行测数量关系知识点汇总资料讲解

合集下载

国考省考行测考前30分钟-数量关系、资料分析

国考省考行测考前30分钟-数量关系、资料分析

数学运算一、等差数列(一)通项公式n a =1a +(n-1)×d(二)求和公式基本求和公式:n S =21)(n a a n + n S =n 1a +21-)(n n ×d 中项求和公式:n S =⎪⎩⎪⎨⎧⨯⨯为偶数中间两项和,为奇数,中项n n n a n 2二、等比数列(一)通项公式n a =1a ×q 1-n(二)求和公式n S =⎪⎩⎪⎨⎧≠⨯=⨯1-1-1111q q q a q n a n ,)(,三、裂项计算)(11+n n =n 1-11+n )(d n n +1=d 1×(n 1-dn +1) 四、利润问题①利润=售价-成本②利润率=成本利润×100%=成本成本售价-×100%=(成本售价-1)×100% ③售价=成本×(1+利润率)④打折率=原价现价×100% 五、行程问题(一)普通行程路程=速度×时间(二)相遇相遇路程=速度和×相遇时间(三)追及追及路程=速度差×追及时间(四)流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 六、排列组合问题(一)排列m n A =n×(n-1)×(n-2)×……×(n-m+1) (m ≤n )n n A =n×(n-1)×(n-2)×……×2×1 (二)组合m n C =!)()()(m m n n n n 1-2-1-+⨯⨯⨯⨯ (m ≤n ) m n C =m n n C -(三)错位重排D n =(n-1)×(D 2-n +D 1-n ) 其中:D 1=0,D 2=1七、概率问题(一)古典概率)(A P =总的等可能事件数包含的等可能事件数A (二)独立重复试验某一试验独立重复n 次,其中每次试验中某一事件A 发生的概率是p ,那么事件A 发生k 次的概率是)(A P =kn C k p k n p --1)(。

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式

2023公务员行测复习数量关系知识点公式公务员行测复习数量关系知识点公式一、五大方法1.代入法:代入法时行测第一大法,优先考虑。

2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。

题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。

3.倍数比例法:若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。

4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数 5.方程法:很多数学运算题目都可以采用列方程进行求解。

方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。

二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。

赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。

2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。

常考的题型包括相遇问题和追及问题。

相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。

公务员考试 行测 数量关系 必备知识

公务员考试 行测 数量关系 必备知识

公务员考试行测数量关系必备知识数字推理数字推理题是公务员考试行政测试中一直以来的固定题型。

所谓数字推理,就是给应试者一个数列,但其中至少缺少一项,要求应试者仔细观察数列的排列规律,然后从四个选项中选出你认为最为合理的一项来填补空白项。

解答数字推理题时,应试者的反应不仅要快,而且要掌握恰当的方法和技巧,数字排列规律主要有六种:等差数列、等比数列、和数列、积数列、幂数列及其他特殊数列。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:1²=1 2²=4 3²=9 4²=16 5²=25 6²=36 7²=498²=64 9²=81 10²=100 11²=121 12²=144 13²=169 14²=196 15²=22516²=256 17²=289 18²=324 19²=361 20²=400 21²=441 25²=625(2)立方关系: 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 8³=512 9³=729 10³=1000 11³=13315,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97......(5)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。

- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

- 通项公式:a_n=a_1q^n - 1。

- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。

- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。

3. 和数列。

- 定义:通过相邻项相加得到下一项的数列。

- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。

- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。

4. 积数列。

- 定义:通过相邻项相乘得到下一项的数列。

- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。

- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。

5. 多次方数列。

- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。

行测考点丨数量关系

行测考点丨数量关系

行测考点丨数量关系一、方程法(一)定义及适用范围【定义】方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式(组),通过求解未知数的数值来解应用题的方法。

【适用范围】方程法应用范围较为广泛,数学运算绝大部分题目,如行程问题、工程问题、盈亏问题、和差倍比问题、浓度问题、利润问题、年龄问题等均可以通过方程法来求解。

(二)分类示例1.N元一次方程(组)主要流程为:设未知量->找出等量关系->列出方程(组)->化简、解出方程【例题1】商店经销某商品,第二次进货的单价是第一次进货单价的九折,而售价不变,利润率比第一次销售该商品时的利润率增加了15个百分点,则该商店第一次经销该商品时所定的利润率是()。

