信号与系统期末复习

合集下载

《信号与系统》复习

《信号与系统》复习

物理意义:非周期信号可以分解为无数个频率为, 复振幅为[X(j)/2p]d 的虚指数信号ejw t的线性组合。
简述傅氏反变换公式的物理意义?
傅里叶变换性质
F 时移特性 x(t t 0 ) X( j) e jt
0
x(t)
X(j)
展缩特性
1 F x (at) X( j ) a a
(n = 1,2) (n = 1,2)
奇对称周期信号其傅里叶级数只含有正弦项。
周期信号的傅里叶级数 周期信号x(t) 如图 所示,其傅氏级数系数的特点是
偶对称周期信号其傅里叶级数只含有直流项与余弦项 周期信号f(t)如图所示,其直流分量等于_____
周期信号的频谱及特点
Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
《信号与系统》复习
考核方式
平时成绩20% 实验成绩20% 期末成绩60%
题型: 选择题(每题3分,共30分) 填空题(每空2分,共20分) 简答题(每题4分,共20分)
计算题(每题10分,共30分)
第一章:信号与系统分析导论
周期信号平均功率计算 若电路中电阻R=1Ω,流过的电流为周期电流i(t)= 4cos(2πt)+2cos(3πt) A,其平均功率为( ) 系统的数学模型 连续时间系统:系统的输入激励与输出响应都必须为 连续时间信号,其数学模型是微分方程式。 离散时间系统: 系统的输入激励与输出响应都必须 为离散时间信号,其数学模型是差分方程式。
L[ yzs (t )] Yzs ( s) H ( s) L[ x(t )] X ( s)
写出系统函数H (s) 的定义式
简述拉氏变换求解微分方程的过程

信号与系统复习知识总结

信号与系统复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε✧ 与)(n δ的关系: ()()(1)n n n δεε=-- ✧ 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统期末重点总结

信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。

2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。

3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。

4. 系统的定义:系统是将输入信号转换为输出信号的过程。

5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。

二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。

(2)幅度谱与相位谱:复指数信号的频谱特性。

(3)周期信号:特点是在一个周期内重复。

(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。

2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。

(2)冲击响应与系统特性:系统的特性通过冲击响应得到。

(3)卷积积分:输入信号与系统冲激响应的积分运算。

3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。

(2)Fourier变换:将时域信号转换为频域信号。

(3)Laplace变换:用于解决微分方程。

三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。

(2)离散频谱:离散时间信号的频域特性。

(3)周期信号:在离散时间中周期性重复的信号。

(4)离散时间系统的线性时不变性:线性组合和时延等。

2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。

(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。

(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。

3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。

(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。

(3)Z变换:傅立叶变换在离散时间中的推广。

四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。

信号与系统复习题

信号与系统复习题

信号与系统期末复习题一、填空题1.描述线性非时变连续系统的数学模型是_微分方程______________________________。

2.离散系统的激励与响应都是___离散时间信号_____。

4.请写出“LTI ”的英文全称___线性时不变____。

5.若信号f(t)的FT 存在,则它满足条件是_____________________。

8、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____ 9、若某信号)(t f 的最高频率为3kHz ,则)3(t f 的奈奎斯特取样频率为 18 kHz 。

10、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h(t)= )()3(2t e e tt ε--- 。

