dev/ttyS1 USB/RS-232转换器 /dev/ttyUSB0
打开串口是通过使用标准的文件打开函数操作:
struct termios { unsigned short c_iflag; /* 输入模式标志*/ unsigned short c_oflag; /* 输出模式标志*/ unsigned short c_cflag; /* 控制模式标志*/ unsigned short c_lflag; /* local mode flags */ unsigned char c_line; /* line discipline */ unsigned char c_cc[NCC]; /* control characters */ };
linux下多串口错乱的一般解决方案
linux下多串口错乱的一般解决方案在Linux下,当使用多个串口时可能出现错乱的情况。
以下是一般的解决方案:1. 检查串口设置:首先,确保每个串口的设置正确。
使用stty命令可以查看和修改串口的设置,如波特率、数据位数等。
确保每个串口的设置相同,并与设备连接的设备一致。
2. 避免串口冲突:多个串口设备可能会使用相同的IRQ(中断请求)或IO地址。
这可能导致冲突和错乱。
使用lspci或lsusb命令可以查看设备的IRQ和IO地址,确保它们不会冲突。
如果存在冲突,可以通过重新分配IRQ或IO地址来解决。
3. 禁用串口自动检测:有些Linux发行版可能会自动检测和配置串口设备。
这可能会导致错乱和冲突。
在启动时,可以通过修改内核参数或配置文件来禁用串口自动检测。
具体方法请参考相应发行版的文档。
4. 使用适当的串口驱动程序:确保使用适当的串口驱动程序。
有些串口设备需要特定的驱动程序才能正常工作。
使用lsmod命令可以查看已加载的模块,确保正确的驱动程序已加载。
5. 使用流控制:在串口通信中,使用流控制可以避免数据丢失和错乱。
流控制可以通过硬件流控制(使用RTS/CTS信号)或软件流控制(使用XON/XOFF字符)来实现。
确保流控制已启用,并正确配置。
6. 更换串口线和设备:有时,串口线或设备本身可能存在问题,导致数据错乱。
尝试更换线缆和设备,并确保它们是可靠的。
7. 使用串口调试工具:在调试时,可以使用串口调试工具(如minicom、screen等)来检测和解决错乱问题。
这些工具可以查看串口的输入输出,并帮助识别问题所在。
以上是一般的解决方案,具体解决方法可能因系统和硬件而异。
如果问题仍然存在,请参考相关文档和资源,或向相应的技术支持寻求帮助。
串口通信linux fd读空
在Linux 中,使用串口通信时,如果遇到读空的情况,可能是由于以下几个原因:
1. 串口设备未正确打开:在使用串口之前,需要使用`open()` 函数打开串口设备文件。
如果设备文件路径不正确或没有足够的权限,会导致无法正确打开串口设备。
请确保使用正确的设备文件路径和正确的权限打开设备文件。
2. 缓冲区溢出:在读取串口数据时,如果没有设置足够的缓冲区,可能会导致缓冲区溢出,从而读取出空数据。
请确保在读取数据之前,设置足够的缓冲区大小。
3. 串口通信参数不匹配:如果发送方和接收方的串口通信参数不匹配,可能会导致接收方无法正确读取数据。
请确保发送方和接收方的波特率、数据位、停止位等参数一致。
4. 设备驱动程序问题:有时候,串口设备的驱动程序可能存在一些问题,导致读取数据时出现问题。
可以尝试重新编译或升级驱动程序来解决此问题。
Linux串口设置参数
Linux串口设置参数在Linux环境下,串口名从ttyS0开始依次是ttyS1、ttyS2等。
在本程序中,使用ttyS0作为通信串口。
在打开ttyS0的时候,选项O_NOCTTY 表示不能把本串口当成控制终端,否则用户的键盘输入信息将影响程序的执行; O_NDELAY表示打开串口的时候,程序并不关心另一端的串口是否在使用中。
在Linux中,打开串口设备和打开普通文件一样,使用的是open()系统调用。
比如我么打开串口设备1也就是COM1,只需要:fd = open("/dev/ttyS0", O_RDWR | O_NOCTTY | O_NDELAY );打开的串口设备有很多设置选项。
本文中使用int setup_com(int fd)设置。
在系统头文件<termios.h>中定义了终端控制结构struct termios,tcgetattr()和tcsetattr()两个系统函数获得和设置这些属性。
结构struct termios中的域描述的主要属性包括:c_cflag :控制选项c_lflag :线选项c_iflag :输入选项c_oflag :输出选项c_cc :控制字符c_ispeed :输入数据波特率c_ospeed :输出数据波特率如果要设置某个选项,那么就使用"|="运算,如果关闭某个选项就使用"&="和"~"运算。
本文使用的各个选项的意义定义如下:c_cflag: CLOCAL 本地模式,不改变端口的所有者CREAD 表示使能数据接收器PARENB 表示偶校验PARODD 表示奇校验CSTOPB 使用两个停止位CSIZE 对数据的bit使用掩码CS8 数据宽度是8bitc_lflag: ICANON 使能规范输入,否则使用原始数据(本文使用)ECHO 回送(echo)输入数据ECHOE 回送擦除字符ISIG 使能SIGINTR,SIGSUSP, SIGDSUSP和 SIGQUIT 信号c_iflag: IXON 使能输出软件控制IXOFF 使能输入软件控制IXANY 允许任何字符再次开启数据流INLCR 把字符NL(0A)映射到CR(0D)IGNCR 忽略字符CR(0D)ICRNL 把CR(0D)映射成字符NR(0A)c_oflag: OPOST 输出后处理,如果不设置表示原始数据(本文使用原始数据)c_cc[VMIN]:最少可读数据c_cc[VTIME]:等待数据时间(10秒的倍数)根据以上设置的定义,串口端口设置函数setup_com()定义如下:int setup_com(int fd){struct termios options;tcgetattr(fd, &options);/* Set the baud rates to 38400...