A.35%B.20%C.30%D.12%【解析】A。

设第一次进价为100,售价为x,则解得x=135,即第一次进货的利润率为35%。

【例题2】张老汉驾驶拖拉机从家开往农场,要行4600米,开始以每小时20千米速度行驶,途中拖拉机出现故障,维修用时6分钟。

因为要按原计划时间到达农场,修好拖拉机后必须以每小时45千米的速度行驶。

则拖拉机是在距离张老汉的家()米远处出现故障的。

A.600 B.800 C.1000 D.1200【解析】C。

设拖拉机是在距离张老汉家x千米处出现故障的,所以由于实际与原计划的所用时间相同,则有解得x=1千米=1000米。

【例题3】某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。

已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的()倍。

A. 6 B. 8 C. 10 D. 12【解析】D。

学徒工和熟练工完成的量相等,但学徒工和熟练工的效率之比为1:6=1:3,故学徒工和熟练工的人数之比为3:1。

设熟练工为x人,则学徒工为3x人,设技师为y人,则有:(3x+x+y=80,2*3x+6x+7y=480)。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。

★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。

3.N 边行每边有 a 人,则一共有 N(a-1) 人。

4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。

三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。

N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。

公务员行测数量关系知识点剖析

公务员行测数量关系知识点剖析

公务员行测数量关系知识点剖析公务员行测考试中的数量关系模块一直是众多考生备考的重点和难点。

数量关系主要考查考生对数学运算和逻辑推理的能力,涵盖了多种题型和知识点。

下面,我们就来对公务员行测数量关系中的一些常见知识点进行深入剖析。

一、等差数列等差数列是数量关系中较为基础且常见的知识点。

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

通项公式:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。

例如,数列\(2\),\(5\),\(8\),\(11\),\(14\)……就是一个公差为\(3\)的等差数列。

在解题时,若已知首项、公差和项数,就可以通过通项公式求出指定项的值。

求和公式:\(S_n =\frac{n(a_1 + a_n)}{2}\),其中\(S_n\)表示前\(n\)项和。

例如,求上述数列前\(5\)项的和,先求出第\(5\)项为\(2 +(5 1)×3 = 14\),再代入求和公式可得\(S_5 =\frac{5×(2 + 14)}{2} = 40\)。