11、=*)(3)(2n n n n εε )()23(11n n n ε++- 。

12、已知1)(2-=z z z F ,则f(n)= )(])1(1[21n nε-- 。

13、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为)(]1[212t e t ε-- 。

14.(4分)()()u t u t *= t u (t )[][]u n u n *= (n +1)u [n +1]=(n +1) u [n ]15.(4分)已知信号f (t )= Sa (100t )* Sa (200t ),其最高频率分量为f m = 50/π Hz ,奈奎斯特取样率f s = 100/π Hz 16.(4分)已知F )()]([ωj F t f =,则F 3[()]j tf t e = [(3)]F j ω-F()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑17.(2分)设某因果离散系统的系统函数为az zz H +=)(,要使系统稳定,则a 应满足 | a | < 118.(2分)已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t -3)19.(3分)已知某系统的系统函数为2()1H s s =+,激励信号为()3cos 2x t t =,则该系统的稳态响应为()2(arctan 2)y t t =- 20.(3分)已知)2)(21()(--=z z z z X ,收敛域为221<<z ,其逆变换为 21()[]2[1]32n n u n u n ⎡⎤-+--⎢⎥⎣⎦二、选择题1.连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ(a) )(t f (b) )(0t t f - (c) )(t δ (d) )(0t t -δ 2.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 3.线性时不变系统的数学模型是(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4.若收敛坐标落于原点,S 平面有半平面为收敛区,则(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号(d) 该信号的幅度既不增长也不衰减而等于稳定值,或随时间n t t ,成比例增长的信号 5.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z 变换 (d) 希尔伯特变换 6.无失真传输的条件是(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线(d) 幅频特性是一通过原点的直线,相位特性等于常数 7.描述离散时间系统的数学模型是(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 8.若Z 变换的收敛域是 1||x R z > 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 9.若以信号流图建立连续时间系统的状态方程,则应选(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 10.若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对11、某LTI 系统的微分方程为)()(2)(t f t y t y =+',在f(t)作用下其零状态响应为t e -+1,则当输入为)()(2t f t f '+时,其零状态响应为: (a) t e -+2 (b) t e --2 (c) t e -+32 (d)1 12、某3阶系统的系统函数为ks s s ks s H ++++=32)(23,则k 取何值时系统稳定。

期末复习资料(信号与系统)

期末复习资料(信号与系统)

《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。

课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。

二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。

结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。

(2)离线作业。

两次离线作业题目要熟练掌握。

(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。

特别要建立信号与系统的频域分析的概念以及系统函数的概念。

结合习题进行反复练习。

四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。

2. 掌握系统的描述、分类及特性。

3. 重点掌握确定信号及线性非时变系统的特性。

第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。

2.掌握连续信号与离散信号的基本运算。

3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。

第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。

2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。

4.掌握用卷积法计算离散时间系统的零状态响应。

第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。

2.掌握离散周期信号的频域分析方法。

第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。

2.掌握连续非周期信号的频域分析。

3.掌握离散非周期信号的频域分析。

信号与系统期末考试复习资料

信号与系统期末考试复习资料

第一章绪论1、选择题1.1、f(5—2t)是如下运算的结果 CA、f(-2t)右移5B、f(-2t)左移5C、f(-2t)右移D、f(-2t)左移1.2、f(t0-a t)是如下运算的结果 C .A、f(—a t)右移t0;B、f(—a t)左移t0;C、f(—a t)右移;D、f(—a t)左移1。

3、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 B 。

A、线性时不变系统;B、线性时变系统;C、非线性时不变系统;D、非线性时变系统1.4、已知系统的激励e(t)与响应r(t)的关系为: 则该系统为 C 。

A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。

5、已知系统的激励e(t)与响应r(t)的关系为:则该系统为B 。

A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。

6、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 BA、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1.7。