*/cfsetispeed(&options, B38400);cfsetospeed(&options, B38400);/* Enable the receiver and set local mode...*/options.c_cflag |= (CLOCAL | CREAD);/* Set c_cflag options.*/options.c_cflag |= PARENB;options.c_cflag &= ~PARODD;options.c_cflag &= ~CSTOPB;options.c_cflag &= ~CSIZE;options.c_cflag |= CS8;/* Set c_iflag input options */options.c_iflag &=~(IXON | IXOFF | IXANY);options.c_iflag &=~(INLCR | IGNCR | ICRNL);options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);/* Set c_oflag output options */options.c_oflag &= ~OPOST;/* Set the timeout options */options.c_cc[VMIN] = 0;options.c_cc[VTIME] = 10;tcsetattr(fd, TCSANOW, &options);return 1;}6.7.2 设置串口通信参数串口通信参数指的是波特率、数据位、奇偶校验位和停止位。
linux串口配置参数
linux串口配置参数Linux操作系统提供了丰富的串口资源,支持通过串口与外部设备进行通信。
在Linux下配置串口参数需要关注以下几个关键要素:串口号、波特率、数据位、停止位、校验位和流控制等。
下面将详细介绍如何配置这些参数。
一、确定串口号在Linux系统中,每个串口设备都有一个唯一的串口号,可以通过ls/dev/tty*命令查看系统中的所有串口设备。
在配置串口参数之前,需要确定要使用的串口号。
通常,串口号以/dev/ttyS或/dev/ttyUSB开头,可以根据实际情况进行判断。
二、配置波特率波特率是串口通信中最基本的参数之一,它决定了数据传输的速度。
在Linux系统中,可以使用minicom或screen等终端仿真器进行串口通信,这些工具默认使用9600波特率。
可以根据实际需求进行调整,常见的波特率有115200、57600等。
可以使用cat/proc/stty串口文件查看当前配置的波特率。
三、设置数据位、停止位和校验位数据位、停止位和校验位是串口通信中的其他重要参数。
数据位决定了传输的数据位数,常见的有5、6、7和8位等;停止位决定了传输的停顿时间,常见的有1、1.5和2位等;校验位则用于检查数据传输过程中的错误,常见的有奇校验和偶校验等。
这些参数可以在终端仿真器的配置中进行设置,也可以使用stty命令进行全局配置。
四、启用流控制流控制用于控制数据传输过程中的流量,避免数据传输过快导致丢包或溢出等问题。
常见的流控制方式有软件流控制(xon/xoff)和硬件流控制(rts/cts)。
软件流控制通过检测串口输入流控制信号(xon/xoff)来实现流量控制;硬件流控制通过控制数据端口的电平来实现流量控制。
可以在终端仿真器的配置中启用相应的流控制方式。
五、测试配置效果完成串口参数配置后,可以通过串口通信测试来验证配置是否正确。
可以使用cat或echo命令将数据发送到串口设备,并使用另一终端仿真器接收数据,观察是否能够正常通信。
linux 串口vtime参数范围 -回复
linux 串口vtime参数范围-回复Linux 串口vtime参数范围在Linux系统中,串口是一种常见的通信接口,用于连接计算机和外部设备,比如调制解调器、传感器等。
在使用Linux系统进行串口通信时,我们可以通过设置vtime参数来控制串口读取数据的超时时间。
本文将详细介绍vtime参数的功能和范围。
一、什么是vtime参数?在串口通信中,数据的传输需要有一个超时机制,以确保数据能够正常传输。
vtime参数就是用来设置串口读取数据的超时时间。
它以十分之一秒(10毫秒)为单位,表示在读取数据时等待的时间。
vtime参数的默认值为0,即不等待,立即返回数据。
二、vtime参数范围vtime参数的范围在0到255之间。
下面将详细介绍不同范围的取值对串口读取数据的影响。
1. vtime参数为0当vtime参数为0时,表示不等待接收数据,立即返回已有的数据。
这种设置适用于那些数据传输速度非常快且实时性要求较高的场景,比如传感器读取数据。
2. vtime参数大于0且小于255当vtime参数大于0且小于255时,表示等待的时间为vtime参数值乘以10毫秒。
该设置适用于传输速度较慢的设备,这种设置可以有效避免由于设备响应时间较慢而导致的数据读取异常。
举例来说,假设vtime参数设置为10,那么在读取数据时,串口会等待100毫秒。
如果在等待时间内读取到有效数据,则立即返回。
如果等待时间达到100毫秒后仍未读取到有效数据,则会返回已经读取到的数据。
3. vtime参数为255当vtime参数设置为255时,表示不进行超时等待,即无限等待接收数据。
与vtime参数为0不同的是,该设置会一直等待数据到达。
适用于场景,当我们要读取的数据的长度不确定时,可以使用该设置。
需要注意的是,在使用vtime参数为255的设置时,如果长时间没有读取到数据,程序会一直等待,可能会导致程序阻塞。
因此,在使用该设置时,需要特别小心控制等待时间,以避免程序的异常退出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是全双工和半双工?