二、等比数列等比数列是指从第二项起,每一项与它前一项的比值等于同一个常数的数列。

通项公式:\(a_n = a_1 × q^{(n 1)}\),其中\(q\)为公比。

例如,数列\(2\),\(4\),\(8\),\(16\),\(32\)……就是一个公比为\(2\)的等比数列。

求和公式:当\(q≠1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\)。

比如求上述等比数列前\(5\)项的和,代入公式可得\(S_5 =\frac{2×(1 2^5)}{1 2} = 62\)。

三、行程问题行程问题是数量关系中的常考题型,主要包括相遇问题、追及问题和流水行船问题等。

行测知识点数量关系汇总【精编】.pdf

行测知识点数量关系汇总【精编】.pdf

数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。

2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。

3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。

4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。

数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。

图形特值:比如特殊的长方形——正方形。

5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。

二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。

数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。

下面就为大家整理一下常见的数量关系知识点。

一、数学运算1、整数特性整数特性是数量关系中的基础知识点。

包括整除特性、奇偶性、质数与合数等。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。

质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

2、方程与不等式方程是解决数量关系问题的常用工具。

通过设未知数,根据题目中的等量关系列出方程,然后求解。

一元一次方程:形如 ax + b = 0(a≠0)的方程。

二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。

不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。

3、比例问题比例是指两个比相等的式子。

常见的有工程问题中的效率比、行程问题中的速度比等。

若 a:b = c:d,则 ad = bc。

4、行程问题行程问题是数量关系中的重点和难点。

基本公式:路程=速度×时间。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

5、工程问题工程问题的核心是工作总量=工作效率×工作时间。

经常通过设工作总量为 1 或工作总量的最小公倍数来解题。

6、利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100% 。

7、几何问题包括平面几何和立体几何。

数量关系知识点总结行测知识点总结

数量关系知识点总结行测知识点总结

数量关系知识点总结行测知识点总结数量关系知识点总结一,能被3,9整除的数的数字特性① 判断3/9的倍数的方法是“划” ② “A是B的2倍(一半)”则“A+B”是3的倍数③ 3/9的倍数加减乘3/9的倍数结果还是3/9的倍数④ “A+X”是3/9的倍数,则A的各个数字之和加X也是3/9的倍数⑤ 求几个数之和除以3/9余几,用“划”的方法⑥ 一个除以3余2的数加上一个除以3余1 的数和能被3整除一个除以3余2的数减去一个除以3余2 的数差能被3整除⑦ 三个连续自然数之和是3的倍数能被11整除的数,这个数奇数位的和与偶数位的和之差是11的倍数二,倍数关系如果a:b=m:n(m,n互质)a是m的倍数如果ab=mn(m,n互质)b是n的倍数如果a=bmn(m,n互质)a 土b是m土n的倍数aXb是mxn的倍数注:①题目中出现“比例,分数,倍数”等形式优先考虑倍数关系②2是质数中唯一的偶数,题干中出现质数优先考虑2的特殊性三,直接带入法1. 求某数最大或最小,一般猜选项中的第二大或第二小2. 求操作次数时,一般猜选项中的最大或最小选项罗列一般用直接代入四,工程问题工作总量=工作效率X工作时间如果问题问的是总量,一般设工作总量为X 如果问题问的不是总量,一般设工作总量为某些数(速度,时间,效率,分母)的最小公倍数工作总量=人数X时间(默认每个人的效率为1)总量一定,效率与时间成反比五,行程问题1. 等时间平均速度公式:V=V1+V2+V3+………Vnn 路程=速度X时间2. 等距离平均速度公式:1V=1n(1v1+1v2+1v3+………1vn) 平均速度=总路程总时间注:等时间平均速度大于等于等距离平均速度(当v1=v2=vn 时取等号)迎面相遇时间=相距路程速度和追击相遇时间=相距路程速度差V顺=V船+V水V船=V顺+V逆2 V逆=V船﹣V水V水=V顺﹣V逆2 火车完全在桥上的时间=(桥长﹣车长)÷速度火车从开始上桥到完全过桥的时间=(桥长+车长)÷速度六,容斥问题标志:出现“既……..又…………,两者,三者都………,或都不……….” 条件1+条件2+两者都不满足=总数+两者都满足当问题中求只满足某个条件个数时用画图加减(两集合,三集合皆可)条件1+条件2+条件3+三者都不满足=总数+只满足两者+2倍三者都满足条件1+条件2+条件3+三者都不满足=总数+满足两者﹣三者都满足(三个条件两两组合时用第二个公式)三集合七,年龄问题主要特点:时间变化年龄相应变化,但年龄差始终不变,倍数关系在变小。

行测讲义数量关系(PDF,更整编汇总)

行测讲义数量关系(PDF,更整编汇总)
(1) 余数的和决定和的余数。 【例】 23、16 除 以 5 的余数分别是 3 和 1,所 以 23+16=39 除以 5 的余数是 4;24、28 除以 5 的余数分 别是 4 和 3,所以(23+28)除以 5 的余数是 7,正余数 是 2。真也是为什么用“决定”而不用“等于”的原因, 下同。
【例】不定方程 x+3y=100,其中 x、y 均为正整数。则 x 可以为下列的那个值( )
A、41 B、42 C、43 D、44
分析:因为 3y 能被 3 整除,100 除以 3 的余数为 1,根 据同余特性,x 除以 3 的余数必定是 1,故选 C。
(2) 求日期
【例】老王、老李、老周三人周一同去图书馆,已知老 王每隔 15 天去一次图书馆,老李每隔 16 天去一次图书 馆,老周每隔 17 天去一次图书馆。那么三人下次一同 去图书馆是周几。
4) 17:逐次去掉最后一位数字并减去末位数字的 5 倍,结 果是 17 或是 17 的倍数,则原数字能被 17 整除。
分析:原理,先割去末位数字,实际上是减去末位数字 本身的 1 倍,再从前位减去所割去数字的 5 倍,实际上 是减去了所割数字的 50 倍,加上原来减去的 1 倍,一共 减去所割数字的 51 倍。因为 51 是 17 的倍数,减得的结 果是 17 或是 17 的倍数(包含 0),则原数字一定能被 17 整除,反之,则不能。举例子:8765。
(三) 截尾法
一般适用于四位数字以下(含四位)的数字。
定义:一个数截去末位数字后,所得的数字减去(加上)末 位数字的 n 被所得的差(和)能否被除数整除来判定整除的 方法。
1) 7:把个位数字截去,再从余下的数字中,减去个位数的 2 倍,结果是 7 或是 7 的倍数,则原数能被 7 整除。