信号的周期为 C 。

A、B、C、D、1。

8、信号的周期为: B 。

A、B、C、D、1.9、等于 B 。

A。

0 B.-1 C.2 D。

-21。

10、若是己录制声音的磁带,则下列表述错误的是:BA. 表示将此磁带倒转播放产生的信号B。

表示将此磁带放音速度降低一半播放C. 表示将此磁带延迟时间播放D. 表示将磁带的音量放大一倍播放1.11。

AA.B。

C. D。

1。

12.信号的周期为 B . A B C D1.13.如果a〉0,b>0,则f(b—a t)是如下运算的结果 C 。

A f(-a t)右移bB f(-a t)左移bC f(—a t)右移b/aD f(-a t)左移b/a1.14.线性时不变系统的响应,下列说法错误的是 C 。

A 零状态响应是线性时不变的B 零输入响应是线性时不变的C全响应是线性时不变的 D 强迫响应是线性时不变的2、填空题与判断题2。

信号与系统期末复习ppt课件

信号与系统期末复习ppt课件

PPT学习交流
11
例2.2-1 已知系统的传输算子H(p)= 2p/(p+3)(p+4) , 初始条件yzi(0)=1, yzi(0)2 , 试求系统的零输入
解响应。H(p)(p32)p(p4)
特征根λ1=-3, λ2=-4 零输入响应形式为
yzi(t)=C1e-3t+C2e-4t t>0 将特征根及初始条件y(0)=1, y′(0)=2代入
8
离散系统 (5) (P256,例5.2-1(1),5.2-2(1))
1) y(n)=T[x(n)]=ax(n)+b; 是非线性系统、时不变系统。
2) y(n)= ax(n)+b x(n-1)+c (6) (P257,例5.2-2(2))
1)y(n)=T[x(n)]=nx(n)。 是线性、时变系统
2)y(n)=n3x(n)
PPT学习交流
9
第二章 时域解法
重点
1)求系统的全响应的时域解法 2)卷积及其运算
PPT学习交流
10
一、 时域解法
1)用算子法解零输入响应yzi;
2)用卷积解零状态响应yzs ;
注意:1) 微分方程的算子表示法; 2) 单位冲激响应h(t) 3) 卷积的积分表示式及计算;
(1) f1(t)co 2t)s 5 c ( o 4 t)s((1-3(1))
(2) f2(t)[1c0o3ts)(2 ] (1-3(2))
PPT学习交流
5
二、系统及其性质
1、线性系统:
1)可分解性
2)零输入线性
3)零状态线性
2、时不变系统:
f( t) y ( t) f( t t0 ) y ( t t0 )

信号与系统 期末复习试卷1

信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________

信号与系统期末考试复习资料

信号与系统期末考试复习资料

第一章绪论1、选择题、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (-2t )左移25、f (t 0-a t )是如下运算的结果 C 。

A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。

A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 .信号)34cos(3)(π+=t t x 的周期为 C 。

A 、π2 B 、π C 、2π D 、π2、信号)30cos()10cos(2)(t t t f -=的周期为: B 。

A 、15π B 、5π C 、π D 、10π、dt t t )2(2cos 33+⎰-δπ等于 B 。

、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 .=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。

信号与系统复习资料

信号与系统复习资料

得分一、选择题(共分)。

2010-2011学年第二学期信号与系统期末考试试卷班级:_______________学号:_______________姓名:_______________得分:_______________(卷面共有50题,总分100分,各大题标有题量和总分,每小题标号后有小分)一、选择题(50小题,共100分)[2分](1)下列信号中属于功率信号的是( )。

A、 B、 C、 D、[2分](2)已知某系统激励f(k)与响应y(k)之间的关系为y(k)=f(k)+80,则该系统为。

A、线性系统B、非线性系统[2分](3)下列说法正确的是。

A、是功率信号B、两个周期信号之和一定是周期信号C、所有非周期信号都是能量信号D、所有非周期信号都是功率信号[2分](4)下列叙述正确的是。

A、各种数字信号都是离散信号B、数字信号的幅度只取0和1C、各种离散信号都是数字信号D、将数字信号滤波可得模拟信号[2分](5)已知如下四个系统,f(t)、f(k)代表系统输入,y(t)、y(k)代表响应。

其中,线性系统的有();时不变系统有();因果系统有();记忆系统有。

A、B、C、D、[2分](6)A、B、C、D、[2分](7)A、sin3B、-sin3C、sin3tD、0[2分](8)A、3B、-3C、5D、-5[2分](9)A、0B、costC、sintD、u(t)[2分](10)信号[2分](11)下图中x(t)的表示式是A、B、C、D、[2分](12)已知A、B、C、D、[2分](13)已知,则()。