全双工(Full duplex)是说计算机可以同时接受和发送数据——也就是它有两个分开的数据传输通道(一个传入,一个传出)。
半双工(Half duplex)表示计算机不能同时接受和发送数据,而在某一时刻它只能单一的传送或者接收。这通常意味着,它只有一个数据通道。半双工并不是说RS-232的某些信号不能使用,而是,它通常是使用了有别于RS-232的其他不支持全双工的标准。
RS-232针脚定义
DB-25
针脚
描述
针脚
描述
针脚
描述
针脚
描述
针脚
描述
1
Earth Ground
6
DSR - Data Set Ready
11
Unassigned
16
Secondary RXD
21
Signal Quality Detect
2
TXD - Transmitted Data
7
GND - Logic Ground
RXD - Received Data
RXD于TXD正好相反。它负载着从另一端的电脑或者设备上传到你的工作站的数据。Mark和space的解析方法于TXD一致。
DCD - Data Carrier Detect
DCD信号通常来自串口连结线的另一端。这条信号线上的space电压表示另一端的电脑或者设备现在已经连接。但是,DCD信号线却不是总可以得到的,有些设备上有这条信号线,而有的则没有。
方向(主机外设)
3
TD
Transmit Data
->
2
RD
Receive Data
<-
7
RTS
Request To Send
->
8
CTS
Clear To Send
<-
6
DSR
Data Set Rrminal Ready
->
1
CD
Data Carrier Detect
12
Secondary DCD
17
Receiver Clock
22
Ring Detect
3
RXD - Received Data
8
DCD - Data Carrier Detecter
13
Secondary CTS
18
Unassigned
23
Data Rate Select
4
RTS - Request To Send
9
Reserved
14
Secondary TXD
19
Secondary RTS
24
Transmit Clock
5
CTS - Clear To Send
10
Reserved
15
Transmit Clock
20
DTR - Data Terminal Ready
25
Unassigned
DB-9
针脚
名称
全名
#ref(): File not found: "async.gif" at page "Linux串口编程详解"
那个可选的parity位仅仅是所有传输位的和,这个和用以表示传输字符中有奇数个1还是偶数个1。在偶数parity中,如果有传输字符中有偶数个1,那么parity位被设置成0,而传输字符中有奇数个1,那么parity位被设置成1。在奇数parity中,位设置与此相反。还有一些术语,比如space parity, mark parity和no parity。Space parity是指parity位会一直被设置位0,而mark parity正好与此相反,parity会一直是1。No parity的意思就是根本不会传输parity位。剩余的位叫做stop位。传输字符之间可以有1个,1.5个或者2个stop位,而且,它们的值总是1。传统上,Stop位式用给计算机一些时间处理前面的字符的,但是它只是被用来同步接收数据的计算机和接受的字符。异步数据通常被表示成"8N1","7E1",或者与此类似的形式。这表示“8数据位,no parity和1个stop bit”,还有相应得,“7数据位,even parity和1个stop bit”。
<-
9
RI
Ring Indicator
<-
5
-
Signal Ground
另外两个比较常见的串行接口的标准式RS-422和RS-574。RS-422使用更低的电压和差分信号,这样可以将传输距离扩张到300m。而RS-574定义了通常可以见到的用在电脑上的9针连接器和电压。
↑
信号定义?
RS-232标准定义了18个不同的串行通信的信号。而这些之中,仅仅有如下6个可以在UNIX环境中使用。
Linux串口编程详解
分类:串口2011-07-12 09:21 91人阅读评论(0)收藏举报
串口本身,标准和硬件?