数量行测知识点总结

数量行测知识点总结

数量行测知识点总结一、基本算术知识1. 加法和减法加法和减法是基本的运算规则,能够熟练进行加减运算是数量行测考试中的基本要求。

特别是在解决一些需要逐步推导的问题时,熟练的加减运算能力将大大提高解题的效率。

2. 乘法和除法乘法和除法也是数量行测考试中经常遇到的运算形式。

应试者需要掌握长乘法和长除法的方法,并且能够熟练运用于实际问题的解决中。

3. 百分数百分数在数量行测中常常用来表示比例和增减幅度,掌握百分数的转化和运用是解题的重要一环。

4. 比例在现实生活中,比例运算是十分常见的。

在数量行测中,应试者需要能够灵活运用比例进行问题的推导和解决。

二、量度、计量和货币换算1. 长度、面积和体积的换算在数量行测考试中,经常需要进行长度、面积和体积的换算,应试者需要对常见的长度单位、面积单位和体积单位的换算关系有一定的了解。

2. 时间和速度的换算时间和速度是生活中常见的量度,应试者需要能够熟练进行时间和速度的换算,并能够将其应用到实际问题的解决中。

3. 货币换算货币换算是数量行测中的一个常见题型,应试者需要能够熟练进行不同货币之间的换算,并且能够将其应用到实际的情境中。

三、数据分析1. 统计学基础在数量行测中,经常需要对给定的数据进行分析和推导,因此应试者需要掌握一定的统计学基础知识,包括常见的统计参数和统计方法。

2. 图表分析图表是数量行测中常见的数据表现形式,应试者需要能够熟练读懂各种类型的图表,并对其中的数据进行分析和推导。

四、逻辑推理1. 排列组合和概率排列组合和概率是数量行测中的一类重要题型,应试者需要能够熟练进行排列组合和概率的计算,并能够将其运用到实际问题的解决中。

2. 等式与方程等式与方程是数量行测中的一个重要知识点,应试者需要能够识别和解决各种类型的等式与方程,包括一元一次方程、二元一次方程等。

以上是关于数量行测的一些重要知识点总结,希望能够帮助应聘者更好地备考数量行测,取得优异的成绩。

同时也希望各位考生能够在备考过程中注重理论知识的积累,同时加强实际运用能力的训练,相信通过努力,一定能够取得令人满意的成绩。

行测数量关系知识点汇总

行测数量关系知识点汇总

行测数量关系知识点汇总一、数字推理。

1. 基础数列。

- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。

- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。

- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。

- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。

- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。

- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。

- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。

2. 多级数列。

- 做差多级数列。

- 对于数列不具有明显规律时,可先尝试做差。

例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。

- 做商多级数列。

- 当数列各项之间有明显的倍数关系时,可尝试做商。

如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。

- 做和多级数列。

- 有些数列做和后会呈现出规律。

例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。

- 做积多级数列。

- 数列中相邻项之间有乘积关系时适用。

比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。

3. 幂次数列。

- 基础幂次数列。

- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

行政能力测试数量关系规律总结

行政能力测试数量关系规律总结

顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)解决牛吃草问题常用到四个基本公式牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随 吃的天数不断地变化。

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。

- 主要考查数量大小、比例关系、代数运算等方面的能力。

2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。

(完整版)行测数量关系课件资料

(完整版)行测数量关系课件资料

数量关系数学运算一、行程问题1、基本公式路程=速度×时间 s=vt 速度=路程÷时间 v=s ÷t 时间=路程÷速度 t=s ÷v2、相遇问题相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间3、追及问题追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间4、流水行船问题顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 船速=(顺流速度+逆流速度)÷2水速=(顺流速度-逆流速度)÷25、火车过桥问题火车过桥的路程=桥的长度+火车长度6、汽车往返接送问题汽车空载和载人速度相等,且两组人速度相等时,21÷+=)人速车速(每组人步行距离每组人乘车距离。

7、等距平均速度问题 平均速度=21212v v v v +8、间隔发车问题 发车间隔时间=21212t t t t + 2121t -t t t +=人速车速9、多次相遇问题多次相遇问题包含相遇和追及的几类形式。