A是常数A、B、C、D、[2分](14)已知一个LTI系统的单位冲激响应h(t)如下图,若输入,则输出是。

A、1B、-1C、D、0[2分](15)已知一个LTI系统输入为时,输出、如下图所示,则系统单位冲激响应是。

A、u(t)B、2u(t)C、u(t)-u(t-1)D、u(t-1)-u(t-2)[2分](16)已知一个LTI系统输入为时,输出,若输入为,则对应的输出是()。

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

信号与系统复习书中最重要的三大变换几乎都有。

第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。

③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

期末考试《信号与系统课程要点(吴大正)》

期末考试《信号与系统课程要点(吴大正)》

信号与线性系统复习提纲第一章 信号与系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续与离散;周期与非周期;实与复信号;能量信号与功率信号 3.信号的基本运算:加、乘、反转和平移、尺度变换。

图解时应注意仅对变量t 作变换,且结果可由值域的非零区间验证。

4.阶跃函数和冲激函数{极限形式的定义;关系;冲激的Dirac 定义 阶跃函数和冲激函数的微积分关系 冲激函数的取样性质(注意积分区间))()0()()(t f t t f δδ⋅=⋅;⎰∞∞-=⋅)0()()(f dt t t f δ)()()()(111t t t f t t t f -⋅=-⋅δδ;⎰∞∞-=-⋅)()()(11t f dt t t t f δ5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离)(由时域框图列方程的步骤。

6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性。

时不变性:常参量LTI 系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI 系统) LTI 系统零状态响应的微积分特性因果性、稳定性(可结合第7章极点分布判定)第二章 $第三章连续系统的时域分析1. 微分方程的经典解法:齐次解+特解(代入初始条件求系数) 自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI 系统零状态响应的微积分特性 特别说明:特解由激励在t>0时或t>=0+的形式确定2. 冲激响应)(t h定义,求解(经典法),注意应用LTI 系统零状态响应的微积分特性~阶跃响应)(t g 与)(t h 的关系3. 卷积积分定义及物理意义激励)(t f 、零状态响应)(t y f 、冲激响应)(t h 之间关系)()()(t h t f t y f *= 卷积的图示解法(了解)函数与冲激函数的卷积(与乘积不同))()()(t f t t f =*δ;)()()(11t t f t t t f -=-*δ 卷积的微分与积分$复合系统冲激响应的求解(了解)第四章 离散系统的时域分析&1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是)()2(),1(N y y y --- ),而初始条件(指的是)1()1(),0(-N y y y ) 2.单位序列响应)(k h)(k δ的定义,)(k h 的定义,求解(经典法); 若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解(阶跃响应)(k g 与)(k h 的关系 3. 卷积和定义及物理意义激励)(k f 、零状态响应)(k y f 、冲激响应)(k h 之间关系)()()(k h k f k y f *=卷积和的作图解 )(k f 与)(k δ的卷积和)()()(k f k k f =*δ;)()()(11k k f k k k f -=-*δ结合前面卷积积分和卷积和,知道零状态响应除经典解法外的另一方法。