串口是计算机上的串行通讯的物理接口。计算机历史上,串口曾经被广泛用于连接计算机和终端设备和各种外部设备。虽然以太网接口和USB接口也是以一个串行流进行数据传送的,但是串口连接通常特指那些与RS-232标准兼容的硬件或者调制解调器的接口。虽然现在在很多个人计算机上,原来用以连接外部设备的串口已经广泛的被USB和Firewire替代;而原来用以连接网络的串口则被以太网替代,还有用以连接终端的串口设备则已经被MDA或者VGA取而代之。但是,一方面因为串口本身造价便宜技术成熟,另一方面因为串口的控制台功能RS-232标准高度标准化并且非常普及,所以直到现在它仍然被广泛应用到各种设备上。某些计算机使用一个叫做UART的集成电路来作为串口设备。这个集成电路可以进行字符和异步串行通讯序列之间的转换,并且可以自动地处理数据的时序。而某些低端设备则会让CPU直接通过输出针来传送数据,这种技术叫做bit-banging。因为“串口”,RS-232和UARTs基本上总是在同一个语境中出现,所以这些名词通常会被搞混。下面逐一解释以下一些重要的名词和术语。
RTS - Request To Send
如果RTS信号被设置成space电压,这表示你准备好了一些数据需要传送。和CTS一样,RTS也被用来协调工作站和另一端的电脑或者设备之间的数据流。有些工作站上会一直将这个信号设置位space。
↑
异步通讯?
计算机为了弄懂传给它的串行数据,它需要确定每个字符开始和结束的位置。这通常是用异步串行数据来完成的。
Windows
COM1
COM2
-
Linux
/dev/ttyS0
/dev/ttyS1
/dev/ttyUSB0
↑
打开串口?
因为串口和其他设备一样,在类Unix系统中都是以设备文件的形式存在的,所以,理所当然得你可以使用open(2)系统调用/函数来访问它。但Linux系统中却有一个稍微不方便的地方,那就是普通用户一般不能直接访问设备文件。你可以选择以下方式做一些调整,以便你编写的程序可以访问串口。
↑
什么是流控制?
两个串行接口之间的传输数据流通常需要协调一致才行。这可能是由于用以通信的某个串行接口或者某些存储介质的中间串行通信链路的限制造成的。对于异步数据这里有两个方法做到这一点。
第一种方法通常被叫做“软件”流控制。这种方法采用特殊字符来开始(XON,DC1,八进制数021)或者结束(XOFF,DC3或者八进制数023)数据流。而这些字符都在ASCII中定义好了。虽然这些编码对于传输文本信息非常有用,但是它们却不能被用于在特殊程序中的其他类型的信息。
↑
什么是串行通信?
计算机可以每次传送一个或者多个位(bit)的数据。“串行”指的式每次只传输一位(1bit)数据。当需要通过串行通讯传输一个字(word)的数据时,只能以每次一位的方式接收或者发送。每个位可能是on(1)或者off(0)。很多技术术语中经常用mark表示on,而space表示off。
在异步模式中,除非有字符被传输,否则串行数据线总是处于mark(1)状态。有一个start位会被加入传输字符的各个位之前,在字符本身的位之后会有一个可选的parity位和一个或者多个stop位。Start位总是space(0)并且它会告诉计算机新的串行数据过来了。数据可以随时被送出或者接收,这就是所谓的异步。
↑
什么是RS-232?
RS-232是EIA(Electronic Industries Association)定义的串行通信的电器接口。RS-232事实上有三种(A,B和C),它们分别采用不同的电压来表示on和off。最被广泛使用的是RS-232C,它将mark(on)比特的电压定义为-3V到-12V之间,而将space(off)的电压定义到+3V到+12V之间。虽然RS-232C标准说信号最远被传输8m,但事实上你可以使用它传输更长的距离,直到信号波特率已经小到不行了为止。RS-232的连结线中除去用来传入传出数据的电线,还有一些用来提供时序,状态和握手的电线:
GND - Logic Ground
从技术角度讲,GND不能算是信号。但是没有它其他信号都不能用了。基本上,logic ground有点像一个参考电压,通过它来判断哪个电压表示正哪个电压表示负。
TXD - Transmitted Data
TXD信号负载着从你的电脑或者设备到另一端(比如调制解调器)的数据。Mark范围的电压被解析成1,而space范围电压被解析成0。
↑
用户看到的串口和用户空间的串口编程?
和其他设备一样,Linux也是通过设备文件来提供访问串口的功能。当需要访问串口的时候,你只需要open相应的文件。
↑
串口的设备文件?
Linux系统上一般有一个或者多个串口,而这些串口设备文件名字比较奇怪,如比下面这样