(1)AB 两车从甲乙两地同时出发,相向而行,在AB 间来回行驶。

每次相遇时,AB 两车行驶的总路程等于甲乙两地路程的奇数倍(1、3、5、7……)。

(2)AB 两车从甲乙两地同时出发,相向而行,在AB 间来回行驶。

每次超过时,快车行驶路程比慢车多甲乙两地路程的奇数倍(1、3、5、7……)。

(3)AB 两车从同一地点同时出发,同向而行,在AB 间来回行驶。

每次相遇时,AB 两车行驶总路程等于甲乙路程的偶数倍(2、4、6、8……)。

(4)AB 两车从同一地点同时出发,同向而行,在AB 间来回行驶。

每次超过时,快车行驶路程比慢车行驶距离多甲乙两地路程的偶数倍(2、4、6、8……)。

10、两岸相遇问题单边型:S =(3S 1+S 2)÷2 双边型:S =3S 1-S 2注意:两次相遇必须是面对面相遇,途中没有发生多追及相遇的情况。

国考数量关系知识点汇总

国考数量关系知识点汇总

国考数量关系知识点汇总一、知识概述《国考数量关系知识点汇总》①基本定义:国考数量关系就是在国家公务员考试中考察大家数学方面的一些能力,包括数字运算、数据关系理解等,就像是一场数学能力的较量,看看你能不能在规定时间内搞定那些数学题。

②重要程度:这部分在国考行测里很重要,就像盖房子的砖头一样基础。

如果数量关系做得好,行测的分数肯定差不了,它能拉开你和其他考生的差距呢。

③前置知识:你得基本掌握小学数学的运算知识,像加减乘除、四则运算,还有一些简单的几何概念,比如三角形、正方形的面积计算之类的。

就好比建高楼得先打好地基,这些基础的知识就是地基。

④应用价值:在实际生活中,数量关系的思维可以帮我们处理很多事情,像购物时算折扣、工程规划上算工期等。

在工作中呢,分析数据之类的工作也会用到这种逻辑能力。

二、知识体系①知识图谱:数量关系在国考行测这个学科体系里算是比较独立但又很关键的一块。

它和其他模块如言语理解等是并行的关系,但数学对整体思维能力的提升会潜在影响其他模块的作答。

②关联知识:它和资料分析有联系,都涉及到数据处理;和逻辑判断也有点关系,有些题目逻辑解题思路类似。

就像一家人,各自有分工,但基因上多少有点联系。

③重难点分析:- 掌握难度:说实话,难度可不小。

不仅要有好的数学基础,还要能快速解题。

题目类型很多变,有些概念很绕。

像排列组合这个知识点,很容易让人懵圈。

- 关键点:关键在于理解题目类型、掌握对应的解题思路和公式,并且要通过大量练习提高计算速度。

④考点分析:- 在考试中的重要性:挺重要的,能够直接影响行测总分。

- 考查方式:会直接出题考查数字运算,像通过工程问题、行程问题等设置情景进行计算。

三、详细讲解【理论概念类】①概念辨析:- 例如整除,就是一个数能被另一个数除尽,没有余数。

就像10能被5整除,就好比10个苹果分给5个人,能刚好分完。

②特征分析:- 比如说质数,它只有1和本身两个因数。

像2、3、5这些数,很“单纯”,只能分解成1和它自己相乘。

公务员考试行测数量关系:数学运算基础知识

公务员考试行测数量关系:数学运算基础知识
5.2、4、8整除及余数判定基本法则
①一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除。
②一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除。
③一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除。
④一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数。
④一个数被9除得的余数,就是其各位数字和被9除得的余数。
7.标准质因数分解
①如果质数b是a的因数,则称b是a的质因数。
②将一个数写成它的质因数的乘积的形式,称为质因数分解。
③将这些质因数按照从小到大‘排列,称为标准(质因数)分解。
8.公倍数、公因数、最小公倍数、最大公因数及互质
①能同时整除一组数中的每一个数的数,称为这组数的公因数
②通分:将分数的分母化为相同;
③有理化:通过将分数的分子与分母同时乘以一个不为O的数(算式)的方法,将分母中的无理数(式)化成有理数(式)的方法,称为分数(式)的分母有理化。
4.整除基本知识点
①往下研究整除、倍数、因数(约数)、余数及其相关特性时,仅限于在整数范围内讨论(某些性质需要在正整数范围内讨论),不再重复说明;
②如果存在整数c,使整数a、b满足a=bc,则称b能整除a,a能被b整除。此时也称a为b的倍数,b为a的因数(也称b是a的约数);
③1是任何整数的因数,0是任何非零整数的倍数;
④在正整数中,除了1之外,只有l和它本身两个(正)因数的数称为质数,除了1和它本身之外,还有其他(正)因数的数称为合数。1既不是质数,也不是合数。
1.基本运算律
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测数量关系知识点汇总行测常用数学公式工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N边行每边有a人,则一共有N(a-1)人。