信号与系统复习资料

信号与系统复习资料

信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。

信号可以是连续的或离散的,并且可以是模拟的或数字的。

系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。

在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。

二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。

离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。

连续时间信号和离散时间信号可以通过采样和保持操作相互转换。

三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。

周期信号具有重复的模式,并且在无穷远处也保持有界。

非周期信号则没有重复的模式,并且在无穷远处不保持有界。

另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。

四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。

系统可以是线性的或非线性的。

线性系统遵循叠加原则,输出信号是输入信号的线性组合。

非线性系统则不遵循叠加原则。

五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。

常用的时域分析技术包括时域图、自相关函数、互相关函数等。

时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。

自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。

六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。

傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。

傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。

功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。

《信号与系统》复习重点

《信号与系统》复习重点

《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。

课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。

二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。

结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。

(2)离线作业。

两次离线作业题目要熟练掌握。

(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。

特别要建立信号与系统的频域分析的概念以及系统函数的概念。

结合习题进行反复练习。

四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。

2. 掌握系统的描述、分类及特性。

3. 重点掌握确定信号及线性非时变系统的特性。

第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。

2.掌握连续信号与离散信号的基本运算。

3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。

第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。

2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。

4.掌握用卷积法计算离散时间系统的零状态响应。

第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。

2.掌握离散周期信号的频域分析方法。

第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。

2.掌握连续非周期信号的频域分析。

3.掌握离散非周期信号的频域分析。

通信原理期末考试复习重点总结(完整版)

通信原理期末考试复习重点总结(完整版)

《通信原理》考试重要知识点第1章绪论掌握内容:通信系统的基本问题与主要性能指标;模拟通信与数字通信;信息量、平均信息量、信息速率。

熟悉内容:通信系统的分类;通信方式.了解内容:通信的概念与发展;1.1-—-1。

3 基本概念1、信号:消息的电的表示形式.在电通信系统中,电信号是消息传递的物质载体。

2、消息:信息的物理表现形式.如语言、文字、数据或图像等。

3、信息:消息的内涵,即信息是消息中所包含的人们原来不知而待知的内容。

4、数字信号是一种离散的、脉冲有无的组合形式,是负载数字信息的信号。

5、模拟信号是指信号无论在时间上或是在幅度上都是连续的。

6、数字通信是用数字信号作为载体来传输消息,或用数字信号对载波进行数字调制后再传输的通信方式.它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号。

7、模拟通信是指利用正弦波的幅度、频率或相位的变化,或者利用脉冲的幅度、宽度或位置变化来模拟原始信号,以达到通信的目的。

8、数据通信是通信技术和计算机技术相结合而产生的一种新的通信方式。

9、通信系统的一般模型10、按照信道中传输的是模拟信号还是数字信号,可相应地把通信系统分为模拟通信系统和数字通信系统。

11、模拟通信系统是传输模拟信号的通信系统。

模拟信号具有频率很低的频谱分量,一般不宜直接传输,需要把基带信号变换成其频带适合在信道中传输的频带信号,并可在接收端进行反变换。

完成这种变换和反变换作用的通常是调制器和解调器。

12、数字通信系统是传输数字信号的通信系统。

数字通信涉及的技术问题很多,其中主要有信源编码/译码、信道编码/译码、数字调制/解调、数字复接、同步以及加密等。

13、数字信道模型14、通信系统的分类1 、按通信业务分类分为话务通信和非话务通信.2、根据是否采用调制,可将通信系统分为基带传输和频带(调制)传输。

3、按照信道中所传输的是模拟信号还是数字相应地把通信系统分成模拟通信系统和数字通信系统。

广东海洋大学信号与系统期末复习试卷

广东海洋大学信号与系统期末复习试卷

第 页 共 3 页1 一、信号与系统判别1. 判别右图信号性质因果2.判别下列系统性质d 2y(t)/dt 2 + 3t 2y(t)=f(t-1 ) 线性(√)时变(√)二、连续系统时域分析1 己知系统方程d 2y/dt 2+5dy/dt+6y=f(t)。

