概率实验一随机数的生成与蒙特卡洛随机模拟方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•泊松分布在排队系统、产品检验、天文、物理等 领域有广泛应用。
6 产生1个参数为n,p的二项分布的随机数 binornd(n,p),产生mn个参数为n,p的二项分布的 随机数binornd(n,p,m,n) 。
掷一枚均匀硬币,正面朝上的次数 X 服 从参数为1,p的二项分布,X~B(1,p)
总结:常见分布的随机数产生语句
实验一
随机数的产生及蒙特卡 洛随机模拟方法
实验目的
学习随机数的产生及蒙特卡洛随机模拟方法 的基本过程与方法。
实验内容
1、产生随机数的计算机命令。 2、蒙特卡洛随机模拟实例。
实验作业
数学模拟的方法
在一定的假设条件下,运用数学运算模拟系统 的运行,称为数学模拟。现代的数学模拟都是在计 算机上进行的,称为计算机模拟。 计算机模拟可以反复进行,改变系统的结构和 系数都比较容易。 在实际问题中,面对一些带随机因素的复杂系 统,用分析方法建模常常需要作许多简化假设, 与面临的实际问题可能相差甚远,以致解答根本 无法应用。这时,计算机模拟几乎成为唯一的选 择。
2.产生mm*nn阶离散均匀分布的随机数矩阵: R = unidrnd(N) R = unidrnd(N,mm,nn)
3.产生 m n 阶均值为 , 标准差为 的正态分布的随机数矩阵: normrnd ( , ,m, n)
产生一个均值为 ,标准差的正态分布的随机数: normrnd ( , )
⑥ 产生m×n阶参数为A1,A2,A3的指定分布'name'的随机数 矩阵 random('name',A1,A2,A3,m,n) 产生一个参数为为A1,A2,A3的指定分布'name'的随机数 random('name',A1,A2,A3) 举例: 产生2×4阶的均值为0方差为1的正态分布的随机数矩阵 random('Normal',0,1,2,4) 'name'的取值可以是(详情参见help random): 'norm' or 'Normal' / 'unif' or 'Uniform' 'poiss' or 'Poisson' / 'beta' or 'Beta' 'exp' or 'Exponential' / 'gam' or 'Gamma' 'geo' or 'Geometric' / 'unid' or 'Discrete Uniform' ……
一)频率的稳定性模拟
1.事件的频率 在一组不变的条件下,重复作n次试验,记m是n次试验 中事件A发生的次数。 频率 f=m/n 2.频率的稳定性
•当研究对象视为大量相互独立的随机变量之和, 且其中每一种变量对总和的影响都很小时,可以 认为该对象服从正态分布。
4.产生 m n 阶期望值为 的指数分布的随机数矩阵: exprnd (,m, n )
•若连续型随机变量X的概率密度函数为
1 ex/ f (x) 0 x0 x0
一、随机数的产生
一)产生模拟随机数的计算机命令
在Matlab软件中,可以直接产生满足各种分布的随 机数,命令如下: 1.产生m*n阶(a,b)均匀分布U(a,b)的随机数矩阵: unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数: unifrnd (a,b) 当只知道一个随机变量取值在(a,b)内,但 不知道(也没理由假设)它在何处取值的概率大, 在何处取值的概率小,就只好用U(a,b)来模拟它。
④ 产生m×n阶均值为mu方差为sigma的正态分布的随 机数矩阵 normrnd(mu,sigma,m,n) 产生一个均值为mu方差为sigma的正态分布的随机数 normrnd(mu,sigma) ⑤ 产生m×n阶期望值为mu (mu=1/λ)的指数分布的随机 数矩阵 exprnd(mu,m,n) 产生一个期望值为mu的指数分布的随机数 exprnd(mu) 注意: 产生一个参数为λ的指数分布的随机数应输入 exprnd(1/λ)
补充:随机数的产生命令
MATLAB可以直接产生满足各种分布的随机数 具体命令如下: ① 产生m×n阶[0,1]上均匀分布的随机数矩阵 rand(m,n) 产生一个[0,1]上均匀分布的随机数 rand ② 产生m×n阶[a,b]上均匀分布的随机数矩阵 unifrnd (a,b,m, n) 产生一个[a,b]上均匀分布的随机数 unifrnd(a,b) ③ 产生一个1:n的随机排列(元素均出现且不重复) p=randperm(n) 注意: randperm(6)与unifrnd (1,6,1, 6)的区别
二、蒙特卡罗随机模拟
蒙特卡洛(Monte Carlo)方法是一种 应用随机数来进行计算机模拟的方法.此方法 对研究的系统进行随机观察抽样,通过对样本 值的统计分析,求得所研究系统的某些参数.
用蒙特卡洛方法进行计算机模拟的步骤:
[1] 设计ቤተ መጻሕፍቲ ባይዱ个逻辑框图,即模拟模型.这个框 图要正确反映系统各部分运行时的逻辑关系。 [2] 模拟随机现象.可通过具有各种概率分布 的模拟随机数来模拟随机现象.
其中 >0 为常数,则称X服从参数为 的指数分布。 •指数分布的期望值为
•排队服务系统中顾客到达间隔、质量与可靠性 中电子元件的寿命通常服从指数分布。
例 顾客到达某商店的间隔时间服从参数为 10(分钟)的指数分布(指数分布的均值为10)
指两个顾客到达商店的平均间隔时间是 10分钟.即平均10分钟到达1个顾客. 顾客到达 的间隔时间可用exprnd(10)模拟。
-----
5.产生 m n 阶参数为 的泊松分布的随机数矩阵: poissrnd ( ,m, n)
•设离散型随机变量X的所有可能取值为0,1,2,…,且取 各个值的概率为
k e P ( X k ) , k 0 , 1 , 2 , ,
k !
其中 >0为常数,则称X服从参数为 的泊松分布。 •泊松分布的期望值为