4.实心长方阵:总人数=M×N 外圈人数=2M+2N-45.方阵:总人数=N2 N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?解:(10-3)×3×4=84(人)(2)排队型:假设队伍有N人,A排在第M位;则其前面有(M-1)人,后面有(N-M)人(3)爬楼型:从地面爬到第N层楼要爬(N-1)楼,从第N层爬到第M层要爬NM-层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长÷间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速—水速)×逆流时间 (4)火车过桥型:列车在桥上的时间=(桥长-车长)÷列车速度列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间 (5)环形运动型:反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度—小速度)×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×(1±人梯u u ),(顺行用加、逆行用减) 顺行:速度之和×时间=扶梯总长逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=(u 人+u 队)×时间 队尾→对头:队伍长度=(u 人-u 队)×时间 (8)典型行程模型: 等距离平均速度:21212u u u u u +=(U 1、U 2分别代表往、返速度) 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s +=两岸型:213s s s -= (s 表示两岸距离) 无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2(其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间) 五、溶液问题 ⑴ 溶液=溶质+溶剂 浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N ,交换质量L 后浓度都变成c%,则⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度) 六、利润问题(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;(2)销售价=成本×(1+利润率); 成本=+利润率销售价1。

(3)利息=本金×利率×时期; 本金=本利和÷(1+利率×时期)。

本利和=本金+利息=本金×(1+利率×时期)=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)关键是年龄差不变;①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差⑴两集合标准型:满足条件A 的个数+满足条件B 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:A+B+C-(AB+BC+AC )+ABC=总个数-都不满足的个数,即 满足条件A 的个数+满足条件B 的个数+满足条件C 的个数-三者都不满足的情况数C B A Y Y =C B A C A C B B A C B A I I I I I +---++⑶三集和整体重复型:假设满足三个条件的元素分别为ABC ,而至少满足三个条件之一的元素的总量为W 。

其中:满足一个条件的元素数量为x ,满足两个条件的元素数量为y ,满足三个条件的元素数量为z ,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z⑷三集和图标标数型:利用图形配合,标数解答①特别注意“满足条件”和“不满足条件”的区别②特别注意有没有“三个条件都不满足”的情形③标数时,注意由中间向外标记核心公式:y=(N —x)T原有草量=(牛数-每天长草量)×天数,其中:一般设每天长草量为X 注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上的牛数。

如果有一个量,每个周期后变为原来的A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1。

调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=(P 1、P 2分别代表之前两种东西的价格 ) 等溶质增减溶质核心公式:313122r r r r r += (其中r 1、r 2、r 3分别代表连续变化的浓度)核心公式: 2121a a a a a +=核心口诀:“余同取余、和同加和、差同减差、公倍数做周期” 注意:n 的取值范围为整数,既可以是负值,也可以取零值。

闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算。

★星期推断:一年加1天;闰年再加1天。

注意:星期每7天一循环;“隔N 天”指的是“每(N+1)天”。

(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

(5)两项分母列项公式:)(a m m b +=(m 1—a m +1)×ab(6)三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1a m a m ++]×ab2(1)排列公式:P m n=n (n -1)(n -2)…(n -m +1),(m≤n )。

56737⨯⨯=A (2)组合公式:C m n =P m n ÷P m m =(规定0n C =1)。

12334535⨯⨯⨯⨯=c(3)错位排列(装错信封)问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,(4)N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种。

(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n =d a a n 1-+1;(4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q n -1; (2)s n =qq a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nm a a =q(m-n)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)4.2 4.34.7★1既不是质数也不是合数1.200以内质数 2 3 5 7 101 103 109 11 13 17 19 23 29 113 127 131 137 31 37 41 43 47 53 59 139 149 151 157 163 167 61 67 71 73 79 83 89 97 173 179 181 191 193 197 1992.典型形似质数分解3.常用“非唯一”变换①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264=== 249381== 281642256=== 3982512== 6233279729=== 251032421024=== ④个位幂次数字:12424== 13828== 12939==1.勾股定理:a 2+b 2=c 2(其中:a 、b 为直角边,c 为斜边)2.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+圆形=πR 2 平行四边形=ah 扇形=0360n πR 23.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 2 4.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R π5.若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍。

相关文档
最新文档