(1)传递算子H(p)=1/(p 2+5p+6)=1/[(p+2)(p+3)](2)单位脉冲响应h(t)=[1/(3-2)](e -2t - e -3t )u(t)2 已知系统单位脉冲响应h(t)与输入f 1(t)、f 2(t),用卷积求对应的零状态响应y 1(t)、y 2(t)y 1(t)=h(t)*f 1(t)= e -3t u(t)*u(t) = (1/3)(1-e -3t )u(t)y 2(t)=h(t)*f 2(t)= h(t)*[2q -1-2q -3]u(t)=2(q -1-q -3)y 1(t)3己知H(p)=1 /(p 2+5p+6),y(0+)=1,y /(0+)= -3,计算零输入响应 y zi (t)Yzi(p)=[1(p+5)+(-3)(1)]/(p 2+5p+6)=1/(p+3), y zi (t)= e -3t u(t)三、连续系统频域分析1(1) f(t)如右图,则F(j ω)=F[(q +3+q -3)2g 2(t)]= ( ej3ω+ e -j3ω)4Sa(2ω/2) (2) F -1{e -j3ω/(j ω+2)}= {e -3p /(p+2)}δ(t)=q -3e -2t u(t)2 己知系统结构、低通滤波器H(j ω)特性、及输入信号f(t)频谱如下图,求调制信号x(t)和输出信号y(t)频谱X(j ω)、Y(j ω)。

如下图第 页 共 3 页 2 3已知系统频率特性如图,输入信号为:f(t)=4 + 6sin(t-30o )-2cos(4t+60o )输出y(t)=4*1 + 6*2sin(t-30o -45o )四、(28分)连续系统复频域分析1求下列函数的拉氏变换(1)L{e -2t u(t)}=1/(s+2)(2)L{ e -2(t-1)u(t-1)}= L{ q -1e -2t u(t)}= e -s/(s+2) 2求拉氏反变换(1)L -1{(e -s + e -2s)/[(s+2)(s+3)]}= (q -1 + q -2)( e -2t - e -3t u)u(t)3 己知系统传函H(s)=1/(s 2+2ζs+1) ζ=0.7(1) 简画单位阶跃 (2) 画结构流图响应4判断以下系统极点对应的时域响应的特征极点 幅值 振荡-0.7±j0.707 减幅 有0.000001 增幅 无5已知系统结构流图如下:(1)求系统传函 H(s)=Y(s)/X(s)Gk(s)=(2s+a)/[s 2(4s+1)]H(s)= (2s+a)/[ 4s 2+s 2+ 2s+a](2)求系统稳定条件a>0 & 2>4a 0<a<1/26 已知X(s)=(s+1)/[s(s 2+4s+2)],第 页 共 3 页 3 则x(0+)=s X(s)|s=∞=0 ; x(+∞)= s X(s)|s=0=1/2五、离散系统时域分析1已知信号最高频率4KHz ,按采样定理,最低采样频率fs= 2* 4KHz2己知离散系统y(n)-1.1y(n-1)+0.3y(n-2)=x(n-1)(1)传递算子H(q)=q -1/[1-1.1q -1+0.3q -2]= q -1/[(1-0.6q -1)(1-0.5q -1)](2)单位脉冲响应h(n)= q -1 [1/(0.6-0.5)](0.6n+1-0.5n+1)u(n)= 10(0.6n -0.5n )u(n-1)= 10(0.6n -0.5n )u(n)3已知单位脉冲响应h(n)和输入f(n)如右图,用卷积求输出y(n)y(n)= q -3 [1,1,1]* q 2[1,1,3,2]= q -1[1,2,5,6,2]六、离散系统复频域分析1求序列Z 变换 f(n)= 3δ(n+1) - 5δ(n-2) + 0.4 n u (n)F(z)= 3z –5z -2 + 1/(1-0.4z -1) |z|>0.42求Z 反变换F(z)= 1/[(1-0.6z -1)(1-z -1)] |z|>1f(n)= [1/(1-0.6)](1-0.6n+1)u(n)3已知H(z)= 1/(1-0.6 z -1),(1)极点0.6, |0.6|<1 稳定 ; (2)阶跃响应g(n)= 同2七、状态空间分析 已知系统流图如下,状态方程 Px1= -4x1 - 5x2 + f(t)Px2= x1输出方程y(t)= (2-4)x1 +(3-5)x2 + f(t)。

信号与系统期末复习试题附答案

信号与系统期末复习试题附答案

一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae2--+,则其2个特征根为( ) A 。

信号与系统 期末复习资料

信号与系统  期末复习资料
0 0
根据傅里叶变换时域卷 积性质 1 ω − jω Q FT [ f 0 (t )] = F1 e 2 2 1 FT[u (t )] = + πδ (ω ) jω
F2 (ω ) = FT [ f 2 (t )] = F0 (ω ) • FT[u (t )]
1 ω − jω 1 1 π ω ∴ F2 (ω ) = F1 e • + πδ (ω ) = F1 e − jω + F1 (0 )δ (ω ) 2 2 2 2 jω 2 jω 信号与系统(信息工程)
信号与系统(信息工程)
2、采用δ函数平衡法求解,则有
左边:r ' (t ) 平衡→ 3x ' (t ) = 3δ (t ) 等效为r (t ) 平衡→ 3u (t )
可以看出:r(t)在t=0处连续有跳变,且有 r(0+)- r(0-)=3 则 r(0+) = r(0-)+3=3 3、方程两边最高阶对应,得
证明:两函数正交条件 i + j i − j sin 2 π sin 2 π 2π 2π 1 + = 0(i ≠ j ) gi (t )g j (t )dt = ∫ cosit cos jtdt = ∫0 0 2 i+ j i− j 当i = j时, gi (t )g j (t )dt = ∫ cos2 ntdt ≠ 0 ∫
−3t
( (
) )
Yzi (t ) = 3e−3t u(t )
zs
( ) Y (t ) = (− e + sin2t )u(t )
因此 1(t ) = Yzi (t ) +Yzs (t − t0 ) = 3e−3t u(t ) + Y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) f2(t)[1c0o3ts)(2] (1-3(2))
.
二、系统及其性质
1、线性系统: 1)可分解性 2)零输入线性 3)零状态线性
2、时不变系统:
f( t) y ( t) f( t t0 ) y ( t t0 )
3、因果系统:响应仅与该时刻和以前时刻的 输入有关
.
判断下列系统是否属于线性系统,时不变系 统(P25,P27)
2) y ( t ) ( 5 y ( 0 ) 7 y ( 0 )2 ) 3 t2 f( t ) 0 t
3) y(t)(7t53t)f(t)
线性、时变
.
(3) (习题1-16(2)) 1) y(t)=f(t)u(t)
线性、时变
2) y(t)=(f(t)+ f(t-1))u(t)
(4) (习题1-16(3)) 1) y(t)=sin[ f(t)]u(t) 非线性、时变
1)y(n)=T[x(n)]=nx(n)。 是线性、时变系统
2)y(n)=n3x(n)
.
第二章 时域解法
重点
1)求系统的全响应的时域解法 2)卷积及其运算
.
一、 时域解法
1)用算子法解零输入响应yzi;
2)用卷积解零状态响应yzs ;
注意:1) 微分方程的算子表示法; 2) 单位冲激响应h(t) 3) 卷积的积分表示式及计算;
一、信号的运算
1.画出下列信号的波形(P7,P15;信号的加 减)
(1) f(t)=3 u(t+1) -2 u(t) -4 u(t-1)+ u(t-5)
(2) f(t)=- 2δ(t+2 )-δ(t+1)+δ(t) +2δ(t-1) +3δ(t-2) + 4δ(t-3)
.
2.已知f(t)的波形如下图所示,试画出:
期末复习
信号与系统
.
第一章与第五章
重点
1、信号及其运算;
1)信号 2)信号的运算(P7,P15;信号的加减)
(P12;信号的时移、折叠和尺度变换) 3)信号的波形(P7) 4)周期信号 (P2)
2、系统
1)线性系统 (P25) 2)时不变系统(P27) 3)因果系统 (P24) 4)离散系统 (P256) .
1) f ( 1 t 2)
4

f (1 t 2) 4
2) f(2t+3),f(-2t+3) 的波形(列出中间步骤)。 (P12;信号的时移、折叠和尺度变换) 解:
1)折叠(+/-) 2)时移 3)尺度
.
3.判断下列信号是否周期信号,如是,请确 定其周期。(P2,T是T1和T2的最小公倍数)
(1) f1(t)co 2ts )5 ( co 4 t)s((1-3(1))
的非零值区; ➢ 最后, 对f(τ)h(t-τ)积分得出零状态响应yzs(t)。
.
例 已知激励f(t)=u(t),h(t)=(-6e-3t+8e-4t)s (t ) 0 f (t ) h ( ) d
t u (t )( 6 e 3 8 e 4 )u ( ) d 0
e t (3e 2 8 / 3e 3 ) |t0 u (t ) (3e3t 8 / 3e4t 1 / 3)u(t)
.
练习:
例(P79 2-19)
.
例(P79 2-19)已知系统的微分方程为:
dd22ty(t)3ddty(t)2y(t)ddtf(t)3f(t) y(0)1 yzi(0)2 f(t)e3tu(t)
(1)(1-15(1))
1)y (t) a(0 y ) b(t) f 0t线性、时不变 2)y ( t) a ( 0 ) y b y ( 0 ) c ( t) f 0t
d3f(t)
3) y(t) dt3 6f(t) (2) (1-15(2))
1) y (t) a2 (0 y ) 3 t2f(t) 0非t线性、时变
.
例2.2-1 已知系统的传输算子H(p)= 2p/(p+3)(p+4) , 初始条件yzi(0)=1, yzi(0)2, 试求系统的零输入
解响应。H(p)(p32)p(p4)
特征根λ1=-3, λ2=-4 零输入响应形式为
yzi(t)=C1e-3t+C2e-4t t>0 将特征根及初始条件y(0)=1, y′(0)=2代入
1=C1+C2 2=-3C1-4C2
解出
C1=6 C2=-5
yzi(t)=6e-3t-5e-4t . t>0
例 求上例的单位冲激响应h(t)。 解 传输函数由待定系数法分解为
H (p) 2p 68 (p3)p (4) p3 p4
可得 h(t)=(-6e-3t+8e-4t)u(t)
.
t
t
y z( s t) 0f()h ( t)d 0f( t)h ()d
t ( 6 e 3 8 e 4 )u ( )u (t ) d 0
( t ( 6 e 3 8 e 4 ) d )u (t ) 0
( 2 e 3 2 e 4 ) |t0 u (t )
2(e3t e4t )u (t)
.
例 已知激励f(t)=e-tu(t),h(t)=(-6e-3t+8e-4t)u(t)
是数学卷积运算的一种形式, 因此也称卷积法。
积分变量为τ, t仅是参变量, 计算时按常数处理。 ➢ 卷积计算步骤
❖ 第一步,变量转换, 将f(t)变为f(τ), h(t)变为h(t-τ); ➢ 第二步,将f(τ)与h(t-τ)两个函数相乘; ➢ 第三步,确定积分上、 下限, 也就是找到f(τ)h(t-τ)相乘后
2) y(t)=(sin2[f(t)]+sin[ f(t)])u(t)
.
离散系统 (5) (P256,例5.2-1(1),5.2-2(1))
1) y(n)=T[x(n)]=ax(n)+b; 是非线性系统、时不变系统。
2) y(n)= ax(n)+b x(n-1)+c (6) (P257,例5.2-2(2))
用时域法求yzs(t)。
解 : y zs (t )
t 0
f (t )h( )d
t e (t )u (t )( 6e 3 8e 4 )u ( )d 0
e t t (6e 2 8e 3 )u ( )u (t )d 0
e t ( t (6e 2 8e 3 )d )u (t ) 0
相关文档
最新文档